
HAL Id: hal-01154154
https://hal.science/hal-01154154v1

Preprint submitted on 21 May 2015 (v1), last revised 8 Jan 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A model for gene deregulation detection using
expression data

Thomas Picchetti, Julien Chiquet, Mohamed Elati, Pierre Neuvial, Rémy
Nicolle, Etienne E. Birmelé

To cite this version:
Thomas Picchetti, Julien Chiquet, Mohamed Elati, Pierre Neuvial, Rémy Nicolle, et al.. A model for
gene deregulation detection using expression data. 2015. �hal-01154154v1�

https://hal.science/hal-01154154v1
https://hal.archives-ouvertes.fr

Picchetti et al.

A model for gene deregulation detection using
expression data
Thomas Picchetti1*, Julien Chiquet2, Mohamed Elati3, Pierre Neuvial2, Rémy Nicolle3,4 and Etienne

Birmelé1

*Correspondence:

thomas.picchetti@parisdescartes.fr
1Laboratoire MAP5, Université

Paris Descartes and CNRS,

Sorbonne Paris Cité, 45 rue des

Saints-Pères, 75270 Paris Cedex

06, France

Full list of author information is

available at the end of the article

Abstract

In tumoral cells, gene regulation mechanisms are severely altered, and these
modifications in the regulations may be characteristic of different subtypes of
cancer. However, these alterations do not necessarily induce differential
expressions between the subtypes. To answer this question, we propose a
statistical methodology to identify the misregulated genes given a reference
network and gene expression data.

Our model is based on a regulatory process in which all genes are allowed to be
deregulated. We derive an EM algorithm where the hidden variables correspond
to the status (under/over/normally expressed) of the genes and where the E-step
is solved thanks to a message passing algorithm. Our procedure provides posterior
probabilities of deregulation in a given sample for each gene. We assess the
performance of our method by numerical experiments on simulations and on a
bladder cancer data set.

Keywords: regulatory network; belief propagation; EM algorithm; deregulation;
inference

Background
Various mechanisms affect gene expression in tumoral cells, including copy number

alterations, mutations or modifications in the regulation network between the genes.

A simple strategy to identify genes affected by these phenomena is to perform

differential analysis. Results can then be extended to the scale of pathways using

enrichment analysis [1] or functional class scoring [2]. However, such a strategy is

blind to small variations in gene expression, especially as multiple testing correction

applies. Moreover, it does not take interdependence between genes into account and

treats all genes as equal, whatever their role in the regulation processes. To overcome

these restrictions, an alternative strategy is to identify the affected genes by pointing

important changes in the gene regulatory network (GRN) of the tumoral cell.

GRN can be obtained from curated databases or, in order to obtain tissue or

condition-specific networks, reconstructed from expression data. In the latter case,

the inference can be done by relying either on discrete or continuous models. In the

discrete framework, gene expression profiles are discretized into binary or ternary

valued variables (underexpressed/normal/overexpressed). The regulation structure

is then given by a list of truth tables [3]. This approach allows in particular to

take coregulation into account, that is to require the activity of a whole set of co-

activators or co-inhibitors to activate or inhibit the target [4, 5]. In the continuous

case, inference can by done in a regression framework, where the expression of

each target gene is explained by all its potential regulator genes. An edge is drawn

between two genes if the corresponding regression coefficient is significantly different

Picchetti et al. Page 2 of 12

from zero, which can be deciphered by performing variable selection in the regression

model. A popular choice for this task is to rely on sparsity-inducing penalties like

the Lasso and its by-products [6, 7]. In particular, some variants allow to account

for co-regulation by favoring predefined groups of regulators acting together in a

sign-coherent way [8]. Other forms of penalties encourage a predefined hierarchy

between the predictors[9], i.e. of the regulator genes in the case at hand.

To unravel deregulated genes by means of GRN, a first possibility is to infer

several networks independently (one for each tissue) and to compare them. However,

due to the noisy nature of transcriptomic data and the large number of features

compared to the sample size, most of the differences found in the networks inferred

independently may not be linked with underlying biological processes. Methods

have therefore been developed to infer several networks jointly to share similarities

between the different tissues and penalize the presence of an edge in only one of

them. Such methods exist for both time series [10] or steady-state [11] data.

A second possibility is to assess the adequacy of gene expression in tumoral cell

to a given reference GRN, in order to exhibit the more striking discrepancies – i.e.

the regulations which are not fulfilled by the data –. In this perspective, [12] use an

heuristic in a Boolean framework to update the regulatory structure by minimizing

the discrepancies between the reference GRN and a new data set. A similar approach

is depicted in [13] to predict the discrepancies and the unobserved genes of the

network. More methods analyzing the coherence between known signaling pathways

and gene data sets can be found in the review [14]. Still, they focus on checking the

validity of the network rather than highlighting genes with an abnormal behavior.

At the pathway level rather than the gene level, it is possible to look for sample-

specific regulation abnormalities by using SPIA [15]. PARADIGM [16] generalizes

SPIA on heterogeneous data (DNA copies, mRNA and protein data). Moreover, it

determines a score of activity for each gene of a pathway for each sample of the data

set, and the use of hidden variables allows to compute this score even if some of the

genes of the pathway are not measured. The method is however not network-wide

in the sense that each gene has a deregulation score by pathway it belongs to, and

pathways are treated independently. Moreover, as the pathways are extracted from

curated databases, the regulations taken into account are not tissue-specific.

The aim of this paper is to develop a methodology to provide a unique deregulation

score for each gene by taking the whole regulation network into account. For this

purpose, we introduce a model based on a regulatory process in which genes are

allowed to be deregulated, i.e. not respond to their regulators as expected. An EM

strategy is proposed for parameter inference, where the hidden variables correspond

to the status (under/over/normally expressed) of the genes. The E-step is solved

thanks to a message passing algorithm. At the end of the day, the procedure provides

posterior probabilities of deregulation in a given sample for each target gene. We

assess the performance of our method for detecting deregulations on simulated

data. We also illustrate its interest on a bladder cancer data set, where we study

the deregulations according to two reference GRN obtained by two state-of-the-art

network inference procedures on a consensus expression data set.

Picchetti et al. Page 3 of 12

Methods
The model

Our model draws inspiration from LICORN [4], a model originally developed for net-

work inference purposes. LICORN considers a regulation structure in which genes

are either regulators (transcription factors – TFs) or target genes. The expressions

are discretized and each gene g is characterized by a ternary value Sg ∈ {−1, 0,+1}
encoding its expression status – under-, normally, or over-expressed. The regulation

of each target gene g is governed by a set of co-activators A(g) and co-inhibitors I(g)

among the TFs. Those sets are endowed with some “collective status” described by

variables SAg and SIg , assuming that regulation works in a cooperative way: hence,

the collective state of a set of regulators is over- (resp. under-) represented if and

only iff all elements in the set share the same status. Finally, the status Sg of the

target gene g is deduced from SAg and SIg by following the truth Table 1.

Table 1 LICORN truth table. How the target gene behaves (unless it is deregulated) according to
its co-activators’ state A and co-inhibitors’ state I.

Q
Q
Q

I
A - 0 +

- 0 + +
0 - 0 +
+ - - -

In order to detect deregulated target genes given a regulatory network and gene

expression profiles, we apply two major modifications to the LICORN model: first,

we avoid discretization of the data by considering all the ternary variables intro-

duced so far as hidden random variables. The expression Xg of a gene g is assumed

to follow a normal distribution with parameters that depend on the hidden status,

i.e., Xg|Sg = s ∼ N (µs, σs). Second, we introduce for each gene an indicator vari-

able Dg for deregulation, such that Dg = 1 with probability ε. Renaming the result

of the truth table by SRg , the final status of the target is then deduced from the

values of Dg and SRg :Sg = SRg if Dg = 0,

∀s 6= SRg ,P(Sg = s) = 1
2 if Dg = 1.

For completeness, we must specify the distribution of the hidden states Sg for

each TFs: we assume independent multinomial distributions with parameters α =

(α−, α0, α+).

The model is summarized in Figure 1. For the sake of conciseness, the vector θ

entails all parameters of the models, that is, the means and standard deviations of

the Gaussians, the vector α of proportions and the deregulation rate ε. The dataset

contains n samples, r TFs and t target genes. We denote by Z the n×(r+5t) matrix

of all hidden states and by X the n× (r + t) matrix of all expression variables.

Estimation algorithm

As usual with latent variable models, the likelihood is intractable as the number

of potential states of the hidden variables grows exponentially with the number of

variables. Therefore, we adopt an EM-like strategy [17] by iterating the following

steps, starting from an initial guess θ0 of the model parameters:

Picchetti et al. Page 4 of 12

S21 S13 S17 S26 S34

SI60 SA60

SR60 D60

S60

.

α

X21 X13 X17 X26 X34. µ, σ

ε

X60

Figure 1 The model for one target gene regulated by two co-inhibitors and three co-activators.
The circled variables are hidden. A dashed edge indicates that the distribution of the variable
depends on the corresponding parameter.

E-step: Fix θ and compute the posterior distribution of the hidden variables, con-

ditional on the observed expression values: q(Z) = P(Z|X,θ)

M-step: Fix q and find θ that maximizes
∑
q(Z) logP(X,Z|θ)

Step E. The first issue at stake in the E-step is to deal with the number of potential

states for the hidden variables of all the genes. Fortunately, we only need their

marginal distributions in the M step, as will be shown in the corresponding section.

Still, computing the marginal posterior distributions is not straightforward either.

Consider for instance the distribution of the latent variable associated with gene g,

which requires the computation of the prior probability of observing Xg and having

g in state s, for each s in {−1, 0,+1}. The corresponding gene expression values in

X depend on Z, the hidden states of all the other genes, and computing this prior

naively would require adding together an intractable number of terms.

To handle this issue, we rely on Belief Propagation [18] – a.k.a message-passing

algorithm – to perform the E step, since the probability distribution arising from

our model is easily represented as a factor graph. Indeed, consider a set of discrete

values for all variables SAg , SIg , SRg and Dg. Conditionally on X, the probability for

the discrete variables to match the given value is proportional to the product of the

following factors:

1. αSg
for each regulator gene g;

2. ε if Dg = 1, and 1−ε
2 if Dg = 0, for each target gene g;

3. 1
σ exp

−(Xg−µ)2
2σ2 for each gene g (regulator or target), where µ and σ are the mean

expression and standard deviation associated to state Sg;

4. a factor equal to one if SAg correctly represents the collective state of g’s activa-

tors, and zero otherwise;

5. a factor equal to one if SIg correctly represents the collective state of g’s inhibitors,

and zero otherwise;

Picchetti et al. Page 5 of 12

6. a factor equal to one if SRg is the entry in Table 1 corresponding to SAg and SIg ,

and zero otherwise;

7. a factor equal to one if either Dg = 0 and Sg = SRg or Dg = 1 and Sg 6= SRg , and

zero otherwise.

S21 S13 S17 S26 S34

(3)

(5)

(6)

(7)

SI
60 SA

60

SR
60

D60

S60

(3)

.

(1)

(2)

(4)

Figure 2 A partial view of the factor graph. The factor graph corresponding to Figure 1. The
squares correspond to the factors, and are numbered according to the text. The algorithm
oteratively updates the distribution of the circled variables.

This factorization translates into the factor graph depicted in Figure 2 (a graph

whose nodes are the variables and the above factors, each factor being connected to

the variables it depends on). We use the SumProduct Belief Propagation algorithm,

implemented in the Dimple library [19] to compute approximated marginals of every

hidden variable, given the regulation network, the parameter set, and the expression

values. In the case where multiple samples are given, this can be done separately

for each one since the samples are considered as independent.

Step M. In this step we keep the probability distribution q fixed and look for the

parameters θ that maximize

∑
Z

q(Z) logP(X,Z|θ)

Since P(X,Z|θ) is a product of simple factors, its logarithm is the sum of these

factors. Also, note that Boolean factors (4-7) can be omitted since they have no

effect on the sum: whenever q(Z) 6= 0, these factors must be equal 1 hence the

logarithm is 0.

Picchetti et al. Page 6 of 12

Calling G the set of genes, R ⊂ G the set of regulators and T ⊂ G the set of

target genes, we are left to maximize the sum over all samples of

∑
g∈R

∑
Z

q(Z) logαSg

+
∑
g∈T

∑
Z

q(Z)

(
Dg log ε+ (1−Dg) log

1− ε
2

)

+
∑
g∈G

∑
Z

q(Z)

(
−(Xg − µSg)2

2σ2
Sg

− log σSg

)

These three terms depend on separate parameters and can be maximized sepa-

rately. Moreover, we only require the marginals of variables Sg and Dg for this task,

and not the full distribution q. Denoting by I the set of samples, it is straightforward

to show that the former sum is maximized for the following parameters:

α− ∝
∑
i∈I

∑
g∈R

q(Si,g = −1), α0 ∝
∑
i∈I

∑
g∈R

q(Si,g = 0), α+ ∝
∑
i∈I

∑
g∈R

q(Si,g = +1),

ε ∝
∑
i∈I

∑
g∈T

q(Di,g = 1), (1− ε) ∝
∑
i∈I

∑
g∈T

q(Di,g = 0),

µs =

∑
i

∑
g q(Si,g = s)Xi,g∑

i

∑
g q(Si,g = s)

, σ2
s =

∑
i

∑
g q(Si,g = s)(µs −Xi)

2∑
i

∑
g q(Si,g = s)

Complexity analysis

Step M only involves computing a few sums of size [number of genes]×[number of

samples] and is not time-consuming. Step E performs for each sample a fixed number

of passes of Belief Propagation in the factor graph. Each pass consists in updating

every node with information from its neighbors. The complexity of updating a factor

grows exponentially with its degree, therefore it is important to limit the number

of variables of each factor. It is done by replacing factors of types (4) and (5) by

tree-like structures with many factors having 3 variables each.

With this approach the graph has approximately N = 2E +G nodes, where E is

the number of regulator-target edges in the regulation network, and G the number

of genes. A personal computer performs a few million node updates per second,

thus step E will run in t seconds if N×[number of passes]×[number of samples] is

not much greater than t millions.

Regulatory network inference from expression data

To apply our methodology to real data, we use two different inference methods.

LICORN. The first one, named hLICORN, corresponds to the LICORN model

and is available in the CoRegNet Bioconductor package [5]. In a first step, it effi-

ciently searches the discretized gene expression matrix for sets of co-activators and

co-repressors by frequent items search techniques and locally selects combinations

of co-repressors and co-activators as candidate subnetworks. In a second step, it

Picchetti et al. Page 7 of 12

determines for each gene the best sets among those candidates by running a re-

gression. hLICORN was shown to be suitable for cooperative regulation detection

[4, 5].

Cooperative-Lasso + Stability Selection. The second inference procedure applies

in a continuous setup. It consists in two steps: first, a selection step performed with

a sparse procedure; and second, a resampling step whose purpose is to stabilize the

selection for more robustness in the reconstructed network. Here are some details.

Step 1: selection. For each target gene, a sparse penalized regression method is

used to select the set of relevant co-activators and co-inhibitors among all possible

transcription factors. When no special structure is assumed in the network, this

task can be performed with the Lasso penalty, as it was successfully applied for

network inference in [7]. Here, however, we are looking for sets of regulators that

work group-wise, either as co-activators or co-inhibitors. To favor such a structure,

we build on the penalty proposed in [11, 8] that encourages selection of predefined

groups of variables sharing the same sign (thus being either co-activators or co-

inhibitors). This regularization scheme is known as the “cooperative-Lasso”. It was

originally designed to work with a set of groups that form a partition over the set of

regulators. Here, we extend this method to a structure that defines a hierarchy (or

tree) on the set of regulators R . We denote by H = {H1, . . . ,HK} this structure,

with Hk the kth (non-empty) node of the hierarchy.

Technically, the optimization problem solved for selecting regulators of gene g is

the following penalized regression problem

β̂
(g)

= arg min
β(g)∈R|R|

1

2

∥∥∥Xg −XRβ
(g)
∥∥∥2 + λ

K∑
k=1

∥∥∥∥(β(g)
Hk

)+∥∥∥∥
2

+

∥∥∥∥(β(g)
Hk

)−∥∥∥∥
2

,

with Xg the expression profile of gene g and XR the expression profiles of the regula-

tors. The parameter λ > 0 tunes the amount of regularization, and thus the number

of regulators associated with gene g; v+ and v− are the positive, respectively the

negative elements of a vector v, and vHk
the restriction of v to the elements in node

Hk of the hierarchy. Hence, this penalty favors selection of sign-coherent groups of

variables, like (β
(g)
Hk

)+, standing for the estimated co-activators of gene g in node

Hk of the hierarchy, or (β
(g)
Hk

)−, the corresponding co-inhibitors.

Step2: Stabilization. We fit a sparse model as described above for each target

gene, regressing on the same set of regulators R. The hierarchy H that we used is

obtained by performing hierarchical clustering with average linkage on a distance

based upon the correlation between expression profiles. We use the same λ for each

gene, which is chosen large enough in order to select at least one set of regulators

for all target genes. To select the final edges in the network, we rely on the stability

selection procedure of [20], which was successfully applied to the reconstruction of

robust regulatory networks in the case of a simple Lasso penalty [6], and is known

to be less sensitive than selecting one λ per gene (e.g. by cross-validation). This

technique consists in refitting the regression model on many subsamples obtained

by drawing randomly n/2 observations from the original data set. We replicate

10,000 times this operation and obtain a estimated probability of selection for each

Picchetti et al. Page 8 of 12

edge. We fix the threshold in order to select a number of edges similar to LICORN,

which corresponds to edges with a probability of selection greater than 0.65.

Results and Discussion

Classification performances on simulated datasets

In our experiments, the score q(Di,g = 1) is used to determine if gene g is dereg-

ulated or not in sample i. Performances are evaluated with Precision-Recall (PR)

curves, which are known to be more informative than ROC curves or accuracy [21]

when considering classification problem with very imbalanced data sets.

To study the impact of each parameter, we run our method for several values of

this parameter while all others remain fixed to their default value. Ten replications

are performed in each setting, resulting in 10 PR curves. We thus obtain clouds of

curves, measuring both the variability for a given set of parameters and the influence

of the varying parameter.

Some parameters have little effect on the performance and are thus only tested

for sanity check. We thus postpone the associated PR curves to the supplementary

material. This is the case for the number of genes and the sample size, which do not

influence the performance as long as their product is of several hundreds. Changing

µ and α has no effect either, as long as µ0 is close to zero (this can be enforced

by normalizing the expression data). Finally, the number of passes in the Belief

Propagation algorithm has no influence as long as greater than 5: lower values

result in poorer classification, but higher values do not significantly improve the

results.

Turning back to the parameters whose variations strongly influence the classifi-

cation performance, we unsurprisingly note that σ has dramatic effect. As a rule

of thumb, σ must be less than 1 to be able to discriminate between two means

among µ−, µ0, µ+ at a distance of 1 from each other. Otherwise, it is impossible to

determine which Gaussian distribution an expression level is associated with (see

Figure 3). Meanwhile, large values of ε mechanically result in better PR: the more

the deregulated genes, the more the true positives among all positives (Figure 4).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

sigma=0.7
sigma=1

sigma=1.5

Figure 3 Influence of σ. PR curves for simulations with varying σ, with means
(µ−, µ0, µ+) = (−1, 0, 1). Ten simulations are run for each value

Picchetti et al. Page 9 of 12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

epsilon=0.01
epsilon=0.05

epsilon=0.2

Figure 4 Influence of ε. PR curves for simulations with varying ε. Ten simulations are run for
each value

Managing the False Discovery Rate

Consider couples (i, g) whose deregulation score q(Di,g = 1) = s: this score being a

posterior probability, the expected proportion of true (respectively false) positives is

s (respectively 1− s). Similarly, if K pairs pass the threshold, the expected number

of true positives among them is the sum of their scores, denoted by S. The false

discovery rate (FDR) may be estimated by (K − S)/K. In practice, aiming for a

particular FDR, one can start with a threshold of 1 and lower it gradually: as more

pairs get selected, the ratio (K−S)/K gradually increases. All one has to do is stop

when it reaches the intended FDR. The concordance between the intended FDR

and the actual proportion of false positives is illustrated on simulated datasets in

the Supplementary Material.

Results on real data

We applied our method to the bladder cancer data set available in the R-package

CoRegNet [5]. Expression data from patients with different status was pooled

to infer gene co-regulatory networks with two independent procedures, namely

hLICORN and the hierarchical Cooperative-Lasso. The inferred networks reflect

the regulation trends over the whole set of 184 samples. Our EM algorithm is then

run using the same expression data, but since samples are now treated individually,

the results reflect how each sample violates the regulatory rules generally followed

by the others.

Evidence that the method correctly identifies deregulated gene-sample pairs comes

from Copy Number Alteration (CNA) data, collected from the same samples using

CGH arrays. CNAs do not need to coincide precisely with failures of the regulation

network. However, the number of gene copies influences the expression indepen-

dently from expression of the TFs [22]. We therefore expect to observe a correlation

between CNA and gene deregulations.

To this end, we use CNA data provided by the CoRegNet package, associating

to each gene-sample pair a Boolean indicating if the gene is altered in the sample,

as well as the number of gains or losses in cases of alteration (either −2, −1, 1 or

2). In Figure 5, we observe gene-sample pairs having a CNA score higher in our

algorithm than for diploid gene-sample pairs. Although the difference seems slight,

it is significant given the large number of scores: the Kruskal-Wallis test gives a

Picchetti et al. Page 10 of 12

p-value p = 6 × 10−14 showing the scores of gene-sample pairs with different copy

number status are not equally distributed.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●
●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CNA status

de
re

gu
la

tio
n

sc
or

e

Figure 5 Distribution of scores, by Copy-Number status. The scores are higher in average for
anormal copy numbers. (Kruskal-Wallis test gives p-value < 10−13)

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

p−value density

p−value

de
ns

ity

Cooperative−Lasso
LICORN

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Z score density

Z score

de
ns

ity

Cooperative−Lasso
LICORN

Figure 6 p-value and z-score distribution for the comparison between diploid and copy number
altered genes.

We also consider for each gene the score ranges over all the samples, and look at its

distribution depending on the CNA. The difference between the two distributions

can be quantified by running a t-test as follows: let sg and pg be the correspond-

ing statistic and p-value, and zg = sign(sg)qnorm(1 − pg), where qnorm denotes

the inverse of the standard normal distribution function. If CNAs and scores were

independent, the p-values pg would be uniformly distributed between 0 and 1 and

the z-scores zg would follow a standard normal distribution. Figure 6 shows that a

majority of genes exhibit a small p-value. Moreover, the z-score distribution is as-

symetric on the positive side, indicating that the small p-values mostly correspond

to a higher mean for the deregulation scores and thus altered genes.

Conclusion
In the present article, we develop a statistical model for gene expression based on a

hidden regulatory structure. Given a reference GRN, it allows to determine which

genes are misregulated in a sample, meaning an expression which does not matches

Picchetti et al. Page 11 of 12

the network given the expression of its regulators. Numerical experiments validate

the algorithmic procedure: when applied to bladder cancer data with known CNA,

the deregulation score is higher in samples in which genes have an altered number

of copies.

We believe that our methodology will be useful to understand which regulation

mechanisms are altered in different cancer subtypes. Indeed, the results of our

methodology are sample-specific. However, characterizing the deregulations which

are common to most of the individuals suffering a given cancer subtype is a promis-

ing perspective.

The integration of CNA to the methodology, as already done in the context of

differential expression [23], will also be considered in future work, as it would allow

a better power for detecting genes suffering misregulation due to a copy alteration.

Availability of supporting data
The EM algorithm described in this article is available as a Java archive at

http://www.math-info.univ-paris5.fr/∼ebirmele/

Bladder cancer data and hLicorn are available through the CoRegNet Bioconductor package.

Abbreviations
CNA: Copy Number Alteration GRN: Gene Regulatory Network PR curve: Precision-Recall ROC curve: Receiver

Operating Characteristic curve TF: Transcription factor

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
The work presented here was carried out in collaboration between all authors. ME and EB conceived the study. TP

and EB designed it and wrote the manuscript. JC, PN and RN brought their expertise on inference and statistical

interpretation on the real data. All authors provided valuable advises in developing the proposed method and

modifying the manuscript. All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank François Radvanyi for helpful discussions.

Author details
1Laboratoire MAP5, Université Paris Descartes and CNRS, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270

Paris Cedex 06, France. 2Laboratoire de Mathématiques et Modélisation d’Evry (LaMME), Université

d’Evry-Val-d’Essonne/UMR CNRS 8071/ENSIIE/USC INRA, Evry, France. 3institute of Systems and Synthetic

Biology (iSSB), CNRS, University of Evry, France. 4Institut Curie, PSL Research University, UMR 144 75248

Cedex 05, France, CNRS 75248 Paris Cedex 05, France.

References
1. Khatri, P., Draghici, S., Ostermeier, G.C., Krawetz, S.A.: Profiling gene expression using onto-express.

Genomics 79(2), 266–270 (2002). doi:10.1006/geno.2002.6698

2. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A.,

Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P.: Gene set enrichment analysis: A knowledge-based

approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences

102(43), 15545–15550 (2005). doi:10.1073/pnas.0506580102.

http://www.pnas.org/content/102/43/15545.full.pdf

3. Elati, M., Rouveirol, C.: Unsupervised Learning for Gene Regulation Network Inference from Expression Data: A

Review, pp. 955–978. John Wiley and Sons, Inc., ??? (2011). doi:10.1002/9780470892107.ch41.

http://dx.doi.org/10.1002/9780470892107.ch41

4. Elati, M., Neuvial, P., Bolotin-Fukuhara, M., Barillot, E., Radvanyi, F., Rouveirol, C.: Licorn: learning

cooperative regulation networks from gene expression data. Bioinformatics 23(18), 2407–2414 (2007).

doi:10.1093/bioinformatics/btm352.

http://bioinformatics.oxfordjournals.org/content/23/18/2407.full.pdf+html

5. Nicolle, R., Radvanyi, F., Elati, M.: Coregnet: reconstruction and integrated analysis of co-regulatory networks.

Bioinformatics (in revision)

6. Haury, A.-C., Mordelet, F., Vera-Licona, P., Vert, J.-P.: Tigress: Trustful inference of gene regulation using

stability selection. BMC Systems Biology 6(1), 145 (2012). doi:10.1186/1752-0509-6-145

7. Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the lasso. Ann. Statist.

34(3), 1436–1462 (2006). doi:10.1214/009053606000000281

8. Chiquet, J., Grandvalet, Y., Charbonnier, C., et al.: Sparsity with sign-coherent groups of variables via the

cooperative-lasso. The Annals of Applied Statistics 6(2), 795–830 (2012)

9. Jenatton, R., Audibert, J.-Y., Bach, F.: Structured variable selection with sparsity-inducing norms. The Journal

of Machine Learning Research 12, 2777–2824 (2011)

Picchetti et al. Page 12 of 12

10. Kojima, K., Imoto, S., Yamaguchi, R., Fujita, A., Yamauchi, M., Gotoh, N., Miyano, S.: Identifying regulational

alterations in gene regulatory networks by state space representation of vector autoregressive models and

variational annealing. BMC Genomics 13(Suppl 1), 6 (2012). doi:10.1186/1471-2164-13-S1-S6

11. Chiquet, J., Grandvalet, Y., Ambroise, C.: Inferring multiple graphical structures. Statistics and Computing

21(4), 537–553 (2011)

12. Karlebach, G., Shamir, R.: Constructing logical models of gene regulatory networks by integrating transcription

factor–dna interactions with expression data: An entropy-based approach. Journal of Computational Biology

19(1), 30–41 (2012)

13. Guziolowski, C., Bourde, A., Moreews, F., Siegel, A.: Bioquali cytoscape plugin: analysing the global

consistency of regulatory networks. BMC Genomics 10(1), 244 (2009). doi:10.1186/1471-2164-10-244

14. Samaga, R., Klamt, S.: Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling

networks. Cell Communication and Signaling 11(1), 43 (2013). doi:10.1186/1478-811X-11-43

15. Tarca, A.L., Draghici, S., Khatri, P., Hassan, S.S., Mittal, P., Kim, J.-s., Kim, C.J., Kusanovic, J.P., Romero,

R.: A novel signaling pathway impact analysis. Bioinformatics 25(1), 75–82 (2009).

doi:10.1093/bioinformatics/btn577. http://bioinformatics.oxfordjournals.org/content/25/1/75.full.pdf+html

16. Vaske, C.J., Benz, S.C., Sanborn, J.Z., Earl, D., Szeto, C., Zhu, J., Haussler, D., Stuart, J.M.: Inference of

patient-specific pathway activities from multi-dimensional cancer genomics data using paradigm. Bioinformatics

26(12), 237–245 (2010)

17. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm.

JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B 39(1), 1–38 (1977)

18. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Exploring artificial intelligence in the new millennium, pp. 239–269.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2003). Chap. Understanding Belief Propagation

and Its Generalizations. http://dl.acm.org/citation.cfm?id=779343.779352

19. Hershey, S., Bernstein, J., Bradley, B., Schweitzer, A., Stein, N., Weber, T., Vigoda, B.: Accelerating inference:

towards a full language, compiler and hardware stack. CoRR abs/1212.2991 (2012)

20. Meinshausen, N., Bühlmann, P.: Stability selection. Journal of the Royal Statistical Society: Series B

(Statistical Methodology) 72(4), 417–473 (2010)

21. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In: Proceedings of the 23rd

International Conference on Machine Learning, pp. 233–240 (2006). ACM

22. Pollack, J.R., Sørlie, T., Perou, C.M., Rees, C.A., Jeffrey, S.S., Lonning, P.E., Tibshirani, R., Botstein, D.,

Børresen-Dale, A.-L., Brown, P.O.: Microarray analysis reveals a major direct role of dna copy number

alteration in the transcriptional program of human breast tumors. Proceedings of the National Academy of

Sciences 99(20), 12963–12968 (2002). doi:10.1073/pnas.162471999.

http://www.pnas.org/content/99/20/12963.full.pdf

23. Salari, K., Tibshirani, R., Pollack, J.R.: Dr-integrator: a new analytic tool for integrating dna copy number and

gene expression data. Bioinformatics 26(3), 414–416 (2010). doi:10.1093/bioinformatics/btp702.

http://bioinformatics.oxfordjournals.org/content/26/3/414.full.pdf+html

Additional Files
supplementary material.pdf

File containing PR curves for varying α, µ, the number of genes/samples and the number of belief propagation

iterations. It also contains figures illustrating the FDR estimation on simulated data.

