
HAL Id: hal-01154072
https://hal.science/hal-01154072

Submitted on 21 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generic and adaptable online configuration verification
for complex networked systems

Ludi Akue, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla

To cite this version:
Ludi Akue, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla. Generic and adaptable online con-
figuration verification for complex networked systems. International Journal On Advances in Systems
and Measurements, 2014, vol. 7 (n° 1), pp. 168-178. �hal-01154072�

https://hal.science/hal-01154072
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13241

To cite this version : Akue, Ludi and Lavinal, Emmanuel and Desprats,
Thierry and Sibilla, Michelle Generic and Adaptable Online Configuration
Verification for Complex Networked Systems. (2014) International journal
on advances in systems and measurements, vol. 7 (n° 1&2). pp. 168-178.
ISSN 1942-261x

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Generic and Adaptable Online Configuration

Verification for Complex Networked Systems

Ludi Akue, Emmanuel Lavinal, Thierry Desprats, and Michelle Sibilla

IRIT, Université de Toulouse

118 route de Narbonne

F31062 Toulouse, France

Email: {akue, lavinal, desprats, sibilla}@irit.fr

Abstract—Dynamic reconfiguration is viewed as a promising
solution for today’s complex networked systems. However, con-
sidering the critical missions actual systems support, systematic
dynamic reconfiguration cannot be achieved unless the accuracy
and the safety of reconfiguration activities are guaranteed. In this
paper, we describe a model-based approach for runtime configu-
ration verification. Our approach uses model-driven engineering
techniques to implement a platform-independent online configu-
ration verification framework that can operate as a lightweight
extension for networked systems management solutions. The
framework includes a flexible and adaptable runtime verification
service built upon a high-level language dedicated to the rigorous
specification of configuration models and constraints guarding
structural correctness and service behavior conformance. Exper-
imental results with a real-life messaging platform show viable
overhead demonstrating the feasibility of our approach.

Keywords—Network and Service Management; dynamic recon-
figuration; configuration verification; online verification; model-
based approach.

I. INTRODUCTION

Complex networked systems and services are a fundamen-
tal basis of today’s life. They increasingly support critical
services and usages, essential both to businesses and the
society at large. The evident example is the Internet with all
its services and usages in a variety of forms, architectures and
media ranging from small mobile devices such as smartphones
to large-scale critical systems such as clusters of servers
and cloud infrastructures. Consequently, it is indispensable to
ensure their proper and continuous operation.

Network and Service Management (NSM) is a research
and technical discipline that deals with models, methods and
techniques to ensure that managed networked systems and
services operate optimally according to a given quality of
service. To cope with the increasing complexity of managed
systems, NSM has evolved into self-management, a vision that
consists in endowing management solutions with a high degree
of autonomy to allow them to dynamically and continuously
reconfigure managed systems in order to maintain a desired
state of operation in the face of unstable and unpredictable
operational conditions.

A main obstacle to the diffusion of dynamic reconfiguration
solutions is the lack of standard methods and means to ensure
the effectiveness of subsequent configuration changes and
prevent erroneous behaviors from compromising the system’s
operation. This issue is particularly significant in today’s
mission critical systems management like cloud infrastructures,

avionics, healthcare systems or mobile multimedia networks.
This will also help increase users’ confidence in the automation
of reconfiguration, thus ease the adoption of ongoing auto-
nomic solutions.

This article extends our recent work [1] on a model-
based approach for online configuration verification with a
running prototype architecture. It also provides additional
concepts, methods and tools forming an online configuration
verification framework. In particular, we describe how we use
the framework to enrich a management system for a message
oriented middleware platform with online configuration check-
ing capabilities. Following the same process, the verification
framework could be integrated with other existing management
solutions.

Our approach to build this framework was first to define
MeCSV (Metamodel for Configuration Specification and Va-
lidation), a high-level language, dedicated to the specification
and verification of configurations. MeCSV allows operators
to specify at design time, a platform-neutral configuration
schema of their managed system with constraints guarding
the desired service architecture and operation. One novelty
of the metamodel is to include the capability to express
both offline and online constraints. Offline constraints are
typically structural integrity rules, that is, rules that govern
a system’s configuration structure. Online constraints concern
service operation, they consist of rules to be enforced with
regards to runtime conditions to avoid committing inconsistent
configurations. An earlier version of the metamodel has been
presented in [1].

Second, we have designed a runtime verification service,
able to manipulate the concepts defined in this language.
This service offers two interfaces, a verification interface for
invoking configuration verification and an edition interface for
managing specifications at runtime. The verification interface
is flexible as it provides different operations to tailor configu-
ration verifications to the usage scenarios, e.g., verifying only
a subset of constraints regarding their severity or importance.
The edition interface enables constraints updates at runtime to
cope with changing management requirements.

These two phases allow our framework to support a ve-
rification process that starts at design time with a rigorous
specification of verification models and continues at runtime
through an automatic checking of configurations based on
these models.

The rest of the paper is organized as follows: Section

II identifies runtime configuration verification requirements
and positions existing works. We give an overview of the
framework in Section III, and through a case study included
in Section IV, elaborate on its building blocks in Section V
and Section VI. We describe the integration of the framework
with a real-life messaging platform in Section VII along with
experimental results, proving the feasibility of the approach.
Section VIII concludes the paper and identifies future work.

II. BACKGROUND AND RELATED WORK

We begin this section by introducing the terminology used
throughout the paper, then we expose the runtime configuration
verification requirements in the current context of autonomous
management approaches like in [2] and [3]. Finally, we present
how those requirements have been addressed in related works.

A. Terminology

This section recalls definitions of key terms used through-
out the paper.

1) Configuration: A configuration of a system is a col-
lection of specific functional and non-functional parameters
(also known as configuration parameters or configuration data)
whose values determine the expected functionalities that the
system should deliver.

2) Execution context: The execution context of a system
comprises every element that can influence the system’s op-
eration. It includes both the system’s technical environments,
i.e., its interactions with other systems, its supported services
and usages and the users’ expectations, i.e., management and
service objectives.

3) Operational state: The operational state of a system
qualifies its observed operation in terms of the current values
of its state parameters (or state data). The operational state is
issued by a monitoring or a supervisory system. It reflects the
behavior of the system relevant to the context at hand.

4) Dynamic Reconfiguration: Reconfiguration is the mo-
dification of an existing and already deployed configuration.
Reconfigurations can be static, that is configurations are mod-
ified offline, when the system is not running. They can also
be dynamic, that is configurations are modified online, while
the system is running. We are especially interested in managed
systems that are reconfigured dynamically.

5) Configuration verification: Configuration verification is
the process of examining configuration instances against a
set of defined requirements according to system architecture
and service objectives. Configuration verification checks the
correctness of proposed configuration instances, thus detect
misconfigurations prior to changing the productive system.

B. Configuration Verification Requirements

Verification has always been critical to check that a given
configuration meets its functional as well as non-functional
requirements. When considering the lifecycle of a configurable
system, in contrary to software verification that occurs mainly
during the development phase of a system, configuration
verification rather occurs in the use phase of a system to
enforce its operation and maintenance (Fig. 1).

Design Implementation
Tests &

Validation

Operation &

Maintenance

Verification in the system's life cycle Configuration verification

Development Phase Use Phase

Fig. 1. Configuration verification in a simplified system’s lifecycle

Configuration verification is traditionally done offline, ei-
ther at design time, for example in test environments, or
in production environments to enforce static reconfigurations.
This verification is limited to structural sanity checks, typically
testing the correct structure and composition of configuration
parameters in terms of authorized values, consistent cross-
components dependencies and syntactical correctness. This
type of verification involves configuration data only. We have
called it structural integrity verification [4].

By definition, dynamic reconfiguration implies configura-
tion verifications should be carried out automatically at runtime
for checking live configuration changes. Therefore, the verifi-
cation process should take into account running operational
conditions (1). It should also be flexible and adaptable to cope
with the changing execution context in terms of architectural
dynamics and changes of service objectives (2). Besides, it
should accommodate the heterogeneity of management do-
mains, representations and tools (3).

1) Operational Applicability Verification: Configuration
verification should go beyond structural checks to assess the
operational applicability of proposed configurations regarding
runtime conditions at hand.

As systems adapt dynamically, ongoing operational states
can invalidate the suitability of a produced configuration
despite its structural correctness. For instance, one of the most
common causes of a failed live virtual machine migration is not
checking that the current physical resources of the destination
host are sufficient before performing the live migration.

A runtime configuration verification should include opera-
tional applicability verification, that is, checking if a proposed
configuration fulfills some running conditions [4]. This type of
verification requires the knowledge of monitored operational
state data. In other words, a runtime configuration verification
should cover both structural integrity verification and opera-
tional applicability verification.

2) Flexible and Adaptable Verification: Configuration ve-
rification should be flexible and adaptable to cope with the
changing execution context in terms of architectural dynamics
and changes of service objectives.

The execution context of actual complex systems is highly
dynamic in terms of operational conditions variations and
dynamic usages where they are added, removed, migrated
according to changing management and service objectives.
This dynamicity implies configuration changes of different
spatial and temporal scopes, e.g., local changes to system-
wide changes, planned or spontaneous changes, punctual or
life-long changes [5], [6].

A runtime configuration verification solution should thus
accommodate these new characteristics by being flexible and

adaptable in order to be tailored to reconfiguration needs
and usage scenarios, e.g., adapting the verification scope and
perimeter.

3) Platform-independent Verification: Configuration verifi-
cation should be platform-neutral to accommodate the hetero-
geneity of management domains, representations and tools.

Management applications domains are highly heterogenous
in terms of the nature and importance of configuration data,
(e.g., configuration data can be functional, non-functional,
static or dynamic), their different representations due to differ-
ent management standards and protocols, as well as the diverse
nature of properties to be checked (e.g., hard constraints,
soft constraint) according to diverse usage scenarios (mobility,
performance, functional, non-functional) [7], [8].

In consequence, a configuration verification solution should
be high-level and capable to integrate this heterogeneity.

C. Related Work

This section discusses existing works regarding the identi-
fied configuration verification requirements.

The need for configuration representation standards and
configuration automation are growing concerns regarding the
complexity of the configuration management of today’s large-
scale systems [9], [7]. Our work is at the junction of these
two topics as the verification framework we provide enables a
platform independent online configuration verification that is
a prerequisite for configuration automation as well as dynamic
reconfiguration.

Existing management standards like the Distributed Mana-
gement Task Force Common Information Model (CIM) [10]
and the YANG data modeling language [11] include constructs
for configuration verification, yet their enforcement is left to
implementors and solutions developers. Furthermore, those
standards do not propose any mechanism for flexible and
adaptable configuration verification as well as the management
of the resulting verification lifecycle.

Beyond management standards, related works can fall into
two groups: constraint checking approaches [12], [13], [14],
[15] and valid configuration generation approaches [16], [17],
[18].

In the first group, configuration experts are given a specifi-
cation language to express some constraints that a verification
engine checks on proposed configuration instances. In the sec-
ond group, configuration decision is modeled as a Constraint
Satisfaction Problem, adequate SAT solvers generate valid
configurations or prove insatisfiability.

Both groups present common limitations, they do not ad-
dress online configuration checking with regards to operational
conditions: they provide only structural integrity verification
that relies purely on configuration data or confines confi-
guration verification to design time. They do not support a
flexible and adaptable verification (e.g., only check a subset of
constraints, modify and manage constraints during the recon-
figuration life cycle). In addition, they mainly propose domain-
specific tools with use-case specific verification (networks,
distributed applications, JAVA applications, virtual machines).

Our work in contrast proposes a generic configuration
verification approach that targets specifically online configura-
tion checking, considering the influence of ongoing execution
conditions on the verification process. It is thus profitable for
complementing existing verification approaches.

In particularly, our work shares common foundations with
SANChk [14], a SAN (Software Area Networks) configuration
verification tool. They both use formal constraint checking
techniques and enable a flexible and adaptable configuration
verification. However, SANChk is specific to SAN configura-
tions and does not target online configuration verification.

III. ONLINE CONFIGURATION VERIFICATION

FRAMEWORK

This section presents our verification approach and subse-
quent assumptions and concepts.

A. Assumptions

The following assumptions characterize the class of mana-
ged systems that we currently consider:

• The system is supposed known, observable, it is under
a supervisory control that collects measures about its
operating states and environment.

• The system is dynamically configurable, that is to say
its current configuration can be altered at runtime if
needed.

• The system’s execution context is highly dynamic,
hence is subject to sudden and often unpredictable
variations.

• Either the supported management goals are clearly
specified in order to derive properties to validate, or
these properties are already defined.

B. Vision and Design Principles

The verification framework aims at offering an online
configuration checking service that can be used by manage-
ment solutions without changing existing tools. It specifically
targets current autonomous and self-management approaches.
As such, it purposefully addresses the runtime management of
the systems’ dynamics and the rapidly changing service and
architecture requirements. The framework supports these new
requirements through three main design principles according
to the requirements exposed in Section II:

• Enabling an operational verification of configurations
that takes into account their dependency on running
execution states: in the context of self-adaptation,
configurations are highly dependent on the operational
conditions that can invalidate the suitability of a
candidate configuration.

• Allowing modification of validity properties at run-
time: management systems are likely to have their
requirements evolve at runtime, and these evolutions
are to be translated at runtime into the creation or
modification of properties on configurations.

• Supporting existing management systems in order to
enhance their reliability with a verification functional-
ity. This can notably be achieved by integrating exist-
ing management standards such as CIM and YANG.

C. Integration within the Management Control Loop

Self-management is generally performed through a control
loop called the MAPE (Monitor-Analyze-Plan-Execute) loop:
the managed system is monitored (Monitor) to produce metrics
that are analyzed (Analyze) to detect or prevent any undesir-
able behavior. Corrective changes are then planned (Plan) –
either in the form of a new configuration or as a sequence of
actions – then effected on the system (Execute) [2].

Runtime configurations decision is normally the respon-
sibility of the Plan function. Consequently, a runtime confi-
guration verification function that handles the two types of
configuration verification is worthy to extend the MAPE loop
to assure the validity of proposed configurations.

Monitor Execute

Analyze Plan

Managed elements

Online

Configuration

Verification1
2

3

Fig. 2. The vision of online configuration checking

Fig. 2 illustrates our vision of a standard online con-
figuration checking. An external and protocol-independent
verification solution interacts with a management system (rep-
resented through the MAPE loop) through the Plan block (1),
center of runtime configuration decisions, while relying on the
Monitor block (2) for the retrieval of the required ongoing
execution states, and thus processes an online verification of
configurations (3).

As a result, the verification solution we propose, can extend
any self-configurable system that does not have built-in online
configuration verification. The only requirement for the self-
configuring system is to allow access to its configurations
and monitored data at runtime. Furthermore, this verification
solution can be independently tuned and managed giving
ongoing usage needs.

D. Overview of the Framework’s Building Blocks

This section describes the building blocks of our verifi-
cation framework. The framework supports a model-based ap-
proach for runtime configuration verification relying on a high-
level specification language MeCSV and a verification service
able to manipulate the concepts defined in this language.

1) MeCSV language: MeCSV is a metamodel dedicated to
the formal modeling of configuration information for runtime
verification. It offers platform-neutral configuration specifi-
cation constructs including innovative features that enable

MeCSV Reference Model

MeCSV Metamodel

(a) Specification of a MeCSV reference model

«conforms to»

Configuration

Verification Service

Managed elements

(b) Online configuration verification architecture

D

E

S

I

G

N

T

I

M

E

Human

Operator

Offline model editionConstraintsConstraintsConstraintsConstraints

State

parameters
Configuration

structure

Management

System

Human

Operator

R

U

N

-

T

I

M

E

Online model edition

«uses»

Fig. 3. Framework’s approach and architecture

verification against runtime execution conditions. Even though
MeCSV allows to model a system’s configuration, it is in-
tended for verification purposes only and is not suitable neither
to model exhaustive management information nor to handle
the management of the configuration’s lifecycle (configuration
data stores, configuration deployment etc.).

2) Target Domain Reference Model: The central objective
of MeCSV is to allow the definition of a Reference Model
that every possible configuration of the target system should
conform to (Fig. 3 (a)). Operators or vendors can thus use
the MeCSV metamodel at design time to define the reference
model of a given managed application domain (e.g., an ap-
plication server, a messaging middleware). Defined reference
models are instances of the MeCSV metamodel, they are
dedicated to a target application domain but do not rely on
platform-specific representations. This reference model is to be
defined only once, it will be processed at each reconfiguration
decision, to dynamically evaluate configuration instances.

3) Verification Service: The framework includes a runtime
architecture, Fig. 3 (b), with a verification service. This service
needs to be initialized with the defined reference model. A
related management system assuring monitoring and recon-
figuration capabilities can then invoke specific operations at
runtime to perform online verifications of decided configura-
tion instances. This verification service also supports online
modification of reference models to cope with the evolution
of management and system requirements.

E. General Life Cycle of the Framework

The framework’s building blocks support the following
verification process:

1) At design time: A human operator, (e.g., an adminis-
trator or a configuration expert) uses the MeCSV metamodel
to formally specify the MeCSV Reference Model of a given
application domain (cf. Fig. 3 (a)). This reference model is
made of a configuration schema of the domain, a relevant set

171

of operational state parameters to monitor and the offline and
online constraints, necessary to enforce the structural integrity
and operational applicability of configuration instances.

2) At runtime: this reference model will be used by the
Verification Service for the automatic evaluation of proposed
configuration instances (cf. Fig. 3 (b)). This online verification
can evolve along with management objectives as the deployed
reference model can be updated by human operators.

These two phases will be detailed subsequently in Sections
V and VI, respectively.

IV. USE CASE

This section illustrates a Message-oriented Middleware
(MOM) case study on which the examples given in the
following sections will be based.

A. Introduction to MOM

A MOM system is a specific class of middleware that
supports loosely-coupled communications among distributed
applications via asynchronous message passing, as opposed
to a request/response metaphor. They are at the core of a
vast majority of financial services. Client applications interact
through a series of servers where messages are forwarded,
filtered and exchanged.

The middleware’s operation involves the proper configura-
tion of numerous elements such as message servers, message
destinations and directory services. Involved configuration and
reconfiguration tasks can be classified into two categories:
first, setup operations that include defining the number of
servers, where they will run and the messaging services each
will provide. Second, maintenance operations that use the
platform’s monitoring metrics to adjust initial setups such as
memory resources, message thresholds and users access.

By adding a management interface, an operator can monitor
and tune the system’s performance, reliability and scalability
according to the monitored metrics (e.g., memory resources
and users access) and management objectives.

B. JORAM’s platform

JORAM (Java Open Reliable Asynchronous Messaging)
[19] is an open source MOM implementation in Java. JORAM

provides access to a MOM platform that can be dynamically
managed and adapted, i.e., monitored and configured for the
purpose of performance, reliability and scalability thanks to
JMX (Java Management eXtensions) management interfaces.

Principal managed elements are message servers that offer
the messaging functionalities such as connection services and
message routing and message destinations that are physical
storages supporting either queue-based (i.e., point-to-point) or
topic-based (i.e., publish/subscribe) communications.

A JORAM platform can be configured in a centralized
fashion where the platform is made of a single message server
and a distributed fashion, the platform is made of two or more
servers running on given hosts. A JORAM platform can be
dynamically reconfigured, message servers can be added and
removed at runtime. A platform configuration is described

by an XML configuration file according to a provided DTD
(Document Type Definition).

Fig. 4 shows a centralized configuration example, that
will be further experimented in Section VII (Test Case 1).
This configuration is made of one server, several middleware
services (connection manager, naming service, etc.), two mes-
sage queues and a user’s permissions (note that due to space
limitations, some configuration elements have been discarded).

<?xml version="1.0"?>

<config name="Simple_Config">
 <server id="0" name="S0" hostname="localhost">
 <service class="org.[…].ConnectionManager" args="root root"/>
 <service class="org.[…].TcpProxyService" args="16010"/>
 <service class="fr.[…].JndiServer" args="16400"/>
 </server>
</config>

<JoramAdmin>
 <InitialContext> […] </InitialContext>
 <ConnectionFactory> […] </ConnectionFactory>
 <Queue name="myQueue" serverId= "0"
 nbMaxMsg="200" dmq="dmqueue">
 <freeReader/> <freeWriter/>
 <jndi name="myQueue"/>
 </Queue>
 <User name="anonymous" password="passwd" serverId="0"/>
 <DMQueue name="dmqueue" serverId = "0">

<freeReader /><freeWriter />
 </DMQueue>
</JoramAdmin>

Fig. 4. A Joram’s configuration example

C. Verification Requirements

The following requirements are considered for the purpose
of the case study, they encompass the manufacturer’s set of
configuration constraints and custom configuration constraints
that guarantee memory performance. A valid configuration of
the platform should provide the necessary messaging features
in order for client applications to communicate efficiently.
More precisely,

• Correct configuration structure: it should respect the
platform’s architecture and the relationships between
the configuration parameters. (Req1)

• Object discovery and lookup: connection factories and
destinations should be accessible via a naming service,
i.e., the platform should provide an accessible JNDI
service where the reference of the administered objects
should be stored. (Req2)

• Memory optimization: message queues should not run
low in memory, i.e., queues should not be loaded at
more than 80% of their maximum capacity. (Req3)

V. MECSV METAMODEL

This section presents the salient features of the metamodel
depicted in Fig. 5. MeCSV is organized in three categories
of constructors: the first category is dedicated to configuration
description, the second to operational state data description and
the last for constraint expression.

A. Configuration Data Description

This part of the metamodel, depicted in Fig. 5 - Configu-
ration, represents concepts to describe configuration data.

!"#"$%&'(%)%#*

(
d
e
p
e
n
d
s

o
n

S
t
a
t
e
P
a
r
a
m
e
t
e
r
)

+*"*%,"-")%*%-

./#01$2-"*1/#

./#01$2-"*1/#,"-")%*%-

./#3*-"1#"4(%'(%)%#*

./#01$2-"*1/#!%*"&"*"

!!"#$%&'!(!)**+'",

!!+'&'+!(!-*,.$/"%,$0'&'+

!!+",12"1'!(!3$/%,1

!!'45/'..%*,!(!3$/%,1

./#3*-"1#*

500(1#%./#3*-"1#* 5#(1#%./#3*-"1#*

evaluationContext

ownedConstraint

Configuration Operational state

Constraint

constrainedElement

ElementConfiguration

ConfigurationComposition

ConfigurationReference

Fig. 5. Overview of the MeCSV metamodel

Configuration data are generally described in a set of
configuration files where their structure is specified through
the setting of some configuration properties with appropriate
values and options.

There are a lot of bindings between the system’s elements
that should be reflected in their configuration: for example, the
dependency of a server on its host machine should be specified
by the coordination of the server’s hostname value with the
machine’s hostname value.

These needs are addressed by the following constructs that
are protocol and tool independent.

1) Configuration Parameter: represents quantifiable con-
figuration parameters of managed elements; their expression
defines the configuration data structure. A message server’s
identifier or hostname information are examples of its confi-
guration parameters.

2) Configuration: allows to coordinate configuration para-
meters and group them in categories. Configuration elements
act as containers for configuration parameters. For example, a
configuration file can be modeled as a single Configuration,
or for more flexibility, divided into multiple Configurations.

3) Configuration Dependency: to model bindings between
two configuration elements, a configuration dependency should
be defined between them. It means that a configuration pa-
rameter of some configuration references a whole or a part
of another configuration. Typically, a server’s hostname refer-
ences its host machine’s name information. It is an example
of a configuration dependency between the server and its host.

4) Configuration Composition: this relationship allows to
divide a main configuration into partial configurations. For
example, a message server’s configuration is logically split
into message services, connection factories and destinations

sub-configurations. These sub-configurations are linked to their
parent configuration through a configuration composition.

5) Configuration Metadata: provides a means to specify
metadata for configuration lifecycle management. For instance,
one could want to tag specific configurations as default or
initial. Another example is the visited metadata used in the
JORAM platform to mark deployed configurations.

B. Operational State Data Description

As our work targets a global management environment
where the managed system is both observable and reconfigura-
ble, we provide constructs to represent information about ma-
naged elements as well as their monitored state. A knowledge
of the monitored state is required to guide reconfigurations
and to assert the operational compliance of proposed configu-
rations. The following concepts allow to describe operational
state data (Fig. 5 - Operational state).

1) Managed element: represents the notion of managed
element like it is similarly defined in several management
information models. A common pattern is to separate managed
elements representation from configuration modeling; mana-
ged element representations containing monitoring-oriented
information. In the case study, the message server is an
example of managed element.

2) State Parameter: models the traditional operational state
attributes like operational status, statistical data, in sum, any
collected metrics about the system’s operation. The current
queue’s load or the number of active TCP connections, are
examples of state parameters.

In our approach, Managed Element and State Parameter are
the necessary management building blocks for configurations
and runtime constraints definition. Their values are supposed

to be provided by the existing monitoring framework. They
are read-only elements contrary to configuration data.

C. Constraint Specification and Management

The following elements allow to define the constraints that
configuration instances should respect as shown in Fig. 5 -
Constraint.

1) Constraint: represents the restrictions that must be sa-
tisfied by a correct specification of configurations according
to the system’s architecture and management strategies. Cons-
traints are boolean expressions in a given executable language.
The Constraint element is subtyped into offline and online
constraints to support the specificities of the two types of
configuration validation.

2) Offline Constraint: represents structural integrity rules
that a correct configuration data structure and composition
of the system should respect. They can be checked either
beforehand at design time or during runtime; they do not
involve any check against operational conditions. For example,
each message destination should have a JNDI name (in order
to be looked up by client applications).

3) Online Constraint: defines rules for the operational
applicability enforcement. Online constraints use state pa-
rameters values, their evaluation tests the configuration data
against convenient state parameters. For instance, a queue’s
maximum capacity should be kept greater than the current
number of pending messages.

4) Constraint Lifecycle Management: Constraints also
have additional attributes for their life cycle management:
they have a “constraint level” attribute to modulate their
strictness. In particular, this allows to assign a severity level
to the different constraints (e.g., high, medium, low) and an
“active” attribute to activate or deactivate them depending
on the operational context and management strategies (e.g.,
critical vs non-critical).

MeCSV has been formally specified as a UML profile [20].
UML constructs have been tailored to the MeCSV concepts
to enable its usage in available UML modelers and to ease
the adoption of the MeCSV language. Indeed, UML is well
supported by many modeling tools and widely accepted as a
standard modeling language.

D. Reference Model Specification Process

The specification process is a two-step process that occurs
at design time: first the representation of the reference model
structural classes, that is the representation of the configuration
data and state data structure, and second, the expression of
offline and online constraints.

The completion of these two steps provides the MeCSV
reference model of a given management domain that is to
be registered into the verification service. It will be used at
runtime to check decided configurations.

1) Direct Modeling: Direct modeling is the general process
for a MeCSV Reference Model specification. Operators install
the MeCSV metamodel into a compliant model editor such
as Eclipse Model Development tool (ECLIPSE MDT) and use
MeCSV constructs to represent each part of the subsequent
reference model.

define configuration

classes

define state classes

express constraints

Reference

Model

MeCSV

Metamodel

Fig. 6. Reference model design process: direct modeling

As it is shown in Fig. 6, they first describe the configuration
parameters and state parameters organized into classes with
convenient composition and dependency associations, then
they specify the offline constraints that constrain the pure struc-
ture of configuration information and the online constraints
that help evaluate the compliance of a given configuration
information with the execution context at hand.

2) Model Transformation: This general specification pro-
cess slightly differs when a management information model
already exists (Fig. 7).

define mapping rules

generate structural

classes

express constraints

Reference Model

Transformation

Rules

Existing

management

model

MeCSV

Metamodel

Fig. 7. Reference model design process: model transformation

Indeed, the first step can be automated, mapping rules can
be directly defined between the specific management model
and MeCSV, thus translating the legacy constructs into the
related MeCSV ones. For example, one could use model-driven
techniques such as model to model transformation or reflection
for the implementation of such mapping rules. The second step
of constraints expression remains identical.

VI. VERIFICATION SERVICE ARCHITECTURE

This section details the architecture of the runtime verifi-
cation service and the resulting verification process.

A. Overview

Fig. 8 gives an overview of the main components of
the verification service, a verification engine and a model
repository, offering two interfaces, the verification and edition
interfaces respectively for the usage of the service and the
online edition of MeCSV reference models. The verification
interface is supported by the verification engine and the edition
interface enables modification of reference models stored in the
model repository.

Reference model

instances (XMI)

Ref. Model

Repository

Management

System

Verification Results

Current

state values

Config.

instances

Operator

Reporting Generator

Constraint Checker

Model Processor

Verification Engine

Fig. 8. Online Verification Service

1) Verification Interface: This interface is to be used by a
management system to request the verification of configuration
instances at runtime. It offers several functions, listed in Table
I, that allow to trigger two types of verification: i) a complete
verification where every existing constraint, in active state, is
verified or ii) a selective verification where a specific subset
of constraints are verified according to their type and severity
level (e.g., online constraints with a highest severity level).

The verification engine is designed to process model in-
stances conforming to an existing MeCSV reference model
classes. Consequently, every API call must contain configura-
tion instances and running operational state values described
in a MeCSV-compliant format. Each call returns a verification
result object including potential verification errors.

2) Edition Interface: This interface allows the registration
of MeCSV reference models to the model repository. It also
supports the online modification of registered reference mod-
els. Constraints can thus be added, removed, their status and
severity can also be updated any time (Table I).

Note that the reference model is reloaded each time it
is updated, allowing both the configuration structure and the
set of constraints to be modified at runtime. This feature is
particularly useful to add or remove constraints according to
the management requirements that may change over time.

3) Reference Model Repository: The reference model
repository stores MeCSV reference model classes and cons-
traints to be processed during the verification. It also supports
the usual creation, update, deletion and querying functions
of a database, to adapt the model to evolving management
requirements.

4) Verification Engine: The verification engine is the sys-
tem component that checks provided configuration instances
and reports inconsistencies. It provides three capabilities:

• A model processor, capable of analyzing and parsing
model elements. It handles verification requests and
ensures the existence of a related MeCSV reference
model for received configuration instances.

• A constraint-checker, capable of checking dynamically
received configuration instances against related refe-
rence model classes and available set of constraints.
If a constraint is not satisfied, it notifies found errors
to a reporting submodule.

• A reporting generator, capable of issueing an in-
dication that contains flawed elements and violated
constraints.

The verification engine is built-upon the open source
Dresden OCL library [21]. Dresden OCL includes an OCL
parser and interpreter that we have enriched with MeCSV
specific features such as offline and online constraints
differentiation and selective constraint checking, and with
new capabilities like runtime modification of reference model
constraints.

The Verification Service thus allows an existing mana-
gement system to request verification of live configuration
changes, It supports a single tenant as well as a multi tenant
usage.

B. Online Verification Process

The following sequence diagram (Fig. 9) shows the interac-
tions involved when a management system requests verification
of some configuration instances. Two types of interactions
can be identified: internal interactions between the decision
and the monitoring modules of the management system and
external interactions between the management system and the
verification service.

Management System

Verification result

Verification Service

State parameters values

retrieval

Verification request

Monitoring Decision

MeCSV reference instances creation

(1)

(2)

(3)

(4)

Fig. 9. Online Verification Process

When the decision module elects a configuration to verify,
it first interacts with the monitoring module to retrieve current
values of defined state parameters, Fig. 9 - (1), then it trans-
forms those data into MeCSV-compliant instance models, Fig.
9 - (2), and sends them to the verification service, Fig. 9 - (3).
The verification service checks received configuration in-
stances both structurally and according to retrieved operational
state instances of the step (2) and returns verification results,
Fig. 9 - (4). It thus enriches management systems with a
runtime configuration verification capability.

TABLE I. API CALLS SUPPORTED BY THE VERIFICATION AND THE EDITION INTERFACES

Interface API call name Functionality

Verification Interface (access to the Verification Engine)

validateAll() Check given configurations against all existing constraints.

validateByConstraintType() Check given configurations against constraints of a certain type, e.g., online only.

validateByConstraintLevel() Check given configurations against constraints of a certain severity, e.g., fatal.

validateByConstraintFeatures() Check given configurations against constraints of a certain type and severity, e.g., online and fatal.

Edition Interface (access to the Reference Model Repository)

registerReferenceModel() Register a MeCSV reference model.

updateConstraintStatus() Edit the status of a given constraint, e.g., deactivate a constraint.

updateConstraintLevel() Edit the severity level of a given constraint, e.g., decrease the severity.

updateConstraintFeatures() Edit both the status and the severity level of a given constraint.

VII. EXPERIMENT

This section describes the application of the verification
framework to the JORAM case study presented in Section IV.
Sections VII-A and VII-B describe how we have used the
framework at design time to specify a reference model for the
case study and how this reference model has been exploited
at runtime to execute verification. Section VII-C evaluates this
prototype experiment and Section VII-D discusses observa-
tions and results.

A. Design time: Reference Model Specification

Following the direct modeling specification methodology,
exposed in Section V-D, we installed the MeCSV Eclipse
Plugin in the ECLIPSE MDT model editor.

The different configuration concepts of Joram’s DTD gram-
mar have been modeled as adequate MeCSV-stereotyped UML
classes, attributes and associations forming the configuration
information model of the platform.

Constraints have been manually derived from requirements
1, 2 and 3 (cf. Section IV) and expressed in OCL. The follow-
ing are examples of constraints that have been implemented:

• Each server should have an unique server id.

• Each server should provide a message destination and
a connection factory (administered objects).

• Each administered object should have a JNDI name.

• A directory service (JNDI) should be available.

• The JNDI service should be activated and running.

• A queue should not be loaded at more than 80% of
its maximum capacity.

The last two constraints are online constraints, they can
only be evaluated at runtime, against operational conditions,
thus requiring access to monitored data. This operational data
has been identified (e.g., servers’ operational status, queues’
pending messages size, current number of client connections)
and modeled as classes and attributes thanks to MeCSV
ManagedElement and StateParameter stereotypes.

Fig. 10 shows an excerpt of the defined MeCSV reference
model. This reference model subset contains the high-level
configuration structure of a message server including a mes-
sage queue, the offline and online constraints that should be
respected and depending state parameters necessary to enable
the operational applicability verification.

!"#$%&'()*+&#$,*)*-.+.)/01$2&3*-.

!"#$%&'()*+&#$,*)*-.+.)/0$45*657'

!"#$%&'()*+&#$/

!"#"#$%&'()

!"#$%&'()*+&#$,*)*-.+.)/07.)8.)920

!"#$%&'()*+&#$,*)*-.+.)/07.)8.)3*-.

!"#$%&'()*+&#$5.+*2*+*/00:#$%&';<=.

!"#$%&'()*+&#$/

*#+,#+$%&'()

!"#$%&'()*+&#$"#-=#7&+&#$/
!"#$%&'()*+&#$>.%.).$:./

!?+*+.,*)*-.+.)/0=.$2&$'5.77*'."#($+

!?+*+.,*)*-.+.)/0$457'7?.$+;#@5A?&$:.").*+&#$

!5*$*'.2BC.-.$+/

!"#"#

!?+*+.,*)*-.+.)/07+*+(7

!?+*+.,*)*-.+.)/0.$'&$.D8.)*'.E#*2F

!5*$*'.2BC.-.$+/

*#+,#+

!G$C&$."#$7+)*&$+/

-.#+/0(%&/12..1(3/41#546/768)

H

000H*:+&8.0I0+)(.J

000HC.8.C0I0"#$7+)*&$+E.8.CKB>>G>J

000HC*$'(*'.0I0G"EJ

000H4#2<0I07.C%K$45*657'0L0MKN0O0

000000000007.C%K-*$*'.2BC.-.$+K=.$2&$'5.77*'."#($+J

J

!G%%C&$."#$7+)*&$+/

!"#"#9&0#)+(0:

H

000H*:+&8.0I0+)(.J

000HC.8.C0I0"#$7+)*&$+E.8.CKPD;DEJ

000HC*$'(*'.0I0G"EJ

000H4#2<0I07.C%K1$2&3*-.0QO0$(CC0

00000000000D3@07.C%K$45*657'0O0MJ

J

!BC.-.$+"#$%&'()*+&#$/

!BC.-.$+"#$%&'()*+&#$/

Fig. 10. Excerpt of the MeCSV reference model for a MOM application
domain

B. Runtime: Online Verification Process

1) Dedicated Management System: For the verification
process, we have set up a dedicated management system built
upon the JMX management interfaces provided by the JORAM

platform. The JMX interfaces comprise a monitoring interface
allowing to collect metrics of interest about the running
platform and a configuration interface capable of tuning the
platform’s configuration at runtime. Messaging servers, as
well as messaging destinations, can be dynamically added or
removed.

This management system is composed of a monitoring
module and a decision module. The decision module is capable
of choosing a configuration at runtime, requesting running
operational data from the monitoring module and transforming
these data into MeCSV-compliant instance models to be sent
to verification.

In the same time, we implemented several client applica-
tions exchanging a high load of fictive messages to act on
the monitored metrics (e.g., servers’ average message flows,
destinations’ number of pending messages).

2) Verification Process: The verification process starts with
the initialization of the verification service with the defined
reference model. As for the management system, the deci-
sion module embeds different pre-defined configurations. At
runtime, the decision module arbitrarily switches from one
configuration to the other and requests the verification of its
choice before deploying them.

Once the target configuration is selected, the management
system follows the process previously illustrated in Fig. 9. It
first retrieves running state values from the monitoring module,

then translates them in instances conforming to the defined
reference model and finally requests their verification.

C. Experimental Setup

The goal of the experiments was both to test the ability
of the MeCSV metamodel to serve as a formal specification
notation and to evaluate the effectiveness of the verification
service for processing online configuration checking against
the defined reference model. We also measured the execution
time of the verification process.

We performed our experiments on three different platform
configurations varying in size and complexity, namely the
number of system’s elements (messaging servers, available
services, message queues) and dependencies between them.

• The first configuration (Test Case 1) is a centralized
messaging server offering basic message features for
a total of nine configurable elements.

• The second (Test Case 2) consists of two messaging
servers (about eighteen configurable elements).

• The third (Test Case 3) has three messaging servers
and holds thirty configurable elements.

• To test the scalability of the validator, we defined
a fourth configuration (Test Case 4), made of 300
managed elements, that has been programmatically
tested with random state values variations.

Witness verification tests on correct configuration instances
have also been conducted for each case.

The summary of test cases data is shown in Table II.

TABLE II. SUMMARY OF TEST CASES DATA

Nb. servers
Nb. managed

elements

Nb. configuration

parameters

Nb. state

parameters

Test case 1 1 9 57 25

Test case 2 2 18 110 64

Test case 3 3 30 197 103

Test case 4 30 300 1970 103

For each proposed configuration instance, we gradually
ran complete verifications with ten, fifty and one hundred
OCL constraints with a ratio of 80% offline constraints for
20% online constraints. For each verification request, we took
100 measurements of the execution time in milliseconds and
computed the arithmetic mean.

Furthermore, we test selective verifications requesting the
evaluation of specific subsets of constraints filtered according
to their type and severity. We also test the online edition
of constraints, verifying that the verification engine considers
their modification.

The tests were run on a Intel R© CoreTM 2 Duo with 2.66
GHz and 4 Gigabytes of main memory.

D. Results and Discussions

1) Feasability: The verification service has been success-
fully tested: the received instances were checked against the
stored reference model with both offline and online constraints

violations detected and notified, both in the case of complete
as well as selective verification requests. This permitted the
decision module not to apply non-valid configurations.

The detection of online constraints violations, especially in
the case of witness verification tests, confirms our thesis about
operational applicability verification.

A first conclusion that can be drawn from these tests is
the effectiveness of the verification service, thus the ability for
MeCSV to be used to specify a real-life system’s configuration
schema and subsequent constraints for online configuration
verification.

2) Verification Time: Concerning the verification time, the
verification service has a noticeable but reasonable initial-
ization overhead where the MeCSV reference classes and
constraints are registered, but after this time, it processes
constraint evaluations quickly.

Fig. 11. Verification overhead for the first three test cases

The overall checking time for the three deployed scenarios
is under 700 ms, which is very encouraging. It comprises the
time taking to check the received instance conformance to
the reference model, the constraint evaluation time and the
reporting time (negligible).

A very important result lies in the effect of the number of
system elements and the number of OCL constraints on the
verification time. As shown in Fig. 11, the execution time is
not proportional neither to the number of system’s elements
nor to the number of constraints. For example, while the size
of elements quintuples from test case 1 (6 managed elements)
to test case 3 (30 managed elements), their average verification
time ratio hardly doubles (ratio is 1.73). Similarly, although the
number of constraints increased by ten, the average verification
cost is barely multiplied by 1.5. Further analysis of collected
measures showed that constraints were checked in linear time.

We can conclude that in small configurations, the number
of system’s elements or the number of constraints scarcely
affects the verification performance.

Furthermore, we observed that the error rate is not a factor
impacting the verification time. An error-free configuration
takes the same time as a highly erroneous configuration.

3) Scalability of the approach: The fourth case offers
particular insights on the performance of the approach on a

very large configuration (Fig. 12). The worst case verification
time of 30 message servers (2000 managements parameters
and 100 constraints) is far below 2 seconds, which is still
an acceptable time for a runtime verification program. This
progression confirmed our first conclusion that the verification
performance is not proportional to the size of configuration
elements. While system’s elements increased by 50 (from 6
managed elements to 300 managed elements), verification time
increased by less than 5.

Fig. 12. Verification overhead for the scalability test case (Test Case 4)

The complete verification process overhead is very encour-
aging regarding the added capability to detect configuration
errors at runtime. Indeed, even though configuration instances
can be verified beforehand at design time, the difficulty to
predict the varying operating conditions can compromise the
success of runtime configuration changes.

Altogether, these experimental results confirm the impor-
tance of online configuration verification and show the feasi-
bility of our verification framework to enrich a dynamically re-
configurable platform with runtime configuration verification.

VIII. CONCLUSION AND FUTURE WORK

Designing lightweight online verification approaches is a
critical requirement if we are to build reliable self-adaptive
management systems and ease their adoption. This is funda-
mental as misconfigurations can be prejudicial to the proper
operation of the system.

This paper presented a verification framework including an
online configuration verification service relying on a high-level
specification language named MeCSV. The framework aims to
enrich existing management systems with platform-neutral and
flexible configuration verification capabilities based not only
on structural checks but also on running operational conditions.

We then described a methodology for using the framework
from design time to runtime. We applied this methodology
on a real-life message-oriented middleware case study where
we successfully modeled the configuration schema, validity
constraints and operational state data in a platform-independent
fashion. This reference model was used by the verification ser-
vice to process verification requests of configuration instances
in viable time.

A series of verification experiments during reconfigurations
allowed us to discuss results and observations demonstrating
the feasibility of the approach. In future work, we intend to
further experience the methodology and integrate more legacy
systems so that we can ease the integration process and lower
subsequent costs.

REFERENCES

[1] L. Akue, E. Lavinal, and M. Sibilla, “A model-based approach to
validate configurations at runtime,” in 4th International Conference on

Advances in System Testing and Validation Lifecycle (VALID), 2012,
pp. 133–138.

[2] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[3] J. Strassner, N. Agoulmine, and E. Lehtihet, “Focale–a novel autonomic
computing architecture,” in Latin–American Autonomic Computing

Symposium, 2006.

[4] L. Akue, E. Lavinal, and M. Sibilla, “Towards a Validation Framework
for Dynamic Reconfiguration,” in IEEE/IFIP International Conference

on Network and Service Management (CNSM), 2010, pp. 314–317.

[5] M. MacFaden, D. Partain et al., “Configuring networks and devices
with Simple Network Management Protocol (SNMP), RFC 3512,” IETF

Request for Comment,[Online], pp. 1–69, 2003.

[6] B. H. Cheng, R. De Lemos et al., “Software engineering for self-
adaptive systems: A research roadmap,” in Software engineering for

self-adaptive systems, 2009, pp. 1–26.

[7] P. Anderson and E. Smith, “Configuration tools: working together,” in
19th conference on Large Installation System Administration (LISA)

Conference, 2005.

[8] N. Samaan and A. Karmouch, “Towards autonomic network manage-
ment: an analysis of current and future research directions,” Communi-

cations Surveys & Tutorials, IEEE, vol. 11, no. 3, pp. 22–36, 2009.

[9] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?” in Proceedings of the

4th conference on USENIX Symposium on Internet Technologies and

Systems, ser. USITS’03, 2003, pp. 1–1.

[10] “CIM Schema version 2.29.1 - CIM Core,” Distributed Management
Task Force (DMTF), June 2011.

[11] M. Bjorklund, “YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF),” Internet Engineering Task Force
(IETF), RFC 6020, October 2010.

[12] A. V. Konstantinou, D. Florissi, and Y. Yemini, “Towards Self-
Configuring Networks,” in DARPA Active Networks Conference and

Exposition (DANCE), 2002.

[13] D. Agrawal, J. Giles et al., “Policy-based validation of san configura-
tion,” in 5th IEEE International Workshop on Policies for Distributed

Systems and Networks (POLICY) 2004, 2004, pp. 77–86.

[14] E. Gençay, C. Sinz et al., “SANchk: SQL-based SAN configuration
checking,” IEEE Transactions on Network and Service Management,
vol. 5, no. 2, pp. 91–104, 2008.

[15] P. Goldsack, J. Guijarro et al., “The SmartFrog Configuration Manage-
ment Framework,” ACM SIGOPS Operating Systems Review, vol. 43,
pp. 16–25, 2009.

[16] T. Hinrichs, N. Love et al., “Using object-oriented constraint satisfaction
for automated configuration generation,” in DSOM, 2004, pp. 159–170.

[17] L. Ramshaw, A. Sahai et al., “Cauldron: a policy-based design tool,” in
7th IEEE International Workshop on Policies for Distributed Systems

and Networks, 2006, pp. 113–122.

[18] T. Delaet and W. Joosen, “PoDIM: A Language for High-Level Confi-
guration Management,” in LISA, 2007, pp. 261–273.

[19] “JavaTM Open Reliable Asynchronous Messaging (JORAM),” OW2
Consortium, June 2013. [Online]. Available: http://joram.ow2.org/

[20] “OMG Unified Modeling Language (OMG UML), Superstructure
V2.1.2,” november 2007.

[21] “Dresden OCL,” TU Dresden, Software Technology Group, June 2013.
[Online]. Available: http://www.dresden-ocl.org/

