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Abstract

This work presents a new Fast Multipole Method (FMM) based on plane wave expansions (PWFMM),
combining the advantages of the low and high frequency formulations. We revisit the method of
Greengard et al. [1] devoted to the low frequency regime and based on the splitting of the Green’s
function into a propagative and an evanescent part. More precisely, we give an explicit formula of
the filtered translation function for the propagative part, we derive a new formula for the evanescent
part and we provide a new interpolation algorithm. At all steps, we check the accuracy of the method
by providing error estimates. These theoretical developments are used to propose a wideband FMM
based entirely on plane wave expansions. The numerical efficiency and accuracy of this broadband
PWFMM are illustrated with a numerical example.

Keywords: Fast Multipole Method, Quadrature errors, Plane wave expansion, Helmholtz
equation, Broadband

1. Introduction

Let X be a cloud of points in R3 and k a real wavenumber; we consider the Helmholtz potential
induced by the charges ρi located at the points xi ∈ X,

Vi =
∑
j 6=i

eik|xi−xj |

|xi − xj |
ρj =

∑
j 6=i

Gijρj , xi ∈ X. (1)

When the number N of points in X is large, computing this matrix-vector product is prohibitive
due to the CPU and storage costs. The Fast Multipole Method (FMM) was developed in the 1980s
to speed up this computation and reduce the memory requirements. The idea is to compute this
matrix-vector product in a fast and approximate way while keeping the error below a prescribed
level. The original FMM proposed by Rokhlin in [2] relies on a truncated multipole expansion
for the approximation of the Green’s function. In [3], Rokhlin proposed the diagonal forms of
the translation operators for the 3D Helmholtz equation. The complete mathematical justification
can be found in [4]. Competitive methods to the FMM have been proposed in the recent years.
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Their main advantage is the straightforward extension to any kernel since they do not require an
analytical expansion. For example, Fong and Darve proposed in [5] a ”black box FMM” for non-
oscillatory kernels based on a Chebyshev interpolation scheme. The method is extended to oscillatory
kernels in [6]. Another kernel-independent FMM was proposed by Engquist and Ying [7]. All these
techniques take advantage of the data-sparse structure of the matrix. Recently, methods based
on hierarchical matrices [8] to derive the low rank approximations have emerged. For oscillatory
kernels, it has been shown empirically that it is a useful tool for moderate frequencies [9]. However,
the FMM is still a viable and interesting procedure due to its sound mathematical background for
oscillatory kernels. In this paper, we show (by providing error estimates) how to tune carefully the
various parameters of the method.

The diagonalization of the original FMM introduced in [3] paved the way for an approach
based on an expansion using propagative plane waves (PWFMM) [10, 11]. We call this approach
the high frequency PWFMM (HF-PWFMM) because the translation operators become unstable when
the characteristic spatial lengths are smaller than the wavelength [12, 13, 14]. To overcome this
drawback and handle lower frequencies, Bogaert and Olyslager [15] constructed an ad hoc procedure
well adapted to low frequencies. A different approach is proposed by Greengard et al. [1]. The
idea is to add evanescent waves to the plane wave expansion, leading to the low frequency PWFMM

(LF-PWFMM). The LF-PWFMM was then studied and improved on, in several directions, for example
by Darve and Havé [16], Wallen et al. [17]. Although more computationally expensive than the
HF-PWFMM, the LF-PWFMM produces stable computations for low frequency problems.

Since the HF-PWFMM is not accurate for the lower frequencies and the LF-PWFMM is more expensive
for the higher frequencies, it is ineffective to use the same formulation for all the frequencies. The
idea is to couple the HF and LF formulations and to use the HF method whenever possible. Such
formulations are called wideband or broadband FMMs. In [18], a wideband FMM was proposed by
Cheng et al. It uses the original FMM proposed by Rokhlin. To take advantage of the diagonal far
field to local translation operators for the lower frequencies, a conversion between the traditional
FMM and the LF-PWFMM is performed. A variant of this approach, avoiding the conversion to the
LF-PWFMM was proposed by Gumerov and Duraiswami in [19].

The present works focus on the PWFMM. In a first part, we perform an extensive theoretical study
of the LF-PWFMM and propose some improvements. Using this new formulation, we derive a wideband
PWFMM. An outstanding feature of this wideband PWFMM is that the far field to local translations are
intrinsically performed at all levels by means of diagonal operators. As a result, the implementation
is simple.

Principle of the PWFMM. The PWFMM is presented in several monographs [14] and papers (see for
example [10, 11]). In [20], a detailed connection between the PWFMM and the FMM based on a
multipole expansion is proposed. Basically in the PWFMM (see for example in [11]), the translations
refer exclusively to the diagonal form of the far field to local translations of Rokhlin’s FMM (the
translations between cells at the same level); and the interpolation step (together with a phase shift)
corresponds to the far field to far field and local to local translations.

We now recall the basic ideas of the PWFMM; for more details, the interested reader is referred
to [21]. In a first step, a 3D cubic grid of linear spacing D, embedding the cloud of points X,
is created; the cubic cells are then recursively subdivided into eight smaller cubic cells; the cell-
subdivision approach is systematized by means of an octree. At each level `, the linear cell size is
d = D

2`
, ` = 1, ...,£. The octree is used to derive a block decomposition of the matrix G. Generally

speaking, the definition of an efficient PWFMM is based on the following three ingredients:

1. An approximation formula for the evaluation of the Green’s function in terms of plane waves.
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If xt ∈ Bt and ys ∈ Bs, the Green’s function is sought under the form

eik|xt−ys|

|xt − ys|
'
∫

Λ̂

T (~k;~t) ei
~k·((xt−ct)−(ys−cs)) dΛ̂(~k), xt ∈ Bt, ys ∈ Bs

with Λ̂ ⊂
{
~k = (kx, ky, kz) ∈ C3, k2

x + k2
y + k2

z = k2
} (2)

where ~k is a wave vector, ~t = ct − cs is the translation vector linking the centers of two
interacting cells (Bs, Bt) and T is a translation function (defined in the following). Due to the
octree structure, the translation vectors are defined by ~t = (id, jd,md) with |i|, |j|, |m| ≤ 3
and |i|+ |j|+ |m| > 3. As a result, the number of possible translation vectors at a given level
is finite and bounded by 73 − 33 = 316 (see [21] for more details).

2. Accurate quadrature rules for the evaluation of the integrals over Λ̂. These quadrature rules
will depend only on the size of the cells at a given level. Consequently there are as many
quadrature rules as there are levels in the octree.

3. An interpolation formula allowing the evaluation of the plane waves at the level-` quadrature
points from their values at the level-(` − 1) quadrature points. This last ingredient yields
some additional factorizations of the computations, as the contributions at level-` are reused
to evaluate the contributions at level-(`− 1) [11].

In the HF-PWFMM, the plane wave expansion is defined only in terms of propagative waves,
reducing Λ̂ in (2) to the unit sphere in R3 (i.e. Λ̂ = kS2). In this case, the translation function
is a series involving spherical Hankel functions which are known to increase exponentially for small
arguments. As a result, the HF-PWFMM suffers from numerical breakdowns in the low frequency
regime. In the LF-PWFMM, the evanescent plane waves are added to the expansion leading to a more
expensive but also more stable method [21]. This extra cost is due to the introduction of six distinct
factorizations in the LF-PWFMM instead of one in the HF-PWFMM [1]. Accordingly, the 316 translation
vectors are dispatched into these six directions (with at most 74 translation vectors within a group).

Proposed improvements. The main contributions presented are the following:

1. Error estimates of the main steps of the algorithm.

2. An explicit formula to evaluate the translation function for the propagative part.

3. A new formula for the evanescent part, allowing to simplify the LF-PWFMM previously pro-
posed [1, 16] by amounting the evanescent part to the static case.

4. A new interpolation algorithm for the evanescent plane waves.

5. A new PWFMM combining the advantages of the low and high frequency formulations.

Outline. In Section 2, we introduce the new stable plane wave expansion. Then in Sections 3 and 4,
we study the propagative and the evanescent parts respectively. Namely, the plane wave expansions
are given in (19) and (38), the translation functions in (25) and (37). In Section 5, we present a
PWFMM, which is stable at all frequencies and efficient from the low to the high frequencies. Finally,
in Section 6, a numerical example is given to illustrate the capabilities of the method.

2. New stable plane wave expansions

The first ingredient to define an efficient PWFMM is the derivation of an approximation formula
for the Green’s function, in terms of plane waves. The common tool to all the LF-PWFMMs [1, 16, 18]
is the Sommerfeld formula. Let ~w be a vector with zw > 0. In the following, ~w denotes a vector,
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(xw, yw, zw) its Cartesian coordinates in (0, x̂, ŷ, ẑ), (Rw = |~w|, θw, ϕw) its spherical coordinates,
and (rw = Rw sin θw, ϕw, zw) its cylindrical coordinates; In [18], the Green’s function is written as

eik|~w|

|~w|
=

1

2π

∫ ∞
0

e−
√
λ2−k2zwJ0(λrw)

λ√
λ2 − k2

dλ. (3)

In this work, we choose to split the Green’s function into the following two parts ([22], [23, p. 416])

eik|~w|

|~w|
= Gp(~w) +Ge(~w),

with the propagative part Gp, respectively the evanescent part Ge, given by

Gp(~w) = ik

∫ π
2

0

J0(krw sin θ)eikzw cos θ sin θdθ, (4)

Ge(~w) =

∫ ∞
0

J0(
√
λ2 + k2rw)e−λzw dλ, (5)

where J0(t) is the Bessel function of order 0. It is possible to evaluate these two functions in a
simple and accurate way since both the propagative (4) and the evanescent (5) parts can be written
as fast convergent series. The propagative part is given by [24]

Gp(~w) = −k
∞∑
q=0

β̃2q+1j2q+1(kRw)P2q+1(
zw
Rw

) + i
sin kRw
Rw

(6)

where Pn(t) is the Legendre polynomial of degree n, jn(u) is the spherical Bessel function [25] while
the coefficients β̃2q+1 are

β̃2q+1 = (−1)q
P2q(0)

2q + 2
(2(2q + 1) + 1) =

2(2q + 1) + 1

2q + 2

1.3...(2q − 1)

2.4....2q
.

Similarly, the evanescent part is [23, p.358 & 386]

Ge(~w) =
1

Rw

∞∑
p=0

(−1)pεpJ2p(krw)
[

cot

(
Ψw

2

)]2p
, cot

(
Ψw

2

)
=
Rw − zw

rw
(7)

where εp is the Neumann factor defined by εp = 2 when p 6= 0 and ε0 = 1. These formulas are given
here mainly to check the accuracy of the approximations of either Gp or Ge.

The approach proposed by Greengard et al. in [1] to accelerate (and approximate) the evaluation
of the Green’s function in (1) is based on the representation of the Bessel functions [23, p. 19]

J0(t) =
1

2π

∫ 2π

0

eit cos(ϕ−ψ) dϕ, for any angle ψ. (8)

Taking ψ = ϕw and plugging (8) into (4), the propagative part is found in terms of plane waves

Gp(~w) =
ik

2π

∫ π
2

0

∫ 2π

0

eikRw(cos θ cos θw+sin θw sin θ cos(ϕ−ϕw)) sin θdθdϕ =
ik

2π

∫
S2

π(ŝ)eikŝ·~w dσ(ŝ) (9)
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where S2 is the unit sphere, and π(ŝ) is the characteristic function of the upper hemisphere, i.e. of
the directions oriented toward 0z

π(ŝ) = 1 if ŝ · ẑ ≥ 0 and = 0 if ŝ · ẑ < 0. (10)

Similarly, the evanescent part may be recast as

Ge(~w) =
1

2π

∫ ∞
0

∫ 2π

0

ei
~k(λ,ϕ)·~w dϕdλ with ~k =

 √k2 + λ2 cosϕ√
k2 + λ2 sinϕ

iλ

 . (11)

Definition of appropriate and accurate quadrature rules. In the context of the PWFMM, plane wave
expansions are used to evaluate the contributions coming from interacting pairs of cells (Bs, Bt).
The formulas (9) and (11) are applied in the special case where ~w = ~t + ~v, ~t = ct − cs and
~v = xt − ct − ys + cs. This implies for the group associated to the evanescence axis Oz that the 74
translation vectors are defined by ~t = (id, jd,md) with |i|, |j| ≤ m and m = 2 or 3 (where d is the
length of the edges of the cells). Since the three coordinates of the vector ~v lie between −d and d,
we have in addition ~w ∈ Ωd = dΩ̂, and Ω̂ is the set given by (Fig. 1)

Ω̂ =
{

(r̂w, ẑw) ∈ [0, 3
√

2]× [1, 3] ∪ [0, 4
√

2]× [2, 4]
}
. (12)

-

6ẑw

0

1

2

3

4

√
2 2

√
2 3

√
2 4

√
2

r̂w

Ω̂

Figure 1: Definition of the normalized domain Ω̂ in which the vectors ~w/d lie, i.e. ~w ∈ Ωd.

Having reduced the size of the domain of definition of the vector ~w, the key point in the LF-PWFMM is
the definition of accurate quadrature rules for (11) for all ~w ∈ Ωd, with a small number of quadrature
points (to optimize the computational costs). Since the phase of the integrand in (11) is nonlinear
with respect to λ, deriving an optimal quadrature rule (in the sense of accuracy and number of
points) is a difficult problem. There are various approaches in the literature. For example in [18],
an optimal Generalized Gaussian quadrature is obtained to integrate (3) by using the methodology
proposed by Yarvin and Rokhlin in [26]. A similar approach is used in [16] for the integration of
the evanescent part (11). The minor drawback of these approaches is the need for each problem to
pre-compute the appropriate quadrature rules. In [17], Wallén et al. provided quadrature points
and weights for several values of d (kd = 2π

2`
, ` = 0, ..., 8) and different levels of accuracy. The

drawback of this last approach is the constraint on the length of the largest cell. The main issue to
define an efficient LF-PWFMM is then the construction of an efficient interpolation algorithm.

In this work, we propose a method to avoid these drawbacks by simplifying the derivation of the
quadrature rule and interpolation algorithm for the evanescent part. The idea is to reformulate (11)
by using a clever change of variables. The starting point is to note that the integral representation of
the Bessel functions (8) is valid for any angle ψ. Instead of ψ = ϕw, we use the angle ψ = ϕw +ψλ,k
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with

cosψλ,k =
k√

λ2 + k2
and sinψλ,k =

λ√
λ2 + k2

. (13)

Inserting the formula (8) in (5), with ψ given as above, and using simple trigonometric formulas;
the evanescent part now reads

Ge(~w) =
1

2π

∫ ∞
0

∫ 2π

0

ei
~k(λ,ϕ)·~w dϕdλ with ~k =

 k cosϕ+ λ sinϕ
k sinϕ− λ cosϕ

iλ

 . (14)

This rotation by an angle ψλ,k (which depends on λ) leads to a phase which is linear with respect to
λ. We will prove in Section 4 that some important simplifications follow from this new expression:

1. It is possible to use the optimal quadrature rules designed for the static case (for k = 0).

2. A fast interpolation algorithm similar to the one proposed on the unit sphere for the HF-PWFMM
is easily derived.

3. Error estimates on the main steps of the PWFMM are obtained.

Before presenting the improvements on the evanescent part, we discuss the propagative part in the
next section.

3. Numerical evaluation of the propagative part of the Green’s function

We follow the same strategy as in Darve and Havé [16]. The difficulty to integrate numeri-
cally (9) is due to the discontinuity at z = 0. The main idea is to replace the upper hemisphere (10)
with the complete sphere and to filter out the higher harmonic modes of the translation function.
With this strategy, we reduce the number of plane wave expansions from six (for the six axes of
evanescence) to one; as a consequence, the CPU time is also reduced. The second advantage is the
possibility to use both the quadrature rules and the interpolation step designed for the HF-PWFMM [21].
In the following, we propose (i) estimates on the error introduced by the quadrature rule to perform
the integration on the unit sphere and (ii) a new expression of the translation function.

3.1. Estimations of the errors introduced by the quadrature rules

Mathematical preliminaries. Pµn (x) denotes the associated Legendre functions of argument x, order

n and momentum µ, i.e. Pµn (x) = (1−x2)
µ
2
dµPn(t)
dxµ . It is known [25, Theorem 2.7], that the spherical

harmonics

Y mn (θ, ϕ) =

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

P |m|n (cos θ)eimϕ for m = −n, . . . , n, n ≥ 0 (15)

form a complete orthonormal system in L2(S2). In (15), we choose the spherical coordinate system
defined by

x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ. (16)

Let L be a non negative integer, the mapping ΠL : L2(S2)→ L2(S2)

ΠLf(ŝ) = fL(ŝ) =

L∑
`=0

∑̀
m=−`

(∫
S2

f(d̂)Y ml (d̂) dσ(d̂)

)
Y ml (ŝ) (17)
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defines an orthogonal projector in L2(S2) onto the spherical harmonics of degree less than or equal
to L.

The following lemma will be useful to derive the quadrature rules.

Lemma 1. Let E(ŝ) be a continuous function defined on the unit sphere S2. Define the errors

εL∞ = sup
ŝ∈S2

∣∣E(ŝ)−ΠLE(ŝ)
∣∣ and εL2 =

(
1

4π

∫
S2

∣∣E(ŝ)−ΠLE(ŝ)
∣∣2) 1

2

. (18)

Let

∫
S2

∼ be a quadrature rule over the unit sphere, exact for the spherical harmonics of degree less

than or equal to 2L+ 1, then for all square integrable functions T (ŝ), the quadrature error

εL =
1

4π

∫
S2

T (ŝ)E(ŝ)− 1

4π

∫
S2

∼ΠLT (ŝ)E(ŝ)

satisfies the bound |εL| ≤ ‖T‖2
(
εL+1
∞ + εL2

)
with ‖T‖2 =

(
1

4π

∫
S2

|T (ŝ)|2
) 1

2

.

Proof. Let ΠL
⊥ be the orthogonal projector I −ΠL. It is straightforward that

1

4π

∫
S2

T (ŝ)E(ŝ) =
1

4π

∫
S2

ΠLT (ŝ)ΠLE(ŝ) +
1

4π

∫
S2

ΠL
⊥T (ŝ)ΠL

⊥E(ŝ).

Due to the orthogonality of the spherical harmonics, we also have

1

4π

∫
S2

T (ŝ)E(ŝ) =
1

4π

∫
S2

ΠLT (ŝ)ΠL+1E(ŝ) +
1

4π

∫
S2

ΠL
⊥T (ŝ)ΠL

⊥E(ŝ).

Then, ΠLT (ŝ)ΠL+1E(ŝ) is the product of a spherical harmonic function of degree less than or equal
to L and a spherical harmonic function of degree less than or equal to L+ 1. This product is a sum
of spherical harmonics of degree less than or equal to 2L+ 1. Since we have made the assumption
that the quadrature rule integrates exactly the harmonic functions of degree less than or equal to
2L+ 1, we get

1

4π

∫
S2

T (ŝ)E(ŝ) =
1

4π

∫
S2

∼ΠLT (ŝ)ΠL+1E(ŝ) +
1

4π

∫
S2

ΠL
⊥T (ŝ)ΠL

⊥E(ŝ).

Then, using the decomposition ΠL+1E = E −ΠL+1
⊥ E, we obtain

εL = − 1

4π

∫
S2

∼ΠLT (ŝ)ΠL+1
⊥ E(ŝ) +

1

4π

∫
S2

ΠL
⊥T (ŝ)ΠL

⊥E(ŝ).

Using the Cauchy-Schwartz inequality, it follows

| 1

4π

∫
S2

∼ΠLT (ŝ)ΠL+1
⊥ E(ŝ)| ≤

(
1

4π

∫
S2

∼
∣∣ΠLT (ŝ)

∣∣2) 1
2
(

1

4π

∫
S2

∼
∣∣ΠL+1
⊥ E(ŝ)

∣∣2) 1
2

and | 1

4π

∫
S2

ΠL
⊥T (ŝ)ΠL

⊥E(ŝ)| ≤ εL2 ‖ΠL
⊥T‖2 .
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Furthermore, due to the assumption on the quadrature rule, we have(
1

4π

∫
S2

∼
∣∣ΠLT (ŝ)

∣∣2) 1
2

=

(
1

4π

∫
S2

∣∣ΠLT (ŝ)
∣∣2) 1

2

.

Finally, we obtain the bound | 1

4π

∫
S2

∼ΠLT (ŝ)ΠL+1
⊥ E(ŝ)| ≤ ‖ΠLT‖2 εL+1

∞ .

It follows that |εL| ≤ ‖ΠL
⊥T‖2 εL2 + ‖ΠLT‖2 εL+1

∞ and the result follows since both ‖ΠL
⊥T‖2 and

‖ΠLT‖2 are bounded by ‖T‖2. �

Error introduced by the quadrature rule in the propagative part. It is now possible to establish an
estimate of the error introduced by the quadrature rule to evaluate the propagative part (9) and to
determine the appropriate quadrature rule to minimize this error.

Proposition 2. Let

∫
S2

∼ be a quadrature rule over the unit sphere, exact for the spherical harmonics

of degree less than or equal to 2L+ 1. Let GLp be defined by

GLp (~t,~v) =

∫
S2

∼ ΠL
( ik

2π
π(ŝ)eikŝ·

~t
)
eikŝ·~v dσ(ŝ) =

1

4π

∫
S2

∼ΠL
(
T (ŝ)

)
E(ŝ). (19)

Similarly to Lemma 1, we introduce the errors (18). With E(ŝ) = eikŝ·~v they are given by

εL∞(kv) = kv
(
j2
L(kv) + j2

L+1(kv)
) 1

2 and (20a)

εL2 (kv) =
kv√

2

(
j2
L(kv)− jL+1(kv)jL−1(kv) + j2

L+1(kv)− jL+2(kv)jL(kv)
) 1

2 . (20b)

Assuming that |kv| ≤
√

3kd < L and that

4
√

6kd
(
εL2 (
√

3kd) + εL+1
∞ (
√

3kd)
)
< ε (21)

then the approximation of Gp(~v + ~t) satisfies the bound

max
~t+~v∈Ωd

|~v + ~t||GLp (~t,~v)−Gp(~v + ~t)| ≤ ε. (22)

Proof. In the context of the PWFMM, the propagative part is given by

Gp(~t,~v) =
ik

2π

∫
S2

π(ŝ)eikŝ·
~t eikŝ·~v dσ(ŝ) =

1

4π

∫
S2

T (ŝ)E(ŝ)

where ~t is the translation vector, T (ŝ) = 2ikπ(ŝ) eik~t·ŝ (||T ||2 =
√

2k) and E(ŝ) = eik~v·ŝ. Using the
Jacobi-Anger Formula, we have

E(ŝ)−ΠLE(ŝ) =

∞∑
n=L+1

in(2n+ 1)jn(kv)Pn(ŝ · v̂), ~v = vv̂.

8



Assuming L > kv, the maximum error in the expansion is reached when ŝ = v̂ [27]. Indeed,

∞∑
n=L+1

in(2n+ 1)jn(kv) = iL+1kv (jL(kv) + ijL+1(kv))

and error estimate (20a) follows when L > kv. Similarly, the L2 error is given by (20b) [27].
Assuming that the quadrature rule is exact for all the harmonic functions of degree less than or
equal to 2L+ 1, we apply Lemma 1 and obtain the estimate

|GLp (~t,~v)−Gp(~v + ~t)| ≤
√

2k
(
εL2 (kv) + εL+1

∞ (kv)
)

with εL∞, ε
L
2 given in (20a), (20b). (23)

Through estimate (23), it is clear that the error increases when the modulus of ~v increases. Re-
minding that in the PWFMM, the vector ~v lies in a cell of center 0 and of size 2d, then kv ≤

√
3kd and

the error estimate becomes

|GLp (~t,~v)−Gp(~v + ~t)| ≤
√

2k
(
εL2 (
√

3kd) + εL+1
∞ (
√

3kd)
)
. (24)

Finally since |~t+ ~v| is bounded by 4
√

3d the estimate follows. �

An asymptotic analysis for small values of kd shows that error estimate (21) is in the order of
ε2L+1 = O

(
(kd)2L+1

)
. As a result, the error decreases rapidly when L increases. In practice, the

choice of the quadrature rule is dictated by the choice of L, the order of truncation in the translation
function. Finally, the design of an accurate quadrature rule for the propagative part reduces to the
choice of a quadrature rule exact for the spherical harmonics of degree less than or equal to 2L+ 1.
We choose the usual quadrature rule [11] with Nθ = L+ 1 Gauss Legendre points in θ and Nϕ > 2L
equidistributed points in ϕ. Other choices are possible (see [28]). In practice, estimate (21) provides
an upper bound of the error associated to a given L. We report in Table 1 the minimum number
of modes Ltheo. given by (21) to achieve an accuracy of 10−3, 10−6, 10−9 or 10−12 for five possible
cell sizes. In addition, we report the number of modes Lnum. obtained numerically: we sample the
faces of a cell with 600 vectors ~v and compute the error (22) for all the possible vectors ~t; as long
as the error remains below the prescribed level, Lnum. is decreased. The parameter Lnum. obtained
during these numerical experiments is always slightly overestimated by Ltheo.. Even though error
estimate (21) does not give directly the minimum number of points, it is a good starting point to
determine numerically the smallest value of Lnum. to achieve a prescribed accuracy. This method
is reliable and fast. This estimate is an important feature to establish the method theoretically and
to determine in practice an appropriate quadrature.

3.2. A new translation function for the propagative part

Expression (9) of the propagative part defines the translation function needed in (2). Using the
quadrature defined in Section 3.1, it provides an expansion similar to a multipole expansion in the
FMM of Rokhlin. The translation function T (ŝ,~t) = ik

2ππ(ŝ)eik~t·ŝ needs in practice to be truncated
to reduce the number of quadrature points on the unit sphere. Since π(ŝ) is discontinuous on the
meridian circle ŝ · ẑ = 0, it is very likely that the convergence of the expansion of the translation
function, in terms of spherical harmonics (17) will be slow, especially in the vicinity of the circular
line of discontinuity. We give in Proposition 3 an alternative expression of the translation function
to the one proposed in [16] to avoid this problem.
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d = 0 d = λ/8 d = λ/4 d = λ/2 d = λ
ε = 10−3 Ltheo. 0 (0) 6 (91) 8 (153) 13 (378) 21 (946)

Lnum. 0 (0) 5 (66) 7 (120) 11 (276) 19 (780)
ε = 10−6 Ltheo. 0 (0) 9 (190) 12 (325) 17 (630) 25 (1326)

Lnum. 0 (0) 7 (120) 10 (231) 16 (561) 24 (1225)
ε = 10−9 Ltheo. 0 (0) 11 (276) 15(496) 20 (861) 30 (1891)

Lnum. 0 (0) 9 (190) 13 (378) 18 (703) 28 (1653)
ε = 10−12 Ltheo. 0 (0) 13 (378) 17(630) 24 (1225) 34 (2415)

Lnum. 0 (0) 12 (329) 15 (496) 21 (946) 32 (2145)

Table 1: Comparison between the number Ltheo. given by (21) to achieve an accuracy of 10−3, 10−6, 10−9 or 10−12

for five possible cell sizes and the number Lnum. obtained numerically by checking that the error remains below the
prescribed level if Lnum. is decreased. The total number of quadrature points (L + 1)(2L + 1) is also reported into
brackets.

Proposition 3. Let π be the characteristic function of the upper hemisphere (10) and ΠL be the
orthogonal projector in L2(S2) (17). We have

TL(ŝ,~t) = ΠL

(
ik

2π
eikŝ·

~t π(ŝ)

)
(ŝ) = 2ik

L∑
p=0

p∑
m=−p

 ∞∑
n=|m|

injn(kt) γmn,pY
m
n (t̂)

 Y mp (ŝ) (25)

where the Y mn are the spherical harmonics (15)-(16) and the γmn,p are the coupling parameters:

γmn,n =
1

2
, γmn,p =

1

2

√
(2n+ 1)(2p+ 1) γ̃mn,p when n 6= p;

γ̃mn,p =
P̃
|m|
p

√
n2 −m2P̃

|m|
n−1 − P̃

|m|
n

√
p2 −m2P̃

|m|
p−1

n(n+ 1)− p(p+ 1)
;

with P̃
|m|
|m|+2k+1 := 0, P̃

|m|
−1 := 0, P̃

|m|
|m|+2k := (−1)k+|m|βk+|m|βk;

β0 := 1, βk :=

k∏
q=1

√
1− 1

2q
.

(26)

Proof. We look for the expansion of the function T : ŝ 7→ ik
2ππ(ŝ) eikŝ·~t in terms of spherical

harmonics. Using both the Jacobi-Anger expansion and the addition Theorem

eikŝ·
~t =

∞∑
n=0

injn(kt) (2n+ 1)Pn(ŝ · t̂), (2n+ 1)Pn(ŝ · t̂) = 4π

m=n∑
m=−n

Y mn (ŝ)Y mn (t̂),

it follows that

π(ŝ) eikŝ·
~t = 4π

∞∑
n=0

injn(kt)

n∑
m=−n

(π(ŝ)Y mn (ŝ))Y mn (t̂). (27)

The coordinate system (16) makes ŝ 7→ π(ŝ) invariant by any rotation with respect to ϕ. Conse-
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quently π(ŝ)Y mn (ŝ) is orthogonal to Y m
′

p (ŝ) when m′ 6= m and

π(ŝ)Y mn (ŝ) =

∞∑
p=|m|

γmn,pY
m
p (ŝ) with γmn,p =

∫
S2

π(ŝ)Y mn (ŝ)Y mp (ŝ) dσ(ŝ). (28)

Plugging (28) into (27) and interchanging the order of summation, we obtain

2ik

2π
π(ŝ)eikŝ·

~t = 2ik

∞∑
p=0

p∑
m=−p

 ∞∑
n=|m|

injn(kt)γmn,pY
m
n (t̂)

 Y mp (ŝ)

and ΠL

(
ik

2π
π(ŝ)eikŝ·

~t

)
= 2ik

L∑
p=0

p∑
m=−p

 ∞∑
n=|m|

injn(kt)γmn,pY
m
n (t̂)

 Y mp (ŝ).

The last point is the evaluation of the coupling coefficients γmn,p. We use the definition of the spherical
harmonics (15) to obtain

γmn,p = 2π

√
(2n+ 1)(2p+ 1) γ̃

|m|
n,p

4π
with γ̃|m|n,p =

√
(n− |m|)!
(n+ |m|)!

√
(p− |m|)!
(p+ |m|)!

∫ 1

0

P |m|n (x)P |m|p (x) dx.

When n = p, we get ([25]) γ|m|p,p =
1

2
(2p+ 1)

(p− |m|)!
(p+ |m|)!

(1

2

∫ 1

−1

|P |m|p (x)|2dx
)

=
1

2
.

When n 6= p, P
|m|
p (x) and P

|m|
n (x) satisfy the following two differential equations

(a)
(

(1− x2)P |m|n
′(x)

)′
+ n(n+ 1)P |m|n (x)− m2

1− x2
P |m|n (x) = 0,

(b)
(

(1− x2)P |m|p
′(x)

)′
+ p(p+ 1)P |m|p (x)− m2

1− x2
P |m|p (x) = 0.

Multiplying (a) by P
|m|
p (x), (b) by P

|m|
n (x), integrating the difference of the two equalities over [0, 1]

and performing two integrations by parts, we obtain∫ 1

0

P |m|n (x)P |m|p (x) dx =
P
|m|
p (0)P

|m|′
n (0)− P |m|n (0)P

|m|′
p (0)

n(n+ 1)− p(p+ 1)
.

Using the tilded “associated Legendre functions” P̃
|m|
n := P̃

|m|
n (0) =

√
(n−|m|)!
(n+|m|)! P

|m|
n (0), we get

γmn,p =
1

2

√
(2n+ 1)(2p+ 1)

P̃
|m|
p P̃

|m|′
n − P̃ |m|n P̃

|m|′
p

n(n+ 1)− p(p+ 1)

and (26) follows from P̃
|m|′
ν =

√
ν2 −m2P̃

|m|
ν−1 and the known values for P kν (0) [29, 8.6.1]. �

The advantage of this new expression of the translation function lies in its fast evaluation. In
practice it is necessary to truncate expansion (25) to some integer N but it is possible to estimate
the error introduced by this truncation.
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Lemma 4. The translation function (25) is numerically approximated by

ΠL

(
ik

2π
eikŝ·

~t π(ŝ)

)
(ŝ) ' 2ik

L∑
p=0

p∑
m=−p

 N∑
n=|m|

injn(kt)γmn,pY
m
n (t̂)

 Y mp (ŝ).

We define the induced error by

ENL (kt, t̂, ŝ) = 2ik

L∑
p=0

p∑
m=−p

( ∞∑
n=N+1

injn(kt)γmn,pY
m
n (t̂)

)
Y mp (ŝ),

then ENL is uniformly bounded as

sup
ŝ,t̂

ENL (kt, t̂, ŝ) ≤ k

2π
CLN

(
AN (kt) +AN+1(kt)

2

) 1
2

, if N > L+ 1 (29)

with CLN = 4
π (2L+ 1)

1
4

((N+ 1
2 )2+(L+ 3

2 )2)
1
2

((N+ 1
2 )2−(L+ 3

2 )2)
1
4

and AN (v) = v2jN (v)2 − v2jN+1(v)jN−1(v).

Proof. First, we introduce δn,p =
√

2n+ 1
√

2p+ 1 maxm=0,...,p |γmn,p| and we use

ENL (v, t̂, ŝ) ≤ 2k

L∑
p=0

∞∑
n=N+1

|jn(v)| δn,p√
(2n+ 1)(2p+ 1)

(
p∑

m=−p
|Y mn (t̂)|2

) 1
2
(

p∑
m=−p

|Y mn (ŝ)|2
) 1

2

.

Since 4π
∑q
m=−q |Y mq (ŝ)|2 = 2q + 1, it follows that

sup
ŝ,t̂

ENL (v, t̂, ŝ) ≤ k

2π

∞∑
n=N+1

|jn(v)|
L∑
p=0

δn,p. (30)

Introducing the positive weight $p = (2p+ 1)−
1
2 , the Cauchy-Schwartz inequality gives

∞∑
n=N+1

L∑
p=0

|jn(v)| δn,p ≤

( ∞∑
n=N+1

L∑
p=0

(δn,p)
2

$p(2n+ 1)

) 1
2
(

L∑
p=0

$p

∞∑
n=N+1

(2n+ 1)jn(v)2

) 1
2

≤

( ∞∑
n=N+1

L∑
p=0

(δn,p)
2

$p(2n+ 1)

) 1
2
(

L∑
p=0

$p

) 1
2 (

AN (v) +AN+1(v)

2

) 1
2

.

To bound δpn, we start with the definition of the coupling parameters (26) and use the equality

|P̃ |m|n (0)|2 = |Pn−|m|(0)Pn+|m|(0)| with the bound |Pp(0)| ≤
√

2
π(p+ 1

2 )
. Then, after some tedious

calculations, we obtain that

when N > L+ 1, δn,p ≤
2

π

(2n+ 1)(2p+ 1)
3
4

((n+ 1
2 )2 − (p+ 1

2 )2)
3
4

and

L∑
p=0

$p ≤
√

2L+ 1.
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The remaining double series can be interpreted as a Riemann sum and the result is obtained since

∞∑
n=N+1

L∑
p=0

(δn,p)
2

$p(2n+ 1)
≤ 16

π2

∫ ∞
N+ 1

2

∫ L+ 3
2

0

xy

(x2 − y2)
3
2

dxdy =
16

π2

∫ ∞
N+ 1

2

∫ L+ 3
2

0

Div(
(x2y, y2x)

(x2 − y2)
3
2

) dxdy

=
16

π2

(∫ L+ 3
2

0

(N + 1
2 )2y

((N + 1
2 )2 − y2)

3
2

dy +

∫ ∞
N+ 1

2

(L+ 3
2 )2x

(x2 − (L+ 3
2 )2)

3
2

dx
)

=
16

π2

(N + 1
2 )2 + (L+ 3

2 )2

((N + 1
2 )2 − (L+ 3

2 )2)
1
2

.

�

4. Numerical evaluation of the evanescent part of the Green’s function

4.1. Efficient and accurate quadrature rule for the evanescent part

The linearization of the phase introduced in (14) leads to some major simplifications in the
derivation of an efficient quadrature rule. Indeed, we use the quadrature defined for the static case
k = 0 proposed in [26]. We consider now an angle ϕw ∈ [0, 2π] and some r̂w, ẑw ∈ dΩ̂ with Ω̂ defined
in (12) and shown in Figure 1. The aim is to design a quadrature rule to evaluate accurately the
integral in the (ϕ, λ)-space

Ge(~w) =
1

2π

∫ ∞
0

∫ 2π

0

ei(k~w·~s(ϕ) +λ~w·~t(ϕ))dϕdλ with

~s(ϕ) =

 cosϕ
sinϕ

0

 , ~t(ϕ) =

 sinϕ
− cosϕ

i

 , ~w =

 rw cosϕw
rw sinϕw

zw

 . (31)

If we consider the angular integration over ϕ independently from the integration over λ, the optimal
choice is to use equidistributed angles (to perform the interpolation with the FFT). However, we
will show that the optimal choice, in the sense of the smallest total number of points for an accurate
integration in the (ϕ, λ)-space, is to consider a different quadrature over ϕ for each value of λ. We
define the optimal choice for the radial integration over λ in Proposition 5.

Proposition 5. Let ε1, ε2 be two small positive numbers. Assume that there exists a P -point
quadrature rule with positive weights (λ̃p, $p)p=1,...,P such that

max
ξ∈Ω̂

∣∣∣∣∣
P∑
p=1

$pe
−λ̃pξ − 1

ξ

∣∣∣∣∣ ≤ ε1

4
√

3
. (32)

For each quadrature point λ̃p, define Qp,kd = Q(λ̃p, kd, ε2) as the smallest integer such that

Qp,kd ≥ τp + 1 and

∞∑
k=Qp,kd+1

Jk(τp) ≤
ε2

2
√

19
, with τp = 4

√
2
√

(kd)2 + λ̃2
p. (33)

For each λ̃p, define the Qp,kd equidistributed angles ϕp,q = 2πq
Qp,kd

, 0 ≤ q ≤ Qp,kd − 1. Then, the

approximation of Ge(~w) with the previously defined quadrature rule

GPe (~w) =
1

d

P∑
p=1

Qp,kd∑
q=1

$p

Qp,kd
ei(kd~s(ϕp,q) + λ̃p~t(ϕp,q))· ~wd

13



satisfies

max
~w∈Ωd

|~w|
∣∣GPe (~w)−Ge(~w)

∣∣ ≤ ε1 + ε2 +
ε1ε2√

19
. (34)

It is possible in practice to define a quadrature satisfying (32). It is simply a quadrature
accurate for integrating e−λξ for any ξ, i.e. a quadrature for the static case. It results that the
radial integration is performed with the quadrature points and weights given by Yarvin and Rokhlin;
in [26], 41 laws are given to achieve various levels of accuracy ranging between 10−2 and 10−14. In
addition, we prove in the following that condition (33) is sufficient to ensure

supϕ

∣∣∣∣∣J0(t)− 1

Q

Q−1∑
q=0

eit cos( 2πq
Q −ϕ)

∣∣∣∣∣ < ε2√
19
.

In practice, an easy way to determine numerically Q consists in looking for the smallest Q > τp = t
such that∣∣∣∣∣J0(t)− 1

Q

Q−1∑
q=0

eit cos( 2πq
Q )

∣∣∣∣∣ < ε2√
19

(Q odd) or

∣∣∣∣∣J0(t)− 1

Q

Q−1∑
q=0

eit sin( 2πq
Q )

∣∣∣∣∣ < ε2√
19

(Q even).

Finally, Proposition 5 provides enough information to define explicitly a quadrature rule while
keeping the error below a prescribed level.

Proof. We start from the definition of the error induced by the quadrature rule

eP (~w) = |~w|
∣∣Ge(~w)−GPe (~w)

∣∣
=
|~w|
2π

∣∣∣∣∫ ∞
0

∫ 2π

0

ei(k~w·~s(ϕ) +λ~w·~t(ϕ))dϕdλ −
∫ ∞

0

∼
∫ 2π

0

∼ ei(k~w·~s(ϕ) +λ~w·~t(ϕ))dϕdλ

∣∣∣∣ .
Introducing the function f(λ, φ) = ei(k~w·~s(ϕ) +λ~w·~t(ϕ)), and using the triangular inequality, we have∣∣∣∣∫ ∞

0

∫ 2π

0

f(λ, ϕ)dϕdλ −
∫ ∞

0

∼
∫ 2π

0

∼ f(λ, ϕ)dϕdλ

∣∣∣∣ ≤∫ 2π

0

∣∣∣∣∫ ∞
0

f(λ, ϕ)dλ−
∫ ∞

0

∼ f(λ, ϕ)dλ

∣∣∣∣ dϕ+

∫ ∞
0

∼
∣∣∣∣∫ 2π

0

f(λ, ϕ)dϕ−
∫ 2π

0

∼ f(λ, ϕ)dϕ

∣∣∣∣ dλ.
We consider first the term∣∣∣∣∫ ∞

0

f(λ, ϕ)dλ−
∫ ∞

0

∼ f(λ, ϕ)dλ

∣∣∣∣ =
1

d

∣∣∣∣∫ ∞
0

ei(λ̃
~w
d ·~t(ϕ))dλ̃−

∫ ∞
0

∼ ei(λ̃
~w
d ·~t(ϕ))dλ̃

∣∣∣∣ ∣∣∣eik ~w·~s(ϕ)
∣∣∣

=
1

d

∣∣∣∣∣ 1

ξ(ϕ, ~w)
−
∑
p

$pe
−λ̃pξ(ϕ,~w)

∣∣∣∣∣
with ξ(ϕ, ~w) = zw/d + irw sin(ϕw − ϕ)/d. We have made the assumption that (rw, zw) ∈ dΩ̂ such
that ξ(ϕ, ~w) ∈ Ω̂ and we use (32) to obtain∣∣∣∣∫ ∞

0

f(λ, ϕ)dλ−
∫ ∞

0

∼ f(λ, ϕ)dλ

∣∣∣∣ ≤ ε1

4
√

3d
.
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Finally, since |~w| ≤ 4
√

3d, we obtain

|~w|
2πd

∫ 2π

0

∣∣∣∣∫ ∞
0

f(λ, ϕ)dλ−
∫ ∞

0

∼ f(λ, ϕ)dλ

∣∣∣∣ dϕ ≤ ε1.

We turn now to the second term; introducing the variables tp =
√
k2d2 + λ̃2

p, kd = tp cosψp with

λ̃p = tp sinψp, (see (13)), this term is given by

1

2π

∣∣∣∣(∫ 2π

0

−
∫ 2π

0

∼
)(

ei(k~w·~s(ϕ) + λ̃ ~wd ·~t(ϕ))
)∣∣∣∣ = e−λ̃p

zw
d

∣∣∣∣∣∣J0(tp
rw
d

)− 1

Qp,kd

Qp,kd∑
q=1

eitp
rw
d cos(ϕp,q−ϕw−ψp)

∣∣∣∣∣∣ .
Having in mind the definition of Bessel functions (8) and introducing JQ0 (v, ϕ), the sum obtained
using a Q-point quadrature rule, we obtain∣∣∣∣ 1

2π

(∫ 2π

0

−
∫ 2π

0

∼
)(

ei(k~w·~s(ϕ) + λ̃ ~wd ·~t(ϕ))
)∣∣∣∣ = e−λ̃p

zw
d

∣∣∣J0(tp
rw
d

)− JQp,kd0 (tp
rw
d
, ϕw + ψp)

∣∣∣ ,
where JQ0 (v, ϕ) =

1

Q

Q∑
q=1

eiv cos(ϕQq −ϕ) and ϕQq =
2πq

Q
. Using the 2-D Jacobi-Anger expansion [25],

we get

J0(v)− JQ0 (v, ϕ) = −2

∞∑
`=1

i`J`(v)

(
1

Q

Q∑
q=1

cos(`(ϕQq − ϕ))

)
= 2

∞∑
q=1

iqQJqQ(v) cos(qQϕ)

and consequently

max
ϕ

∣∣∣J0(v)− JQ0 (v, ϕ)
∣∣∣ ≤ 2

∞∑
q=1

|JqQ(v)| ≤ 2

∞∑
q≥Q

|Jq(v)| .

Let’s now consider the behavior of f : v 7→ 2
∑∞
q≥Q |Jq(v)| on [0, Q− 1]:

d

dv
f(v) =

∞∑
q≥Q

(Jq−1(v)− Jq+1(v)) = JQ−1(v) + JQ(v) > 0.

Since Jq(v) is positive on this interval, f increases on [0, Q − 1]. In addition, we have made the
assumption that Qp,kd ≥ τp + 1 and

∑∞
k=Qp,kd+1 Jk(τp) ≤ ε2

2
√

19
with τp = 4

√
2tp. Since v is at

most equal to τp (defined in (33)), the error is uniformly bounded by ε2√
19

and the second term is

bounded by

|~w|
2πd

∫ ∞
0

∼
∣∣∣∣∫ 2π

0

ei(k~w·~s(ϕ) + λ̃ ~wd ·~t(ϕ))dϕ−
∫ 2π

0

∼ ei(k~w·~s(ϕ) + λ̃ ~wd ·~t(ϕ))dϕ

∣∣∣∣ dλ ≤ ε2
|~w|√
19d

∫ ∞
0

∼ e−λ̃p
zw
d dλ̃.

Using Hypothesis (32) on the quadrature for the radial integration, we get

|~w|
2πd

∫ ∞
0

∼
∣∣∣∣∫ 2π

0

ei(k~w·~s(ϕ) + λ̃ ~wd ·~t(ϕ))dϕ−
∫ 2π

0

∼ ei(k~w·~s(ϕ) + λ̃ ~wd ·~t(ϕ))dϕ

∣∣∣∣ dλ ≤ ε2
|~w|√
19d

∫ ∞
0

e−λ̃p
zw
d +

ε1ε2

4
√

3

|~w|√
19d

.
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Since the maximum of |~w|zw on Ωd is reached when zw = d and rw = 3
√

2d with value
√

19, we have

|~w|
2πd

∫ ∞
0

∼
∣∣∣∣∫ 2π

0

ei(k~w·~s(ϕ) + λ̃ ~wd ·~t(ϕ))dϕ−
∫ 2π

0

∼ ei(k~w·~s(ϕ) + λ̃ ~wd ·~t(ϕ))dϕ

∣∣∣∣ dλ ≤ ε2 + ε1ε2√
19
. �

4.2. Filtering the translation function of the evanescent part

The quadrature proposed in Proposition 5 is not optimal for the PWFMM since it does not use the
decomposition of the vector ~w as ~w = ~t+ ~v. This property is used to reduce the number of angles.
Actually, the aim is to evaluate

Ge(~t+ ~v) =
1

2π

∫ ∞
0

∫ 2π

0

ei(k~s(ϕ) +λ~t(ϕ))·~t ei(k~s(ϕ) +λ~t(ϕ))·~v dϕdλ

with

{
~t = d(ix̂+ jŷ +mẑ), i, j,m relative integers;

3 ≥ m ≥ |i|, |j| and i2 + j2 +m2 > 3;~v ∈ dB̂ = d [−1, 1]
3
.

(35)

Similarly to the approach used in Lemma 1, the idea is to filter out the Fourier modes of the plane
wave expansion that do not contribute significantly to the value of the integral.

Proposition 6. Let ε1, ε2 be two small positive numbers. Assume that there exists a P -point
quadrature rule with positive weights (λ̃p, $p)p=1,,...,P such that Condition (32) holds. For each λ̃p,

define Qp,kd = Q(λ̃p, kd, ε2) = 2Lp + 1 such that

Lp ≥ τp,

2

∞∑
k=Lp+1

J2
k (
√

2τp)

 1
2

+ 2

∞∑
k=Lp+1

Jk(
√

2τp) ≤
ε2√
19

and τp =
√

(kd)2 + λ̃2
p. (36)

For each λ̃p, the angular integration is performed with Qp,kd equidistributed points ϕp,q = 2πq
Qp,kd

, 0 ≤
q ≤ Qp,kd − 1. We define TL(~t;λ, ϕ) the filtered translation function

TL(~t;λ, ϕ) = e−λ̃
zt
d

L∑
q=0

εqi
qJq(τ

rt
d

) cos(q(ϕ− ϕt − ψλ)) (37)

with τ =
√
λ̃2 + k2d2, kd = τ cosψλ, λ̃ = τ sinψλ. Then, for ~t and ~v satisfying (35) the filtered

evanescent part GPe with the previously defined quadrature rule

GPe (~t,~v) =
1

d

P∑
p=1

Qp,kd∑
q=1

$p

Qp,kd
TLp(~t; λ̃p, ϕp,q) e

i(kd~s(ϕp,q) + λ̃p~t(ϕp,q))·~vd (38)

satisfies the error estimate

max
~t+~v∈Ωd

|~t+ ~v|
∣∣GPe (~t,~v)−Ge(~t+ ~v)

∣∣ ≤ ε1 + ε2 +
ε1ε2√

19
. (39)

The use of the filtered translation function permits to reduce the number of points in the
quadrature. Since the filtered translation function is defined for λ given, only the number of angles
ϕ is reduced (roughly by a factor 2). A similar filtering of the translation function in λ would be
efficient but it would require to choose an adequate orthogonal basis; this choice is quite difficult
since the function to filter mixes the variables λ and ϕ.
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To illustrate the relevance of this filtering, we report in Table 2 the total number of quadrature
points Q (with Q =

∑P
p=1Qp,kd) determined by (32) and (36) to achieve four levels of accuracy:

10−3, 10−6, 10−9 or 10−12 and for five cell sizes. The number of points Q is seen to increase slightly
with the cell size. In addition, similarly to the numerical experiments for the propagative part, we
sample the faces of a cell with 600 vectors ~v and compute the error (39) for all the possible vectors
~t. These numerical experiments corroborate that the errors observed numerically are always smaller
than the accuracies prescribed, by a factor roughly equal to 10 whatever the frequency is.

Q
P d = 0 d = λ/8 d = λ/4 d = λ/2 d = λ

eP = 10−3 12 368 380 396 444 556
4× 10−4 1.3× 10−4 1.2× 10−4 1.18× 10−4 1.14× 10−4

eP = 10−6 20 992 1 020 1 056 1 112 1 340
2.08× 10−7 2.07× 10−7 2.06× 10−7 2.02× 10−7 1.9× 10−7

eP = 10−9 29 2 008 2 048 2 076 2 212 2 412
2.04× 10−10 2.04× 10−10 2.03× 10−10 1.99× 10−10 1.8× 10−10

eP = 10−12 38 3 384 3 424 3 496 3 628 3 908
1.6× 10−13 1.6× 10−13 1.59× 10−13 1.57× 10−13 1.46× 10−13

Table 2: Total number of quadrature points Q (with Q =
∑P

p=1 Qp,kd) determined by (32) and (36) to achieve four

levels of accuracy: eP = 10−3, 10−6, 10−9 or 10−12, for five cell sizes. The second row for each accuracy reports the
error (39) obtained with this value of Q.

Proof. The proof follows the same lines as that of Proposition 5. We decompose the error into

eP (~w) = |~w|
∣∣Ge(~w)−GPe (~w)

∣∣
≤ |~w|

2π

∫ 2π

0

∣∣∣∣∫ ∞
0

f(λ, ϕ)dλ−
∫ ∞

0

∼ f(λ, ϕ)dλ

∣∣∣∣ dϕ+
|~w|
2π

∫ ∞
0

∼
∣∣∣∣∫ 2π

0

f(λ, ϕ)dϕ−
∫ 2π

0

∼ fL(λ, ϕ)dϕ

∣∣∣∣ dλ
where we have introduced the function f(λ, ϕ) = ei(k~w·~s(ϕ) +λ~w·~t(ϕ)) and the filtered function

fL(λ, ϕ) = ΠL

(
ei(k~w·~s(ϕ) +λ~w·~t(ϕ))

)
. Since the filtering concerns only the variable ϕ, the first esti-

mate remains unchanged compared to the previous proof, i.e.

|~w|
2π

∫ 2π

0

∣∣∣∣∫ ∞
0

f(λ, ϕ)dλ−
∫ ∞

0

∼ f(λ, ϕ)dλ

∣∣∣∣ dϕ =
|~w|
d

∣∣∣∣∣ 1

ξ(ϕ, ~w)
−
∑
p

$pe
−λ̃pξ(ϕ,~w)

∣∣∣∣∣ ≤ |~w| ε1

4
√

3d
≤ ε1

with ξ(ϕ, ~w) = zw/d+ irw sin(ϕw −ϕ)/d. The only difference when the filtered translation function

is introduced lies on the treatment of the second term. Introducing the variables τ =
√
k2d2 + λ̃2,

kd = τ cosψλ and λ̃ = τ sinψλ, the second term reads (see (13))

1

2π

∣∣∣∣∫ 2π

0

ei(k~w·~s(ϕ) + λ̃ ~wd ·~t(ϕ))dϕ−
∫ 2π

0

∼ ΠL

(
ei(k~w·~s(ϕ) + λ̃ ~wd ·~t(ϕ))

)
dϕ

∣∣∣∣
= e−λ̃

zw
d

∣∣∣∣J0(τ
rw
d

)− 1

2π

∫ 2π

0

∼ ΠL

(
ei
rt
d τ cos(ψλ−ϕ+ϕt)

)
ei
rv
d τ cos(ψλ−ϕ+ϕv)dϕ

∣∣∣∣ .
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We remark that Lemma 1 remains true if the unit sphere is replaced by [0; 2π]; then, the error

εL =
1

2π

∫ 2π

0

T (ϕ)E(ϕ)− 1

2π

∫ 2π

0

∼ΠLT (ϕ)E(ϕ)

satisfies the bound |εL| ≤ ‖T‖2
(
εL+1
∞ + εL2

)
with ‖T‖2 =

(
1

2π

∫ 2π

0

|T (ϕ)|2
) 1

2

,

εL∞ = sup
ϕ∈[0;2π]

|E(ϕ)−ΠLE(ϕ)| and εL2 =

(
1

2π

∫ 2π

0

|E(ϕ)−ΠLE(ϕ)|2
) 1

2

.

Defining T (ϕ) = ei
rt
d τ cos(ψλ−ϕ+ϕt) (‖T‖2 = 1) and E(ϕ) = ei

rv
d τ cos(ψλ−ϕ+ϕv), the filtered transla-

tion function is calculated using Jacobi-Anger expansion

ΠLT (ϕ) =

L∑
q=0

εqi
qJq(τ

rt
d

) cos
(
q(ϕ− ϕt − ψλ)

)
.

The errors εL∞ and εL2 are easily derived:

εL∞ ≤
∣∣∣2 ∞∑
q=L+1

Jq(tp
rv
d

)
∣∣∣ and εL2 ≤

∣∣∣2 ∞∑
q=L+1

J2
q (tp

rv
d

)
∣∣∣1/2.

Now using that rv ≤
√

2d and assumption (36), we conclude that |εL| ≤
(
εL+1
∞ + εL2

)
≤ ε2√

19
.

Finally,
|~w|
2π

∫ ∞
0

∼
∣∣∣∣∫ 2π

0

f(λ, ϕ)dϕ−
∫ 2π

0

∼ fL(λ, ϕ)dϕ

∣∣∣∣ dλ ≤ ε2√
19
|~w|
∫ ∞

0

∼ e−λ̃
zw
d dλ ≤ ε2 +

ε1ε2√
19

and the

result follows. �

4.3. Interpolation of the evanescent part

The third ingredient listed in the introduction is the definition of a fast algorithm to perform
the interpolation. Thus, some additional factorizations of the computations are obtained since the
contributions at level-` are used to evaluate the contributions at level-(`− 1). Let xs be a point in
a cell b of the octree; assume b is one of the eight children of the parent cell B; let ~v be the vector
xs − cB , where cB is the center of the cell B; The practical problem is to deduce

E(~v;λ, ϕ) = ei(kŝ(ϕ)+λt̂(ϕ))·~v

for any couple (λ, ϕ) of the quadrature defined at level-(`− 1), from the values E(~v;λ, ϕ) evaluated
for the quadrature defined at level-`. Following the results presented in §4.1 and §4.2, the quadrature
points at level-` (cell of size d) and at level-(`− 1) (parent cell of size 2d) are defined by

Cquad` =

{(
λ̃p
d
, ϕ

Qp,kd
q

)
,

1 ≤ p ≤ P,
1 ≤ q ≤ Qp,kd

}
; Cquad`−1 =

{(
λ̃p
2d
, ϕ

Qp,2kd
q

)
,

1 ≤ p ≤ P,
1 ≤ q ≤ Qp,2kd

}
.

The number of points in the quadrature with respect to λ is constant (equal to P ) since it is defined
for the static case. But the quadrature points and weights depend on the level (i.e. the cell size d).
Assuming that the λ̃p are ordered by increasing values, the maximum value is achieved for p = P ,

i.e. λ̃P . On the other hand, the quadrature with respect to ϕ is composed of equidistributed points.
Since the optimal quadrature is obtained by defining a different quadrature for each λ̃p (p = 1, ..., P ),
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the interpolation must address two coupled problems: (i) how to link the non-uniform repartition
of angles ϕ? (ii) how to perform the interpolation with respect to λ?

Interpolation with the FFT. Since the angles ϕ are equidistributed, the FFT is an appropriate tool
to perform the interpolation. But we have to take into account that a different quadrature with
respect to ϕ is defined for each λ̃p. We denote by Q = QP,2kd the maximum number of angles in the

finest discretization with respect to ϕ (i.e. when λ̃p is equal to λ̃P and in the parent box). The idea

is then to perform the interpolation independently for each λ̃p. Algorithm 1 presents the three main

steps to perform the interpolation. For each λ̃p, Step 1 consists in interpolating E : ϕ→ E(~v;λ, ϕ)
to a uniform grid with Q points. Then, in Step 2 the interpolation is performed with respect to
λ for the Q angles ϕ. Finally for each λ̃p, Step 3 is the transpose of Step 1 to go back on a grid
with Qp,2kd angles. Now, assuming that the interpolator with respect to λ is independent from the
value of ϕ, it is more efficient to stay in the Fourier space to perform the interpolation with respect
to λ (see Algorithm 2).

Algorithm 1 Naive interpolation using the FFT.

• Step 1: For each p = 1, . . . P

1. FFT (of size Qp,kd) of eq : q 7→ E(~v;
λ̃p
d , ϕ

Qp,kd
q ) to compute the Fourier coefficients êm,

|m| ≤ Qp,kd
2

2. Complete êm for [m[=
Qp,kd

2 + 1, . . . , Q2 by adding zeros for the missing modes

3. Inverse FFT (of size Q) to obtain the interpolated values of E(~v;
λ̃p
d , ϕ) at points ϕQq

• Step 2: For each q = 1, . . . Q, for each p = 1, . . . P , perform the interpolation with respect to

λ of the values of E(~v;
λ̃p
2d , ϕ

Q
q ) from the values of E(~v;

λ̃p
d , ϕ

Q
q ) (see steps 2a-d in the text)

• Step 3: For each p = 1, . . . P

1. Compute the Fourier coefficients via an FFT of length Q of eq : q 7→ E(~v;
λ̃p
2d , ϕ

Q
q )

2. Discard the modes larger than
Qp,2kd

2 + 1

3. Inverse FFT (of size Qp,2kd) to obtain the interpolated values of E(~v;
λ̃p
2d , ϕ) at points

ϕ
Qp,2kd
q

Interpolation with respect to λ. Step 2 of Algorithm 2 requires the definition of an accurate inter-
polator with respect to λ. To make its derivation clear, we decompose the problem into the following
simpler steps:
Step 2a: Since the first term of the product E(~v;λ, ϕ) = eikŝ(ϕ)·~v eiλt̂(ϕ)·~v is independent of λ, we

consider only Ẽ(~v, λ, ϕ) = eiλt̂(ϕ)·~v (independent of the wavenumber). The problem reduces now
to: knowing the values of Ẽ at level-` (child cell of size d), deduce the values of Ẽ at level-(` − 1)
(parent cell of size 2d).
Step 2b: If (rv, ϕv, zv) are the cylindrical coordinates of ~v, we have

t̂(ϕ) · ~v
d

=
rv
d

sin(ϕ− ϕv) + i
zv
d

= ζ ∈ C
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Algorithm 2 Improved interpolation using the FFT.

• Step 1: For each p = 1, . . . P

1. FFT (of size Qp,kd) of eq : q 7→ E(~v;
λ̃p
d , ϕ

Qp,kd
q ) to compute the Fourier coefficients êm,

|m| ≤ Qp,kd
2

2. Complete êm for [m[=
Qp,kd

2 + 1, . . . , Q2 by adding zeros for the missing modes

• Step 2: For each m = −Q2 ,
Q
2 , for each p = 1, . . . P , perform the interpolation with respect to

λ of the values of êm(~v;
λ̃p
2d ) from the values of êm(~v;

λ̃p
d ) (see steps 2a-d in the text)

• Step 3: For p = 1, . . . P

1. Discard the modes larger than
Qp,2kd

2 + 1 in êm(~v;
λ̃p
2d )

2. Inverse FFT (of size Qp,2kd) to obtain the interpolated values of E(~v;
λ̃p
2d , ϕ) at points

ϕ
Qp,2kd
q

.

and the function to be interpolated is Ẽ : λ̃ 7→ eiζλ̃ with ζ a function of ~v. Since we choose to
interpolate the fields of the small cells ante the multiplication with the phase shift (induced by the
change of center of the cells), we have

∣∣∣rv
d

sin(ϕ− ϕv)
∣∣∣ ≤ √2

2
,
∣∣∣z
d

∣∣∣ ≤ 1

2
and ζ ∈ Ĉ =

{
ζ ∈ C, −

√
2

2
≤ <ζ ≤

√
2

2
, −1

2
≤ =ζ ≤ 1

2

}
.

Step 2a is now equivalent to: compute for all ζ in Ĉ, the values of Ẽ(λ̃) = eiλ̃ζ at points
λ̃p
2 from

the values of Ẽ(λ̃) at points λ̃p with p = 1, . . . P .

Step 2c: For a fixed value of q (1 ≤ q ≤ P ), we introduce κqp = λ̃p − λ̃q
2 and Step 2b is equivalent

to find the vector M(q) of size P such that

J2(M(q), ζ) = 1−
P∑
p=1

M(q)
p eiζκ

q
p ' 0, ζ ∈ Ĉ or sup

ζ∈Ĉ

∣∣∣J2(M(q), ζ)
∣∣∣ is minimum.

The interpolation is now independent of both the wavenumber k and the cell size. The P ×P matrix

Mp,q = M(q)
p is the interpolator. It depends only on the λ̃p, p = 1, ..., P .

Step 2d: Since the function ζ 7→ eiζκp is analytical on Ĉ, its maximum is reached on the boundary.
In practice, we choose to sample the path ∂Ĉ with N equidistant points ζNn , n = 1, . . . N and we

minimize

N∑
n=1

∣∣∣J2(M(q), ζNn )
∣∣∣2 .

In summary, for a fixed value of q = 1, . . . , P (i.e. a fixed value of (κqp)p=1,...,P ) the best M(q)

in RP is found by solving P least square problems of size P × 2N (the factor 2 coming from the
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inclusion of both the real and imaginary parts). To illustrate the efficiency of this interpolation we
have solved this least square problem with N = 500 for each of the 41 laws given by Yarvin and
Rokhlin. The maximum of the interpolation error on 10 000 points is always ten times smaller than
the quadrature error associated to the law.

5. A wideband PWFMM

It is now possible to derive a wideband PWFMM. It combines the standard HF-PWFMM [11] and the
LF-PWFMM based on the plane wave expansions (19) and (38); together with the translation func-
tions (25) and (37). The treatment of the fast multipole (“FM”) contributions exploits expansion (2)
in a manner suggested by their multiplicative form, i.e. in 3 steps labelled (i)-(ii)-(iii). Accordingly
in step (i) multipole moments defined by

FBs(~k) =
∑
xs∈Bs

e−i~k.(xs−cBs )ρ(xs) (40)

are computed for each cell Bs. Then in step (ii), local expansions for the cells Bt are evaluated by
applying the translation functions T to the multipole moments according to

NBt(~k) =
∑

Bs=~t+Bt
~t∈T

T (~k;~t)FBs(~k) (41)

where T denotes the set of translation vectors. Finally (step (iii)), replacing the integration over
Λ̂ in (2) by a numerical quadrature rule, the “FM” contributions to the potential are now expressed
as

V Bt(xt) =

∫
Λ̂

∼ NBt(~k)ei~k.(xt−cBt ), xt ∈ Bt. (42)

This is the single-level FMM. The computation of V Bt by the multi-level FMM consists of the
following five steps:

(i) Initialization: compute multipole moments for all lowest-level cells.

(ii) Upward pass: recursively aggregate multipole moments by moving upward (via an interpola-
tion and a shift of the cell center) in the tree until level 2 is reached.

(iii) Translation: initialize local expansions for each level-` cell and at each level 2 ≤ ` ≤ £ by
translating the multipole moments.

(iv) Downward pass: for all levels 3 ≤ ` ≤ £, the local expansion for each level-` cell is updated
(via a shift of the cell center and an inverse interpolation) with the contribution from the
parent level-(`−1) cell.

(v) When the leaf level `= £ is reached, all local expansions have been computed. The contribu-
tion V Bt is evaluated with the level-£ quadrature rule.

In the HF-PWFMM, Λ̂ is the unit sphere S2 of R3 (up to the factor k) and the filtered translation
function is TL given by

TL(~k;~t) =
ik

4π

L∑
m=0

(2m+ 1)imh(1)
m (k|~t|)Pm(cos(k̂,~t)) with ~k = k̂k.
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Now plugging the translation function defined in (25), i.e. the one associated to the propagative
part, in (41) we obtain an approximation of

V Btp (xt) =
∑
xs

Gp(|xt − xs|)ρ(xs)

which corresponds to the contribution of the propagative part of the LF-PWFMM. In other words, the
only change of translation function in (41) amounts to computing the propagative part V Btp (xt)
in the LF-PWFMM instead of the “FM” contributions with the HF-PWFMM. This similarity between
the two algorithms is true only because we have replaced the upper hemisphere by the complete
sphere; hence, the same quadrature rule for the HF-PWFMM and the LF-PWFMM is used. In the case of
the multi-level algorithm, the same remark remains valid. The only difference is that the multipole
moments and local expansions are computed using the values of the same fields (via an interpolation)
but at other levels in the tree. This relationship between the expansions of the Helmholtz Green’s
function in the HF-PWFMM and of the propagative part in the LF-PWFMM, is the basis of the combined
HF/LF-PWFMM we propose.

The algorithm for the evanescent part is very similar. The main difference is that the 316
translation directions are dispatched into six groups (one for each axis of evanescence). Consequently
the PWFMM algorithm is now applied six times for the evanescent part, the total number of translations
being unchanged. Due to the additional cost introduced by the evanescent part, the LF-PWFMM is
stable at all frequencies but more expensive than the standard HF-PWFMM. It is thus natural to use
the HF-PWFMM whenever possible, i.e. as long as sufficient accuracy is achieved.

In practice, it is possible to associate a boolean for each triplet (~t, kd, ε) to define whether the
HF-PWFMM can be safely applied (according to a prescribed accuracy ε). As a consequence, both the
HF and LF approximations are used at any given level, depending on the values of the translation
vector considered. Finally, the algorithm is decomposed into three groups: low frequency formula
for all translation vectors (for the small cells at the higher levels), high frequency formula for all the
translation vectors (for the large cells at the lower levels) and a combination of the two formulations
for the intermediate levels. We will give more details on the practical aspects in a forthcoming
paper.

Advantages and drawbacks. In this work a wideband FMM based entirely on the PWFMM is proposed.
Similarly to what is proposed in [18] or [19] different translation methods are used for the lower and
the higher frequencies; but the implementation is significantly simplified since it avoids:

• the conversion between the exponential and partial-wave expansions for the lower frequen-
cies [18];

• the use of spherical harmonic transforms to perform the transition between the low and high
frequency formulations [18, 19].

On the other hand, the trade-off is the decomposition of the Helmholtz Green’s function for the
lower frequencies between a propagative and an evanescent part. This decomposition is actually not
a drawback since it simplifies the transition between the low and high frequency formulations. In
addition, we have demonstrated theoretically and numerically that it is possible to build two accurate
quadrature rules for these two parts while keeping the number of quadrature points reasonable. Of
course, the quadrature rule for the evanescent part is not optimal, compared to the Generalized
Gaussian quadrature rule proposed in [18]. But by using a clever change of variable in the evanescent
part, we are able to use the optimal Generalized Gaussian quadrature rule derived for the static
case. To summarize, we list the main advantages of our method:
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• all the translation (i.e. multipole-to-local) operators are diagonal;

• the conversion between the low and high frequency formulations boils down to the removal of
the evanescent part and the change of translation function;

• no precomputations are needed since only the Generalized Gaussian quadrature rule for the
static case is used and no conversions are used.

Finally, it is worth noting that the computational costs for the different approaches are similar:
O(N logN) for the higher frequencies [30] and O(N) for the lower frequencies since the number of
quadrature points is bounded in this latter case.

6. Illustration of the accuracy

We consider 3 cylinders (L1 is the length of the largest one) meshed with triangular surface
elements (see Fig. 2). Starting from the initial mesh C1, the meshed cylinders C2 (resp. C3) are
obtained via a translation and a scaling with a factor 0.1 (resp. 0.01). Since the edge lengths in this
mesh vary from 1 to 100, the HF-PWFMM used on this example would lead to inaccurate results. It is
necessary to use a wideband FMM.

Figure 2: Geometry considered to illustrate the capabilities of the wideband PWFMM.

We aim at computing the potential V (xt) (with xt the center of gravity of the triangle t) given
by

V (xt) =

∫
Γ

G(xt, y)ρ(y)dΓ(y), with ρ(y) =
∂

∂n(y)
eikk̂·y and k̂ =

1√
2

(x̂+ ẑ).

The wavenumber k is automatically adapted to achieve 10 points per wavelength for the largest
edge of the mesh. We discretize, then decompose the integral into near and far contributions

V (xt) = G̃t,tρt +
∑
t6=T

Gt,T ρT ,with ρT = ik|T |nT · k̂ eikk̂·xT and G̃T,T =
1

|T |

∫
T

G(xt, y)dT (y).

The self term G̃t,tρt is computed directly while the second term is computed using the PWFMM.
Similarly to what is done in [18], in Table 3 we compare the CPU times to evaluate the potential,
with the direct method or with the wideband PWFMM; we consider two meshes and three prescribed
accuracies. We report the relative 2-norm errors between the direct computations and the PWFMM
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on the complete mesh and also on the 3 different cylinders. The octree used by the combined
LF/HF-PWFMM contains £ = 15 levels for both meshes. The HF-PWFMM (resp. LF-PWFMM) is applied
for all the interactions between cells, from the level 3 up to the level `o − 1 (resp. from `o + 1
to £). At level `o, the HF-PWFMM is used except for the directions (±2, 0, 0), (0,±2, 0), (0, 0,±2).
The corresponding level `o is reported in the last column of Table 3. The method is shown to
achieve the prescribed levels of accuracy with a drastic reduction of CPU time compared to the
direct calculation. In addition, the ratios between the direct and PWFMM times are similar to the ones
reported in [18].

Nt L1 Time Time 2−norm 2−norm 2−norm 2−norm level `o
direct FMM on C1 on C2 on C3 LF/HF

420 678 17λ 2h02
28s 3.3 10−3 6.7 10−4 5.2 10−4 1.0 10−2 12
43s 2.7 10−4 3.1 10−5 2.5 10−5 8.5 10−4 10
87s 1.3 10−5 1.3 10−6 7.4 10−7 4.2 10−5 7

1 008 102 23λ 11h48
50s 1.8 10−3 8.9 10−4 1.3 10−3 3.5 10−3 12
78s 1.8 10−4 5.7 10−5 1.6 10−4 3.2 10−4 11
220s 5.3 10−6 1.0 10−6 1.1 10−6 1.2 10−5 7

Table 3: Comparison of the CPU times to evaluate the potential, with the direct method or with the wideband PWFMM.

7. Conclusions

In this work, we propose some theoretical improvements for the LF-PWFMM to reduce the CPU
costs, control the accuracy and justify the method. Following Greengard et al. [1] we decompose the
Helmholtz Green’s function into a propagative and an evanescent part. For the propagative part,
we establish estimates on the error introduced by the quadrature rule over the unit sphere; we also
provide a detailed analysis for the translation function. For the evanescent part, we propose a new
plane wave expansion for which error estimates are provided; the novelty of this formulation is to use
the quadrature rule of the static case to perform the radial integration. It is thus possible to derive
a simple interpolation algorithm based on the FFT, similar to the one for the unit sphere in the
HF-PWFMM. We end the paper with the proposition of a wideband PWFMM combining the advantages
of the low and high frequency formulations. This wideband FMM is simple to implement (while
remaining computationally competitive) because it is based only on plane wave expansions. Its
accuracy is illustrated on a numerical example.

The nature of this article is mainly theoretical. The authors are aware that the efficiency of
the algorithm has yet to be confirmed by further numerical results. A forthcoming article, focusing
more specifically on numerical aspects, is under way.
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(REI 2010340001). We thank the authors of [26] for providing, via the internet, the quadrature rule.
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