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In this paper we compare the expressive power of elementary representation formats 
for vague, incomplete or conflicting information. These include Boolean valuation pairs 
introduced by Lawry and González-Rodríguez, orthopairs of sets of variables, Boolean 
possibility and necessity measures, three-valued valuations, supervaluations. We make 
explicit their connections with strong Kleene logic and with Belnap logic of conflicting 
information. The formal similarities between 3-valued approaches to vagueness and 
formalisms that handle incomplete information often lead to a confusion between degrees 
of truth and degrees of uncertainty. Yet there are important differences that appear at 
the interpretive level: while truth-functional logics of vagueness are accepted by a part of 
the scientific community (even if questioned by supervaluationists), the truth-functionality 
assumption of three-valued calculi for handling incomplete information looks questionable, 
compared to the non-truth-functional approaches based on Boolean possibility–necessity 
pairs. This paper aims to clarify the similarities and differences between the two situations. 
We also study to what extent operations for comparing and merging information items in 
the form of orthopairs can be expressed by means of operations on valuation pairs, three-
valued valuations and underlying possibility distributions.

1. Introduction

Three-valued logics have been used for different purposes, depending on the meaning of the third truth-value. Among 
them, Kleene logic [29] is typically assumed to deal with incomplete knowledge, with the third truth-value interpreted as 
unknown. Another possibility is to interpret the additional truth-value as borderline, as a means of representing borderline 
cases for vague predicates [28]. It is then tempting to use Kleene logic as a simple logic of non-Boolean predicates as done 
recently by Lawry and González-Rodríguez [32]. They introduced a new formalism to handle three-valued vague predicates 
by means of upper and lower Boolean valuations. Basic three-valued connectives of conjunction, disjunction and negation 
can be expressed by composing Boolean valuation pairs. Moreover, they showed how to recover the connectives of Belnap 
4-valued logic of conflict in terms of Boolean valuation pairs. They also use another equivalent representation consisting of 
pairs of subsets of atomic variables that are disjoint when they represent Kleene valuations. Lawry and Tang [33] interpret



the supervaluation approach to vagueness in terms of general non-truth functional valuation pairs respecting Boolean tau-
tologies.

However, three-valued valuations also encode Boolean partial models, like for instance in partial logic [6]. Orthopairs of 
variable sets then represent the sets of Boolean variables that are known to be true and of those that are known to be 
false. The third truth-value then refers to the unknown. The natural generalisation of partial models consists of epistemic 
sets, understood as non-empty subsets of interpretations of a Boolean language, representing the information possessed by 
an agent, which can be viewed as all-or-nothing possibility distributions [45]. Such possibility distributions generalise to 
formulas in the form of possibility and necessity functions [42,18]. Possibility theory, even in its all-or-nothing form, is not 
truth-functional, which explains apparent anomalies in Kleene logic for handing incomplete information [19]. More recently 
Lawry and Dubois [31] proposed operations for merging valuation pairs and study their expression in terms of three-valued 
truth-tables, as well as pairs of subsets of variables.

In this paper, we focus on the use of orthopairs of subsets of variables for handling vague or incomplete information. 
We compare the expressive power of three-valued valuations, Boolean valuation pairs, and orthopairs. The aim is to ex-
pose the differences between these three representation tools. In contrast with these truth-functional representation tools, 
we consider non-truth functional ones, such as possibility–necessity pairs and supervaluations, respectively used for mod-

elling incomplete information and vagueness, and show their formal similarities, as well as their differences with Boolean 
valuation pairs. Besides, we show that orthopairs are more difficult to handle than three-valued valuations and Boolean 
valuation pairs when it comes to evaluating logical expressions in Kleene logic, even if the three notions are in one-to-one 
correspondence.

We then study informational orderings and combination rules for the merging of pieces of information that can be 
expressed in terms of orthopairs. Again, some discrepancies are highlighted in their expressive power compared to other 
representation formats, especially possibility distributions.

This paper is structured as follows. The next section presents three different ways of encoding three-valued valuations. 
Section 3 presents two uses of these representations, for modelling borderline cases of vague predicates, and for incomplete 
Boolean information. Section 4 casts them in the setting of possibility theory. The strong formal similarity between super-
valuation pairs and possibility–necessity pairs is also highlighted. Section 5 extends these representations so as to account 
for conflict in accordance with Belnap logic. We then obtain generalised valuation pairs that can be inconsistent, and general 
pairs of subsets of variables that can overlap (on variables for which knowledge is inconsistent). The problem of importing 
the recursive definitions of consistent pairs of valuations for logical expressions into the framework of orthopairs of variables 
is discussed in detail in Section 6. Section 7 considers various notions of ordering relations between three-valued valuations 
and various combination rules. It studies whether they can be encoded in the three formats proposed in this paper. Finally 
in Section 8, we check whether these combination operations are expressible in terms of the fusion of general subsets of 
interpretations.

2. Three-valued valuations

Let A be a finite set of (propositional) variables. We denote by 3 the set {0, 1
2
, 1}, equipped with total order 0 < 1

2
< 1, 

loosely understood as a set of truth-values with 0 and 1 respectively referring to false and true.

Definition 2.1. A three-valued valuation is a mapping τ :A → 3.

We denote by 3A the set of three-valued valuations. A particular subset of 3A consists of Boolean valuations (or inter-
pretations), i.e. mappings w :A → {0, 1}; we denote by Ω = {0, 1}A the set of all such valuations.

In this section we introduce two alternative representations of three-valued valuations together with their extensions to 
logical expressions in Kleene logic: orthopairs and ordered pairs of Boolean valuations.

2.1. Representations of three-valued valuations

Definition 2.2. By an orthopair, we mean a pair (P , N) of disjoint subsets of variables: P , N ⊆A and P ∩ N = ∅.

A three-valued valuation τ : A → 3 induces an orthopair as follows: a ∈ P if τ (a) = 1, a ∈ N if τ (a) = 0. So P and 
N stand for positive and negative literals, respectively. Conversely, given an orthopair (P , N) we can define the following 
three-valued function:

τ (a) =











0 a ∈ N

1 a ∈ P
1
2

otherwise

There is indeed a bijection between orthopairs and three-valued valuations.
Lawry and González-Rodríguez [32] propose yet another representation of ternary valuations τ by means of consistent 

Boolean valuation pairs:



τ ∈ 3A (v ≤ v)

(P ,N)

Fig. 1. Bijection among three-valued functions τ , orthopairs (P ,N) and pairs of Boolean functions v ≤ v .

Table 1

Kleene strong conjunction ⊓.
⊓ 0 1

2
1

0 0 0 0
1
2

0 1
2

1
2

1 0 1
2

1

Definition 2.3. A consistent Boolean valuation pair (BVP) is a pair Ev = (v, v) ∈ Ω2 of Boolean valuations on {0, 1}, such that 
v ≤ v holds pointwisely. v is called a lower Boolean valuation, and v is an upper Boolean valuation.

A three-valued valuation induces a consistent BVP as follows. For variables a ∈ A:

• if τ (a) = 1 then v(a) = v(a) = 1;

• if τ (a) = 0 then v(a) = v(a) = 0;

• if τ (a) = 1
2
then v(a) = 0, v(a) = 1.

Clearly the property v ≤ v holds and expresses consistency of the BVP. There is also a one-to-one correspondence between 
consistent BVP’s such that v ≤ v and orthopairs (P , N), defined by P = {a ∈A : v(a) = v(a) = 1}, N = {a ∈A : v(a) = v(a) =
0}, and v(a) = 0, v(a) = 1 if a /∈ P ∪ N . The condition P ∩ N = ∅ is equivalently expressed by v ≤ v using BVPs. Obviously, 
τ (a) = v(a)+v(a)

2
.

So, in the case where v ≤ v there are bijections between three-valued functions, orthopairs and consistent BVP’s as 
illustrated by Fig. 1.

2.2. Kleene logic expressions

In this paper we focus on the simplest three-valued logic known as Kleene logic [29]. Kleene logic uses two connectives: 
an idempotent conjunction ⊓ and the involutive negation ′ . Connectives are defined truth-functionally, as follows (see also 
Table 1):

Definition 2.4. Negation and conjunction are respectively defined by:

• 0′ = 1, 1′ = 0, 1
2

′
= 1

2
, which reads τ (φ′) = 1 − τ (φ).

• τ (φ ⊓ ψ) = min(τ (φ), τ (ψ)).

Based on these connectives, we can construct a language LK . The language LK is recursively generated by: a ∈ LK , φ′ ∈
LK , φ ⊓ ψ ∈ LK . The corresponding disjunction is φ ⊔ ψ that stands for (φ′ ⊓ ψ ′)′ such that τ (φ ⊔ ψ) = max(τ (φ), τ (ψ)) =
τ ((φ′ ⊓ ψ ′)′).1

This language defines a class of three-valued functions whose expressions are the same as those of Boolean logic, but 
for the possibility of simplifying terms of the form a ⊔ a′ and a ⊓ a′ . Remarkably, there is no tautology in Kleene logic, that 
is, no constant function f : 3A → 3 taking the value {1} that can be expressed in the Kleene logic language. In fact any 
proposition in Kleene logic takes value 1

2
if all its variables take value 1

2
.

Upper and lower Boolean valuations can be extended to formulas φ built from variables and Kleene connectives ′, ⊓, ⊔:

v
(

φ′
)

= 1− v(φ); (1)

v(φ ⊓ ψ) = min
(

v(φ), v(ψ)
)

; v(φ ⊓ ψ) = min
(

v(φ), v(ψ)
)

; (2)

v(φ ⊔ ψ) = max
(

v(φ), v(ψ)
)

; v(φ ⊔ ψ) = max
(

v(φ), v(ψ)
)

. (3)

1 We shall occasionally abuse notation by identifying truth functions with the corresponding connectives in the language.



Table 2

Borderline vs. unknown.

Name Tall Single

John 1 1

Paul Borderline 1

George 0 Unknown

Ringo 0 0

It can be checked that if τ (φ) is computed by means of Kleene truth tables and the pair (v, v) is computed by the above 
identities then,

• if τ (φ) = 1 then v(φ) = v(φ) = 1;

• if τ (φ) = 0 then v(φ) = v(φ) = 0;

• if τ (φ) = 1
2
then v(φ) = 0, v(φ) = 1.

Furthermore, it can be shown by induction that the three-valued valuation τ can be defined as an arithmetic mean of 
v, v for all expressions in Kleene logic:

Proposition 2.1. For any formula φ formed using the Kleene connectives it holds that τ (φ) = v(φ)+v(φ)

2
.

Proof. It is easy to check that for atomic propositions τ (a) = v(a)+v(a)
2

. By induction, we can prove by enumerating all the 
possible situations, that

• τ (φ′) = 1 − τ (φ) = 1 − v(φ)+v(φ)

2
= v(φ′)+v(φ′)

2
,

• τ (φ ⊓ ψ) = min(
v(φ)+v(φ)

2
, v(ψ)+v(ψ)

2
) = min(v(φ),v(ψ))+min(v(φ),v(ψ))

2
. ✷

The question of whether the evaluation of Kleene expressions can be obtained by combining orthopairs is much less 
obvious and will be addressed in Section 6. However, we first point out two areas where Kleene logic has been used.

3. Three-valued logic: vagueness vs. incomplete information

There are two main interpretations of Kleene logic: it provides a representation of borderline cases in the modelling of 
vagueness, or it may account for reasoning under incomplete knowledge.

3.1. Kleene logic as an elementary framework for vague predicates

The existence of borderline cases when evaluating the truth status of propositions is supposed to be one of the main 
characteristics of vagueness in natural language [28]. In the most elementary representation of vagueness we can assume 
variables to be three-valued, with the third truth value 1

2
being interpreted as borderline. In this approach, each three-valued 

valuation is a complete model, that is, whereby each variable is assigned a truth value (false, true or borderline). This is the 
approach of Lawry and González-Rodríguez [32], who cast this elementary idealised model of vague propositions in Kleene 
three-valued logic [29]. While 1

2
means borderline, the truth-values 1 and 0 respectively mean clearly true and clearly false. 

In other words, the value 1
2
indicates a situation where a proposition is neither clearly true nor clearly false. It is easily seen 

that the lower valuation v evaluates whether a proposition is clearly true or not, while the upper valuation v evaluates 
whether a proposition is at least borderline true or not. In this view, an orthopair (P , N) is interpreted as follows: P is the 
set of variables that are clearly true in the situation under concern, N the set of clearly false ones, and the remainder are 
considered to be borderline.

The corresponding three-valued set-theory is a very elementary variant of fuzzy set theory [44] where sets possess 
central elements and peripheral ones as first studied, in the scope of linguistics, by Gentilhomme [25]. For instance, in the 
scale [0, 250] cm, men heights from 1.80 cm up are considered typical of tall heights, hence central, while heights between 
1.70 to 1.80 cm correspond to borderline cases of tall. So, the predicate tall may be better described as a three-valued one 
than as a Boolean notion, as some persons may be judged neither clearly tall not clearly not tall (as opposed, e.g. to other 
clearcut predicates such as single, see e.g., Table 2). But these persons may as well be judged at the same time peripherally 
tall and peripherally not tall, (the weak forms of opposite predicates overlap) even if not clearly so.

This elementary modelling of borderline cases is discussed in the book of Shapiro [36, page 64]. The three-valued setting 
reflects the open texture of vague predicates leading to propositions that can go either way. He elaborates a supervaluationist 
approach on top of the three-valued setting: the borderline truth-value is then understood as reflecting the fact that the 



truth status of the statement tall(x) is likely to move from true to false and back in conversational scores. For instance, in 
Table 2, Paul may alternatively be declared tall or not tall, because his height lies between 1.6 and 1.8 meters. Of course, 
this is just a coarse idealisation of the vagueness phenomenon, in fact the most elementary one might think of, since the 
borderline interval [1.6, 1.8] is questionably overprecise.

The clear-cut boundaries between the borderline area and the truth and falsity ones may be found counterintuitive. 
However, it is maybe worth noting that Sainsbury [35] argues against the introduction of higher order vagueness in terms 
of borderline borderlines, etc. He says that even if you do such a thing the important question is which cases are definitely 
true and which are definitely false. And, following Shapiro [36], one may consider such precise boundaries as artefacts 
of the model, whose aim is solely to expose the presence of borderline cases in the extension of vague predicates. They 
do not represent something meaningful for the understanding of natural languages. Besides, even if the truth-functionality 
of Kleene logic of borderline has a well-founded algebraic setting (the so-called Kleene algebras), the adequacy of this 
assumption is widely questioned by supervaluationists, among others [22]. We will make no attempt here to engage in 
the debate regarding higher-order vagueness and the limitations of the three-valued logic of borderline to account for the 
representation of vagueness. Instead, our purpose is only to use a very basic representation of non-Boolean predicates (as 
advocated by Lawry and colleagues) and contrast it with the logic of unknown.

3.2. Kleene logic and incomplete information

The original intuition in [29] regarding the interpretation of the third truth-value 1
2
corresponds to the idea of unknown

instead of borderline. In this section, we assume that the third truth-value 1
2

means unknown, and refers to the ignorance 
about the actual Boolean truth values of classical binary propositional variables. The truth-tables of Kleene logic are then 
sometimes used to propagate incomplete knowledge.

In many applications, such as relational databases [11], or logic programming [23], we assume that an agent expresses 
knowledge only about elementary Boolean variables. In the database area, the value 1

2
is called a null value. For instance, 

in Table 2, the variable pertaining to the predicate single is Boolean, but it is not known whether George is single or not. 
However, the predicate single is in no way vague. This example illustrates the difference between borderline and unknown.

An orthopair (P , N) then does not have the same meaning as in the previous Subsection 3.1. Here, P is the set of 
atomic propositions known to be true (in the usual sense), and N is the set of atomic propositions known to be false. Clearly, 
A\(P ∪ N) represents variables on which the agent has no knowledge. Note that this is formally the same orthopair as in 
the previous section, and it can again be encoded as a three-valued valuation. However, the intended meanings of orthopairs 
are quite different: in the vagueness situation, an orthopair represents complete knowledge about a non-Boolean description, 
while here it represents incomplete knowledge about a Boolean proposition in a standard propositional language L equipped 
with usual conjunction, disjunction and negation connectives respectively denoted by ∧, ∨, ¬.

In this Boolean language, the orthopair (P , N) corresponds to a conjunction of literals in A, i.e., 
∧

a∈P a ∧
∧

a∈N ¬a. At 
the semantic level, (P , N) is sometimes called a partial interpretation or partial model. Usually in partial logic [6], the same 
satisfiability definitions as for Boolean valuations are applied to partial models, which can be questioned [13].

Let the set of Boolean models of a formula φ (that is, the set of Boolean valuations that make φ true) be denoted by 
E = [φ]. An orthopair (P , N) viewed as a partial model corresponds to a non-empty set E(P ,N) = [

∧

a∈P a ∧
∧

a∈N ¬a] of 
Boolean valuations, namely all Boolean interpretations w that complete the partial model. A Boolean valuation w then cor-
responds to an orthopair (P , P c), where P c denotes the complement of P , that partitions the set of propositional variables; 
or, equivalently, w is the only model of a maximal conjunction of literals 

∧

a∈Pw
a ∧

∧

a/∈Pw
¬a. Boolean valuations that 

complete an orthopair (P , N) can be represented by (Pw , P c
w) where P ⊆ Pw and N ∩ Pw = ∅. It is often the case (e.g. in 

logic programming) that a Boolean valuation w is simply represented by the subset Pw = {a ∈A : w(a) = 1} = P of positive 
literals it satisfies as per the above expression. This exposes the one-to-one correspondence between Ω and 2A .

Now, let us suppose that an agent expresses knowledge by means of positive literals, P ⊆ A. We can have two attitudes 
with respect to the other variables in A\P . First, the open world assumption. In this case nothing is assumed about A\P . 
Then the corresponding orthopair is (P , ∅). In contrast, under the closed world assumption, it is supposed that what is 
not said to be true is false, thus N = A\P contains the negative facts. This corresponds to selecting just a single valuation 
(P , P c) among all the possible ones in E(P ,∅) .

Now let us turn to the use of upper and lower Boolean valuations in this context. The lower valuation v(a) = 1 means 
that variable a is known to be true, the upper valuation v(a) = 0 means that a is known to be false, while the case where 
v(a) = 0 and v(a) = 1 corresponds to the case where it is unknown whether a is true or false. Very naturally, the pair 
(v(a), v(a)) represents the set of possible (Boolean) truth-values of a, according to the available state of information. The 
truth-tables of Kleene logic are then precisely the set-valued extensions of the Boolean truth-tables [34,15], namely:

(

v(a ∧ b), v(a ∧ b)
)

=
{

w(a ∧ b) : v ≤ w ≤ v
}

=
(

min
(

v(a), v(b)
)

,min
(

v(a), v(b)
))

(

v(a ∨ b), v(a ∨ b)
)

=
{

w(a ∨ b) : v ≤ w ≤ v
}

=
(

max
(

v(a), v(b)
)

,max
(

v(a), v(b)
))



(

v(¬a), v(¬a)
)

=
{

w(¬a) : v ≤ w ≤ v
}

=
(

1− v(a),1 − v(a)
)

However, if used to evaluate the knowledge about the truth or falsity of any Boolean formula, the recursive application 
of these definitions becomes counterintuitive in the incomplete information setting. Indeed, using Kleene logic (or the 
recursive formulas on the upper and lower Boolean valuations as in the previous section), one finds that for instance, 
(v(a ∧ ¬a), v(a ∧ ¬a)) = (0, 1), if τ (a) = 1

2
. However, under the incomplete information setting, since w(a) can only be true 

or false, the truth-value w(a ∧ ¬a) is necessarily 0 (known to be false). And this can be retrieved directly by applying the 
set-valued calculus to all formulas φ, namely, by computing

V (φ) =
{

w(φ) : v(a) ≤ w(a) ≤ v(a), ∀a ∈ A
}

,

rather that using the truth-tables for conjunction, and negation recursively. For instance, ∀v ≤ v, V (a ∧ ¬a) = {0} (and not 
{1, 0} provided by Kleene truth-tables) since ∀w, w(a ∧¬a) = 0. It suggests that the lack of tautology in Kleene logic can be 
considered surprising in the scope of incomplete Boolean information: if variables are Boolean, classical tautologies should 
be preserved, even if the truth-value of some variables is unknown. For instance, from Table 2 we do not know whether 
George is single, but it is always true that he is “single or not single”. The explanation of this apparent anomaly is clarified 
in Section 4.3.

So, while there is a one-to-one correspondence between partial models representing incomplete information and three-
valued valuations (relying on the bijection between 3 and the set {{0}, {1}, {0, 1}} of non-empty subsets of the unit interval), 
Kleene truth-tables do not correctly model the incomplete information setting for evaluating the epistemic status of com-

plex Boolean formulae. To overcome the limited expressiveness of orthopairs when modelling incomplete information, one 
needs a more general view of epistemic states as can be provided in terms of {0, 1}-valued possibility distributions over 
interpretations [42,18].

4. Non-truth-functional frameworks for incomplete or vague information

The aim of this section is to discuss formal settings that are slightly more expressive than Kleene logic for addressing 
the problem of incomplete information in the classical logic setting and the question of vagueness. They share the feature 
of dropping the truth-functionality assumption, and turn out to be formally very close.

We first explain the limitation of orthopairs in the representation of epistemic states, viewing them as {0, 1}-valued pos-
sibility distributions over the set of classical interpretations. Then we recall {0, 1}-valued possibility and necessity measures 
which we compare to upper and lower Boolean valuations. We show their close connection with modalities in epistemic 
logic. Finally, we show that supervaluations, usually applied to the modelling of vagueness, are formally very close to pos-
sibility theory.

4.1. The limited expressiveness of orthopairs for incomplete information

In the following, a non-empty subset of Boolean valuations E ⊆ Ω is called an epistemic set. It represents an agent’s 
epistemic state, that is, a state of information according to which all that is known is that the real world is properly 
described by one and only one of the valuations in E . The sets E(P ,N) of Boolean valuations compatible with a partial model 
(P , N) are special cases of epistemic sets.

We can equivalently represent an epistemic set E by a possibility distribution [45]:

Definition 4.1. A Boolean possibility distribution is a mapping π : Ω → {0, 1} such that π(w) = 1 for some w ∈ Ω .

The possibility distribution πE attached to E is simply its characteristic function:

πE(w) =

{

1 if w ∈ E (it means possible)

0 otherwise (impossible)
(4)

Then, the possibility distribution π(P ,N) of the epistemic set E(P ,N) associated with an orthopair (P , N), i.e. the set of 
models of φ =

∧

a∈P a ∧
∧

a∈N ¬a, can be factorised as:

π(P ,N)(w) = min
(

min
a∈P

πa(w),min
a∈N

1− πa(w)

)

(5)

with convention min∅ = 0 and

πa(w) =

{

1 if w ² a

0 otherwise

The epistemic set E(P ,N) is a set of Boolean valuations that takes the form of a Cartesian product of subsets of {a, ¬a}, a ∈A. 
We refer to this as hyper-rectangle, by analogy with the Cartesian product of intervals in the real line Rn . Thus, partial models 



Table 3

Basic epistemic sets representable by orthopairs.

3 Orthopairs Valuation pairs Subsets of Boolean valuations

0 (∅,A) E0 = (0,0) {w0} = [∧a∈A¬a]
1
2

(∅,∅) (0,1) Ω

1 (A,∅) E1 = (1,1) {w1} = [∧a∈Aa]
undef. undef. undef. ∅

are viewed as hyper-rectangles in the space Ω = {0, 1}n if there are n variables. In the case of the special orthopair (P , P c), 
the possibility distribution π(P ,P c ) takes value 1 only for the valuation characterised by P .

Table 3 shows basic epistemic sets that are modelled by orthopairs. Note that the use of orthopairs highlights the inter-
pretation with all positive literals and also the one with all negative literals, which play no specific role in the more general 
possibility theory setting. Moreover, there is no way of representing the empty set of interpretations (the contradiction) 
with orthopairs or consistent valuations.

However we can generate a rectangular upper approximation of any non-empty subset E ⊆ Ω of Boolean interpretations 
by means of a single partial model RC(E) = (P E , NE) as follows:

• a ∈ P E iff w(a) = 1, ∀w ∈ E ,

• a ∈ NE iff w(a) = 0, ∀w ∈ E .

The map E 7→ (P E , NE) defines an equivalence relation on possibility distributions over Ω and E(P ,N) = ∪{E : (P E , NE) =
(P , N)}. RC(E) can be called the rectangular closure of E . Note that the rectangular closure of E may even lose all the 
information contained in E . For example, if E is a disjunction of interpretations having different projections on each atomic 
space, such as any diagonal of the hyper-rectangle Ω , then RC(E) = Ω .

In general, a non-empty epistemic set E ⊆ Ω can be represented by a collection of orthopairs, which can be viewed as 
a disjunction of partial models. To see this, consider a Boolean formula φ whose set of models is exactly E . Then, convert 
φ to disjunctive normal form (as a disjunction of conjunctions of literals). Each such conjunction can be represented by an 
orthopair.

Remark 1. We can always represent E by a set of mutually exclusive subsets of interpretations, each representing partial 
models. This is because it is always possible to convert a disjunction of conjunctions into an equivalent disjunction of 
mutually exclusive conjuncts, for instance using specific normal forms (such as binary decision diagrams [7]).

So, the use of Kleene logic to handle incomplete knowledge is subject to severe limitations in terms of expressiveness, 
since only a small subfamily of epistemic sets can be captured by orthopairs. Using orthopairs to represent incomplete 
knowledge presupposes that information can only have a bearing on variables, independently of each other. While in logical 
representations, variables are supposed to be logically independent, the use of orthopairs carries this assumption over to 
epistemic independence (independence between pieces of knowledge pertaining to variables). Replacing possibility distri-
butions by probability distributions, it is similar to assuming stochastic independence between variables (which is a strong 
assumption).

4.2. Possibility–necessity pairs

If the available information takes the form of an epistemic set E , we can attach to any proposition its possibility and 
necessity degrees N (φ) and Π(φ) [19].

Definition 4.2. Necessity measure N and possibility measure Π are respectively defined as

Π(φ) = 1 if and only if ∃w ∈ E, w |H φ and 0 otherwise; (6)

N (φ) = 1 if and only if ∀w ∈ E, w |H φ and 0 otherwise. (7)

N (φ) = 1 means that φ is certainly true, and Π(φ) = 1 that φ is possibly true, in the corresponding epistemic state. So, if 
N (φ) = 0 and Π(φ) = 1, it means that the truth of φ is unknown in the epistemic state [19]. The set-function Π(φ) (resp. 
N ) is an extreme case of numerical possibility measure [45] (resp. necessity measure [18]).

We can compute the pair (N , Π) of functions L → {0, 1} induced by the epistemic set representing an orthopair (P , N)

as follows:

• N (φ) = 1 if 
∧

a∈P a ∧
∧

a∈N ¬a |H φ and 0 otherwise.

• Π(φ) = 1 if 
∧

a∈P a ∧
∧

a∈N ¬a ∧ φ is consistent, and 0 otherwise.



There is an obvious similarity between consistent BVPs extended to the whole language and necessity–possibility pairs 
(N , Π), namely the following identities hold:

N (¬φ) = 1− Π(φ) and Π(¬φ) = 1−N (φ) (8)

N (θ ∧ ϕ) = min
(

N (θ),N (ϕ)
)

(9)

Π(θ ∨ ϕ) = max
(

Π(θ),Π(ϕ)
)

(10)

However there is a difference between them: while v(θ ∨ ϕ) = max(v(θ), v(ϕ)) and v(θ ∧ ϕ) = min(v(θ), v(ϕ)), in general, 
it only holds that

N (θ ∨ ϕ) ≥ max
(

N (θ),N (ϕ)
)

and

Π(θ ∧ ϕ) ≤ min
(

Π(θ),Π(ϕ)
)

In particular, Π(θ ∧ ¬θ) = 0 (non-contradiction law) and N (θ ∨ ¬θ) = 1 (excluded middle law), thus escaping the anomaly 
of losing the Boolean tautologies when information is incomplete and propositions are Boolean. Due to these properties, it 
is clear that:

Proposition 4.1. If the epistemic set is a partial model encoded by the consistent BVP (v, v) the associated possibility–necessity pairs 
are recovered as

Π(φ) = max
v≤w≤v

w(φ)

N (φ) = min
v≤w≤v

w(φ)

Proof. v ≤ w ≤ v is equivalent to saying that w is a completion of the partial model (P , N) encoded by (v, v), i.e. w ∈
E(P ,Q ) . ✷

It is easy to identify logical expressions φ for which extended consistent BVP’s (v, v) and possibility–necessity pairs 
(Π, N) differ.

Example 4.1. a ⊔ b and a ⊔ (a′ ⊓ b) are not equivalent propositions under extended consistent BVP’s. Indeed, consider the 
orthopair (P , N) = ({b}, ∅). Since v(b) = v(b) = 1, it is obvious that v(a ⊔ b) = v(a ⊔ b) = 1 too. For the other formula, we 
can proceed as follows:

• v(a) = 1 and v(a) = 0 since a /∈ P ∪ N;

• v(a′) = 1 and v(a′) = 0 likewise;

• v(a′ ⊓ b) = min(v(a′), v(b)) = 1;

• v(a′ ⊓ b) = min(v(a′), v(b)) = 0;

• So v(a ⊔ (a′ ⊓ b)) = max(v(a), v(a′ ⊓ b)) = 1;

• So v(a ⊔ (a′ ⊓ b)) = max(v(a), v(a′ ⊓ b)) = 0.

Note that this result is more easily checked with Kleene truth-tables, since, with τ (a) = 1
2
, τ (b) = 1, τ (a ⊔ b) =

max( 1
2
, 1) = 1, while τ (a ⊔ (a′ ⊓ b)) = max( 1

2
, min( 1

2
, 1)) = 1

2
. However, in the Boolean setting the two formulas a ∨ b and 

a ∨ (¬a ∧ b) have the same set of models, so N (a ∨ b) =N (a ∨ (¬a ∧ b)), and Π(a ∨ b) = Π(a ∨ (¬a ∧ b)).

More generally, given a tautological Boolean formula φ, there exists a consistent BVP (v, v) such that v(φ) = 1, v(φ) = 0, 
corresponding to the third truth-value 1

2
. In contrast, for any possibility–necessity pair, it holds that N (φ) = Π(φ) = 1. 

Conversely, given an inconsistent Boolean formula φ, there exists a consistent BVP (v, v) such that v(φ) = 1, v(φ) = 0. In 
contrast, for any possibility–necessity pair, it holds that N (φ) = Π(φ) = 0. This indicates that possibility–necessity pairs 
represent incomplete information more faithfully than BVPs. So there is no equality between v and Π , nor between v and 
N . However, a consistent BVP (v, v) determines a unique possibility–necessity pair: the former determines an orthopair 
(P , N) and the resulting possibility–necessity pair (Π, N ) is the one that is induced by the rectangular epistemic set E(P ,N) .

4.3. Possibility theory and epistemic logic

In fact, necessity–possibility pairs (N , Π), as witnessed by their characteristic axioms (8), are also pairs of dual KD 
modalities, and as such it is legitimate to connect them to epistemic logic [27]. This connection is made under the form of 



a simplified epistemic logic called MEL [2,3]. It is based on a fragment of the KD language, with no nesting of modalities 
and no objective (modality-free) formulas. In other words, it is a higher-order standard propositional language with atomic 
formulas of the form ✷α, where α is any propositional formula of an underlying standard propositional language. Its axioms 
are the usual K, D, and a necessitation axiom for propositional tautologies, on top of propositional axioms for the modal 
formulas. Even though one may consider MEL as a genuine special case of KD or S5, there are differences with the usual 
epistemic logic such as S5:

• It cannot distinguish belief from knowledge (true belief) since axiom T (✷α → α) cannot be expressed in the MEL 
language.

• MEL does not deal with introspection: it accounts for partial knowledge of the epistemic state of an external agent (e.g. 
the perception of what a computer knows or believes). However the present paper is not concerned with introspection 
either.

• Its semantics is in terms of epistemic sets E 6= ∅, not in terms of accessibility relations (in fact MEL is just a propositional 
logic, adopting the language of epistemic logic). Namely a modal formula in MEL is evaluated on epistemic sets, not on 
possible worlds.

In [10], we have shown that Kleene logic (and other three-valued logics of unknown) can be encoded in MEL. We then have 
to restrict the MEL language to atomic formulas of the form ✷ℓ where ℓ is a Boolean literal. The translation of τ (a) = 1 is 
✷a,2 the translation of τ (a) = 0 is ✷¬a and thus the translation of τ (a) = 1

2
is ♦a ∧♦¬a. It first explains why there are no 

tautologies in Kleene logic for incomplete information. Indeed, ✷a ∨ ✷¬a is clearly not a tautology in the modal logic KD 
while a ∨ ¬a is a tautology in propositional logic.

It also clearly highlights the limited expressive power of three-valued logics, namely a disjunction of literals such as 
a ⊔ ¬b in Kleene logic (Kleene implication) corresponds to ✷a ∨ ✷¬b in MEL, while ✷(a ∨ ¬b) has no counterpart in Kleene 
logic. In other words, the sub-logic of MEL accounting for three-valued logics of unknown uses a language where only 
literals are prefixed by modalities, and the semantic account can be restricted to rectangular epistemic sets corresponding 
to three-valued valuations, or equivalently, to orthopairs (P , N).

Remark 2. A two-valued truth-functional modality reduces to a standard Boolean valuation [19], while, in the three-valued 
propositional setting accommodating borderline cases, such deviant modalities (where the lower necessity-like valuation 
distributes over disjunctions) are not trivial. More general Kleene algebras displaying such deviant modalities are studied 
in [8].

4.4. Supervaluations and possibility theory

Supervaluationism, proposed by Fine [22],3 is an alternative model of borderline cases as yielding truth-gaps between 
clearly true and clearly false. In this approach the fundamental idea is that variables taking borderline values can be indif-
ferently assigned any of the clearcut values. Such completions correspond to a set of admissible Boolean valuations.

Definition 4.3. A sentence is supertrue if it is true in every admissible valuation and superfalse if it is false in every admissible 
valuation.

Accordingly, a sentence is borderline, if it is neither supertrue or superfalse or, in other words, if there are some ad-
missible valuations for which the sentence is true and other ones for which it is false. Unlike three-valued logics, the 
supervaluationist approach is non-compositional and it also preserves Boolean logical equivalences, tautologies and contra-
dictions.4 For example, even if propositional variable a and its negation ¬a are both borderline, nonetheless, the sentences 
a ∨ ¬a and a ∧ ¬a are always supertrue and superfalse respectively. This is in contrast to the same scenario in Kleene logic 
where both sentences would be allocated a borderline truth-value. This example is a particular case of what Fine [22] refers 
to as penumbral connections as corresponding to logical relations holding between borderline sentences. For instance, given 
a set of borderline literals, penumbral connections may result in certain logical combinations of these literals being either 
clearly true or clearly false. In general, its advocates argue that the supervaluationist approach is better able to represent 
penumbral connections than three-valued logics.

2 In other words, τ (a) = 1 iff w(a) = 1 is certainly true.
3 In fact the term supervaluation was originally introduced by van Fraassen [39] with regard to the situation in predicate logic when some terms of the 

language do not have referents in a particular interpretation.
4 If sentences θ, φ ∈ L are classically equivalent in the sense that for all Boolean valuations w ∈ Ω , w(θ) = w(φ), then θ is supertrue (superfalse) if and 

only if φ is supertrue (superfalse). Similarly, if φ is a tautology in the sense that for every Boolean valuation w ∈ Ω , w(φ) = 1 then φ is supertrue. Finally, 
supervaluationist truth models are not compositional since, in general, knowing the truth value of θ and of φ is not sufficient to determine the truth value 
of θ ∧ φ or θ ∨ φ.



Example 4.2. Consider the following type of penumbral connections related to the vague predicate Tall of Table 2. Suppose 
we have an increasing sequence of heights h1 < h2 < . . . < hn where h1 is classed as being clearly not tall, whilst hn is clearly 
tall. All other heights are taken to be borderline cases of tall. However, despite their borderline classification if we were to 
learn that height hi was indeed considered tall we would immediately infer that h j should be also considered tall for j ≥ i. 
Now defining propositional variables such that ai denotes the statement ‘a person of height hi is tall’ for i = 1, . . . , n, then 
such penumbral connections can be captured by the epistemic set E = {w2, . . . , wn} where w i(a j) = 1 if and only if j ≥ i.

In the setting of propositional logic, a natural formalisation of supervaluationism is in terms of (non-truth-functional) 
lower and upper truth valuations as recently proposed by Lawry and Tang [33]. In this approach a set of admissible Boolean 
valuations is identified, and then for any sentence φ ∈ L, the lower valuation of φ is 1 if and only if φ is true in each of 
the admissible valuations i.e. φ is supertrue. Similarly, the upper valuation of φ is 1 if and only if φ is true in at least one 
admissible valuation, i.e., φ is not superfalse.

Definition 4.4. Let E ⊆ Ω denote the set of admissible valuations for L. Then we define lower and upper valuations v :L →
{0, 1} and v :L → {0, 1}, referred to as a supervaluation pair [33], such that ∀φ ∈ L;

v(φ) = min
{

w(φ) : w ∈ E
}

and v(φ) = max
{

w(φ) : w ∈ E
}

Here v(φ) = 1 means that φ is supertrue and v(φ) = 0 means that φ is superfalse.

This formalisation is mathematically identical to the Boolean possibility–necessity pairs described in Subsection 4.2. More 
specifically,

Proposition 4.2. Let E ⊆ Ω be the set of admissible valuations of the language L. Consider the necessity and possibility measures 
defined in Eqs. (6) and (7). Then φ is supertrue if and only if N (φ) = 1 and superfalse if and only if Π(φ) = 0.

The proof of this proposition is straightforward (see also [14]). So, the Lawry and Tang supervaluationist lower and upper 
valuations in the supervaluation framework then respectively correspond to necessity and possibility measures.

Despite this formal identity between supervaluations and Boolean possibility–necessity pairs there is none-the-less a 
subtle interpretational difference between the two models. Interestingly, this difference is inherently linked to the inter-
pretation of the intermediate value. The notions of conjunctive and disjunctive sets [41,20] are fundamental to understanding 
these two distinct semantics. A conjunctive set is a conjunction of elements representing the value of a set-valued property, 
whereas a disjunctive set is a collection of mutually exclusive elements, each representing one of a number of possibilities, 
only one of which can actually be realised. For example, the set of people who have bought a lottery ticket is a conjunctive 
set, whilst the set of people who may possibly have the winning lottery ticket is a disjunctive set. From this perspective 
then the supervaluationist set of admissible valuations is a conjunctive set of Boolean valuations in the sense that each pre-
cisification of the given truth-model is on a par with another whilst for Boolean possibility–necessity pairs the underlying 
epistemic set is a disjunctive set of possible Boolean valuations only one of which captures the actual precisification. The 
latter disjunctive view is closer to the epistemic approach to vagueness, advocated by Williamson [40]. The conjunctive view 
can actually in turn be interpreted in two ways: supervaluationists consider that none of the precisifications is appropriate, 
while plurivaluationists (like Smith [37]) consider all precisifications are equally good.

4.5. Bounded epistemic sets

Many of the theoretical results concerning supervaluationism can be easily translated from Lawry and Tang [33] into 
possibility theory. This translation highlights the relationship between Boolean possibility theory and Kleene three-valued 
logic of borderline. Such relationships are best formulated within the context of a particular restricted class of epistemic sets 
defined as follows:

Definition 4.5. An epistemic set E ⊆ Ω is said to be bounded iff {w E , w E } ⊆ E , where w E (a) = min{w(a) : w ∈ E} and 
w E (a) = max{w(a) : w ∈ E}, for all a ∈A.

Notice that an epistemic set E(P ,N) induced by an orthopair (P , N) is a special case of a bounded epistemic set in which 
w E = v(P ,N) and w E = v(P ,N) , the consistent BVP (v(P ,N), v(P ,N)) induced by (P , N). In fact we can view such states as being 
bounded and complete since E(P ,N) = {w ∈ Ω : v(P ,N) ≤ w ≤ v(P ,N)). There are, however, many cases of bounded epistemic 
sets which cannot be generated in this way.

Example 4.3. A simple example of a bounded epistemic set is E = [(a ∧ b) ∨ (¬a ∧ ¬b)], where w E (c) = 0, ∀c ∈ A, and 
w E (c) = 1, ∀c ∈A. However, E ′ = [(¬a ∧ b) ∨ (a ∧ ¬b)] (exclusive or) is not bounded.



Example 4.4. Considering again the penumbral connection of Example 4.2, E is a bounded epistemic set with w E = wn

and w E = w2 so that the corresponding orthopair is (P , N) = ({an}, {a1}). However, the associated epistemic set E({an},{a1})

includes valuations w for which w(ai ∧ ¬a j) = 1 where j > i, and hence E ⊂ E({an},{a1}) .

Definition 4.6. An entirely positive (resp. entirely negative) sentence is a sentence generated recursively from the propositional 
variables (resp. the negated propositional variables) using only ∧ and ∨. The set of entirely positive (resp. entirely negative) 
sentences is denoted by L+ (resp. L−).

Example 4.5. The formulas a1 ∧ (a2 ∨ a3) ∈L+ and ¬a1 ∧ (¬a2 ∨ ¬a3) ∈L− .

Let ΠE and NE denote the Boolean possibility and necessity measures representing an epistemic set E as given by 
Eqs. (7) and (6). We recall the following results from Lawry and Tang [33], in the language of possibility theory:

Proposition 4.3. Let E be a bounded epistemic set and let E ′ = {w E , w E } then ∀θ ∈L+ ∪L− , NE(θ) =NE ′ (θ) and ΠE (θ) = ΠE ′ (θ).

Proposition 4.3 shows that for a bounded epistemic set E and for entirely positive or entirely negative sentences, the 
necessity and possibility values are dependent only on the bounding Boolean assignments w E and w E .

Proposition 4.4. Let E be a bounded epistemic set then ∀θ, ϕ ∈L+ and ∀θ, ϕ ∈L− it holds that:

NE(θ ∨ ϕ) = max
(

NE(θ),NE (ϕ)
)

and ΠE(θ ∧ ϕ) = min
(

ΠE(θ),ΠE (ϕ)
)

This result shows that possibility–necessity pairs representing bounded epistemic sets are strongly compositional when 
restricted either to entirely positive or entirely negative sentences. Indeed for this fragment of the logic they share the 
same conjunction and disjunction rules as lower and upper Boolean valuations encoding Kleene truth-values. In fact, as 
the following result shows, possibility–necessity pairs representing bounded epistemic sets are particularly related to the 
consistent BVP generated by the orthopair (P , N) where P = {a : w E (a) = 1} and N = {a : w E (a) = 0}.

Proposition 4.5. If E is a bounded epistemic set, then there is a unique extended consistent BVP Ev = (v, v) such that ∀θ ∈ L+ ∪L− , 
NE (θ) = v(θ) and ΠE(θ) = v(θ), and in general ∀θ ∈ L, v(θ) ≤ NE (θ) ≤ ΠE (θ) ≤ v(θ). Furthermore, Ev = Ev(P ,N) where P = {a :
w E (a) = 1} and N = {a : w E(a) = 0} or alternatively Ev = EvRC(E) .

Hence, in an epistemic/partial knowledge setting involving bounded epistemic sets, we may think of Kleene valuations 
(in the form extended consistent BVP’s) as a generally more imprecise approximation of the underlying possibility–necessity 
pair (see also [12]), which only agrees with the possibilistic model when restricted to entirely positive or entirely negative 
sentences. From the alternative perspective of truth-gaps or borderline cases induced by inherently vague propositions, the 
above proposition indicates that Kleene valuations can always be viewed as a semantic weakening of a strongly related 
supervaluationist truth-model.

5. Representations for conflicting information

In order to extend the expressive power of orthopairs of sets of variables, we may wish to relax the condition P ∩ N = ∅. 
The epistemic understanding of this license is that if a ∈ P ∩ N , it means that there are reasons to believe the truth of 
a and also reasons to believe a to be false. For instance, there may be agents claiming the truth of a and other agents 
claiming its falsity. This approach is akin to the semantics of some paraconsistent logics such as Belnap’s [4]. Dubois, 
Konieczny and Prade [16] used such paraconsistent pairs of sets of variables for the study of a possibilistic logic counterpart 
of quasi-classical logic of Besnard and Hunter [5].

5.1. Paraconsistent valuations and Belnap truth-values

We call such pairs of subsets of variables (F , G) ∈ 2A × 2A with F ∩ G 6= ∅ paraconsistent. For these pairs, it is clear 
that E(F ,G) = ∅. Another semantics is necessary for them. We use a set 4 = {0,1,u,b} of truth-values, where u stands for 
unknown (it corresponds to 1/2 in Kleene logic) and b stands for contradictory (both true and false). A four-valued valuation 
is a mapping A → 4 denoted by σ . A pair (F , G) in the paraconsistent case is closely related to Belnap [4] 4-valued logic, 
namely, in his terminology:

• If a ∈ F \ G then σ (a) = 1: a is asserted but not negated (Belnap truth-value TRUE).
• If a ∈ G \ F then σ (a) = 0: a is negated but not asserted (Belnap truth-value FALSE).
• If a ∈ F ∩ G then σ (a) = b: a is both negated and asserted (Belnap truth-value BOTH).
• If a /∈ F ∪ G then σ (a) = u: a is neither negated nor asserted (Belnap truth-value NONE).



Table 4

Belnap disjunction and conjunction.
⊔ 0 u b 1

0 0 u b 1

u u u 1 1

b b 1 b 1

1 1 1 1 1

⊓ 0 u b 1

0 0 0 0 0

u 0 u 0 u

b 0 0 b b

1 0 u b 1

τ ∈ 4A (v, v)

(F ,G)

Fig. 2. Equivalences for paraconsistent information representation.

Table 5

Basic epistemic sets representable by general valuation pairs.

3 Generalised pairs Valuation pairs Subsets of Boolean valuations

0 (∅,A) E0 = (0,0) {w0} = [∧a∈A¬a]

u (∅,∅) (0,1) Ω

1 (A,∅) E1 = (1,1) {w1} = [∧a∈Aa]

b (A,A) (1,0) ∅

The epistemic truth set 4 is equipped with a bi-lattice structure [24], namely there is the truth-ordering < such that 
0 < u < 1 and 0 < b < 1; and the information ordering (ranging from no information (u) to too much information (b)) such 
that u < 1 < b and u < 0 < b. The truth-tables are those of Kleene logic for {0, u, 1} and {0, b, 1} according to the truth 
ordering, plus u ⊔ b = 1, u ⊓ b = 0 (see Table 4). The second borderline truth-value b plays the same role as the first one 
with respect to 1 and 0.

Four-valued valuations can be captured by general Boolean valuation pairs. The case where v £ v exactly corresponds to 
pairs (F , G) of sets of variables such that F ∩ G 6= ∅, letting F = {a ∈ A : v(a) = 1} and G = {a ∈ A : v(a) = 0}. We call such 
pairs (v, v) paraconsistent BVP’s.

Lawry and González-Rodríguez [32] have shown that truth-tables corresponding to the inductive definitions (1), (2), (3)
of consistent BVP’s over the language become Belnap 4-valued truth-tables when these inductive definitions are applied to 
all BVP’s (v, v) without the restriction v ≥ v . In particular, b corresponds to the pair (1, 0), and

• b ⊓ u corresponds to the componentwise Boolean conjunction of (0, 1) and (1, 0), which is (0, 0), i.e., 0.
• b ⊔ u corresponds to the componentwise Boolean disjunction of (0, 1) and (1, 0), which is (1, 1), i.e., 1.

In this case the diagram of Fig. 1 should be updated as on Fig. 2. Table 5 completes Table 3, accounting for non-consistent 
valuation pairs.

Just as for Kleene logic, the truth-functionality of Belnap approach does not sound very natural in the scope of handling 
paraconsistent Boolean formulas other than literals [13].

5.2. Paraconsistent orthopairs as pairs of consistent orthopairs

In order to interpret his 4 truth-values, Belnap proposes to consider several conflicting but internally consistent sources 
of information about variables. In fact two sources of information are enough to generate the four truth values, each source 
corresponding to a partial model. It is then natural to try to represent paraconsistent orthopairs by means of two standard 
consistent orthopairs of the form (F , G \ F ) and (F \ G, G) that conflict with each other. These are pairs of orthopairs 
(P1, N1), (P2, N2), corresponding to the epistemic states of two conflicting agents, with P2 ⊆ P1, N1 ⊆ N2, N1 ∩ P2 =
∅, P1 ∪ N1 = P2 ∪ N2 . The corresponding paraconsistent pair is of the form (F , G) = (P1, N2). It corresponds to two dis-
joint epistemic sets E i = E(P i ,Ni), i = 1, 2.

More generally we could reconstruct a paraconsistent pair from any two orthopairs (P1, N1), (P2, N2) as (F , G) =
(P1 ∪ P2,N1 ∪ N2) as follows:

• If a ∈ (P1 \ N2) ∪ (P2 \ N1) then a has truth-value 1;
• If a ∈ (N1 \ P2) ∪ (N2 \ P1) then a has truth-value 0;



• If a ∈ (P1 ∩ N2) ∪ (P2 ∩ N1) then a has truth-value b;
• If a /∈ P1 ∪ N2 ∪ P2 ∪ N1 then a has truth-value u.

Letting (P1, N1) = (F , G \ F ) and (P2, N2) = (F \ G, G), we do recover (P1 ∪ P2, N1 ∪ N2) = (F , G).

Whether we can define a counterpart to the simplified epistemic logic MEL using pairs of orthopairs representing con-
flicting epistemic states is a matter of further research. However, a modal setting for such a kind of non-truth-functional 
approach to Belnap-like paraconsistent reasoning is outlined in [15].

6. Kleene logic connectives and orthopairs

Lawry and González-Rodríguez [32] propose a semantics for both Kleene three-valued logic and Belnap four-valued logic 
in terms of pairs of sets of variables (F , G) ∈ 2A × 2A . However the construction in [32] for Kleene logic expressions 
involves paraconsistent pairs. In this section, we investigate whether Kleene and Belnap logic expressions can be recursively 
described in terms of respectively orthopairs and pairs of sets of Boolean variables. In the following, the notation (P , N)

corresponds to genuine orthopairs, while we use (F , G) in the general case.

6.1. Semantics of Kleene logic formulas in terms of orthopairs

We show here how to express Kleene valuations over the language in terms of orthopairs only. Let O = {(P , N) ∈
2A ×2A : P ∩N = ∅} denote the set of all orthopairs. Kleene operations of negation, intersection and union (see Section 2.2) 
translate on orthopairs as

(P ,N)′ := (N, P )

(P1,N1) ⊓ (P2,N2) := (P1 ∩ P2,N1 ∪ N2)

(P1,N1) ⊔ (P2,N2) := (P1 ∪ P2,N1 ∩ N2)

Then, for Kleene logic, we can recursively define a pair of mappings Tk :LK → 2O and FK :Lk → 2O from sentences to 
sets of orthopairs as follows:

Definition 6.1. Let Tk :LK → 2O and Fk :LK → 2O be defined recursively as follows. For all θ, ϕ ∈LK :

• If ϕ = a ∈A then Tk(a) = {(P , N) ∈O : a ∈ P } and Fk(a) = {(P , N) ∈O : a ∈ N};
• Tk(θ ⊓ ϕ) = Tk(θ) ∩Tk(ϕ) and Fk(θ ⊓ ϕ) = Fk(θ) ∪ Fk(ϕ);

• Tk(θ ⊔ ϕ) = Tk(θ) ∪Tk(ϕ) and Fk(θ ⊔ ϕ) = Fk(θ) ∩ Fk(ϕ);

• Tk(θ
′) = Fk(θ) and Fk(θ

′) = Tk(θ).

The following proposition shows that for any sentence θ ∈ LK , Tk(θ) exactly identifies those orthopairs for which θ is 
clearly true given the corresponding Kleene valuation. Similarly, Fk(θ) is the set of orthopairs for which θ is clearly false 
given the associated valuation.

Proposition 6.1. ∀Ψ ∈LK , Tk(Ψ ) = {(P , N) ∈O : v(P ,N)(Ψ ) = 1} and Fk(Ψ ) = {(P , N) ∈O : v(P ,N)(Ψ ) = 0}.

Proof. Let L0
K =A and for n ≥ 1 let Ln

K =L
n−1
K ∪{θ ⊓ϕ, θ ⊔ϕ, θ ′ : θ, ϕ ∈L

n−1
K }. Now by induction on n: Suppose Ψ = ai ∈A

then v(P ,N)(ai) = 1 iff ai ∈ P and v(P ,N)(ai) = 0 iff v(P ,N)(¬ai) = 1 iff ai ∈ N as required. Now suppose the result holds for 

Ln
K and let Ψ ∈ L

n+1
K then either Ψ ∈ Ln

K , in which case the result holds trivially, or one of the following holds: For 
θ, ϕ ∈Ln

K :

• Ψ = θ ⊓ ϕ: In this case we have by definition that Tk(Ψ ) = Tk(θ ⊓ ϕ) = Tk(θ) ∩Tk(ϕ) = (inductive hypothesis)

{

(P ,N) ∈ O : v(P ,N)(θ) = 1
}

∩
{

(P ,N) ∈ O : v(P ,N)(ϕ) = 1
}

=
{

(P ,N) ∈ O : v(P ,N)(θ) = 1 and v(P ,N)(ϕ) = 1
}

=
{

(P ,N) ∈ O : min
(

v(P ,N)(θ), v(P ,N)(ϕ)
)

= 1
}

=
{

(P ,N) ∈ O : v(P ,N)(θ ⊓ ϕ) = 1
}

=
{

(P ,N) ∈ O : v(P ,N)(Ψ ) = 1
}

as required.

Also, Fk(Ψ ) = Fk(θ ⊓ ϕ) = Fk(θ) ∪ Fk(ϕ) = (by the inductive hypothesis)



{

(P ,N) ∈ O : v(P ,N)(θ) = 0
}

∪
{

(P ,N) ∈ O : v(P ,N)(ϕ) = 0
}

=
{

(P ,N) ∈ O : v(P ,N)(θ) = 0 or v(P ,N)(ϕ) = 0
}

=
{

(P ,N) ∈ O : min
(

v(P ,N)(θ), v(P ,N)(ϕ)
)

= 0
}

=
{

(P ,N) ∈ O : v(P ,N)(θ ⊓ ϕ) = 0
}

=
{

(P ,N) ∈ O : v(P ,N)(Ψ ) = 0
}

as required.

• Ψ = θ ⊔ ϕ . The proof is similar to the previous case, exchanging Tk and Fk .

• Ψ = θ ′: In this case we have that Tk(Ψ ) = Tk(θ
′) = Fk(θ) = (by the inductive hypothesis){(P , N) ∈ O : v(P ,N)(θ) =

0} = {(P , N) ∈ O : v(P ,N)(θ
′) = 1} = {(P , N) ∈ O : v(P ,N)(Ψ ) = 1} as required. Also, Fk(Ψ ) = Fk(θ

′) = Tk(θ) =
(by the inductive hypothesis){(P , N) ∈ O : v(P ,N)(θ) = 1} = {(P , N) ∈ O : v(P ,N)(θ

′) = 0} = {(P , N) ∈ O : v(P ,N)(Ψ ) = 0}
as required. ✷

Example 6.1. Tk(¬(ai ⊔ ¬a j)) = Fk(ai ⊔ a j) = Fk(ai) ∩ Fk(¬a j) = Fk(ai) ∩ Tk(a j) = {(P , N) ∈ O : a j ∈ P , ai ∈ N}. Similarly, 
Fk(¬(ai ⊔ ¬a j)) = Tk(ai ⊔ ¬a j) = Tk(ai) ∪Tk(¬a j) = Tk(ai) ∪ Fk(a j) = {(P , N) ∈O : ai ∈ P or a j ∈ N}.

6.2. Semantics of Belnap logic formulas in terms of paraconsistent pairs

The characterisation of Kleene valuations in terms of orthopairs can be extended to Belnap valuations by extending 
the mappings described in the previous section so as to include paraconsistent pairs of sets. More specifically, a more 
general pair of dual mappings can be defined simply by dropping the restriction to orthopairs in Definition 6.1. Let these 
extended dual mappings be denoted by Tb : LK → 22

A×2A and Fb : LK → 22
A×2A respectively. Now it is straightforward 

to see that Proposition 6.1 extends to paraconsistent pairs. We can show that Tb(θ) = {(F , G) ∈ 2A × 2A : v(F ,G)(θ) = 1}

and Fb(θ) = {(F , G) ∈ 2A × 2A : v(F ,G)(θ) = 0}. Notice that, unlike the Kleene mappings given in Definition 6.1, sets Tb(θ)

and Fb(θ) are generally not disjoint, further highlighting the paraconsistent nature of Belnap logic. For instance, ∀a ∈ A, 
Tb(a) ∩ Fb(a) consists of those paraconsistent pairs (F , G) for which a ∈ F ∩ G .

It turns out that, in this context, we can give independent recursive definitions of each of Tb and Fb . To see this, we 
need to understand the relationship between the BVP’s induced by the dual pairs (F , G) and (Gc, F c) as identified in the 
following proposition:

Proposition 6.2. ∀(F , G) ∈ 2A × 2A , (v(F ,G), v(F ,G)) = (v(Gc ,F c), v(Gc ,F c)).

Proof. For atomic formula the result is straightforward since ∀a ∈ A, v(F ,G)(a) = 1 iff a ∈ F iff a /∈ F c iff v(Gc ,F c)(a) = 1, and 
also v(F ,G)(a) = 1 iff a ∈ Gc iff v(Gc ,F c)(a) = 1. These equalities can then be extended to all formulas in LK by recursion on 
the complexity of formulas in LK along similar lines to those in the proof of Proposition 6.1. ✷

Corollary 6.1. ∀θ ∈LK , Tb(θ
′) = {(F , G) ∈ 2A × 2A : (Gc, F c) ∈ Tb(θ)}c .

Proof. ∀θ ∈ LK , Tb(θ
′) = {(F , G) ∈ 2A × 2A : v(F ,G)(θ

′) = 1} = {(F , G) ∈ 2A × 2A : v(Gc ,F c)(θ
′) = 1} (by Proposition 6.2) 

= {(F , G) ∈ 2A × 2A : v(Gc ,F c)(θ) = 0} = {(F , G) ∈ 2A × 2A : v(Gc ,F c)(θ) = 1}c = {(F , G) ∈ 2A × 2A : (Gc, F c) ∈ Tb(θ)}c . ✷

As a consequence of Corollary 6.1, it follows that there is an alternative recursive definition of Tb which does not make 
direct reference to Fb .

Corollary 6.2. Let Tb :LK → 22
A×2A be defined recursively as follows: ∀θ, ϕ ∈LK and ∀a ∈A then:

• Tb(a) = {(F , G) ∈ 2A × 2A : a ∈ F }.
• Tb(θ ⊓ ϕ) = Tb(θ) ∩Tb(ϕ).

• Tb(θ ⊔ ϕ) = Tb(θ) ∪Tb(ϕ).

• Tb(θ
′) = {(F , G) ∈ 2A × 2A : (Gc, F c) ∈ Tb(θ)}c .

This corresponds to the definition proposed by Lawry and González-Rodríguez [32]. Notice that a similar alternative 
definition cannot be given for Tk if we restrict to orthopairs. The difficulty arises due to the fact that if (P , N) ∈ O and 
N 6= P c then (Nc, P c) /∈O.

Remark 3. It is not clear how to interpret the four-valued framework outlined above in the scope of modelling vagueness, 
as the two truth-values other than true and false play symmetric roles in Belnap logic. In fact, this logic aims at treating 
the issue of conflicting information only [13].



7. Order relations and aggregation operations on orthopairs

As orthopairs of variables represent epistemic states, it is natural to compare them in terms of their respective amount 
of information. Likewise if they account for borderline cases, it is also expected to compare them in terms of sharpness. 
Moreover, as orthopairs highlight negative vs. positive literals, one is led to compare them in terms of positiveness and 
negativeness.

In [9] and [31] some order relations and operations on orthopairs are considered that deal with some of these aspects. 
These ordering relations are generally related to corresponding lattice operations that are natural to merge orthopairs. In 
fact the meaning of the proposed ordering relations changes according to whether the aim is to model vagueness in the 
language or incomplete information.

This section attempts to give a complete picture of ordering relations and combination operations for orthopairs of sets 
of variables, and the corresponding notions using consistent BVP’s (on the set of propositional variables) and three-valued 
functions. Aggregation operations include already met Kleene three-valued logic conjunction and disjunction, plus some 
which differ from these known ones. They may be used to evaluate complex non-Boolean statements, or, in the epistemic 
view, they recover methods for incomplete information fusion.

7.1. The truth ordering

First of all, let us consider the standard order on 3: 0 < 1
2

< 1. Given two three-valued valuations, τ1, τ2 , we can let 
τ1 ¹t τ2 mean τ1(a) ≤ τ2(a), ∀a ∈A. This ordering is known as the truth ordering [4]. It expresses the idea of a three-valued 
valuation making variables “not more true than” another one. If τ1, τ2 correspond to respective orthopairs (P1, N1), (P2, N2)

and consistent valuation pairs Ev1, Ev2 then τ1 ¹t τ2 reads on orthopairs as

P1 ⊆ P2,N2 ⊆ N1

On BVP’s, it is the canonical extension of the order 0 < 1 to subsets of {0, 1}:

∀a v1(a) ≤ v2(a) v1(a) ≤ v2(a).

The corresponding join and meet operations induced by this ordering are well known (see for instance [9]) and have 
been met here from the start:

(P1,N1) ⊓t (P2,N2) := (P1 ∩ P2,N1 ∪ N2) (11)

(P1,N1) ⊔t (P2,N2) := (P1 ∪ P2,N1 ∩ N2) (12)

We retrieve the conjunction and disjunction in Kleene logic (see Table 1), since ⊓t = ⊓ and ⊔t = ⊔.

7.2. The information ordering

Another natural order relation ¹I on orthopairs is:

(P1,N1) ¹I (P2,N2) iff P1 ⊆ P2,N1 ⊆ N2 (13)

This relation is known as the knowledge ordering [4,43] or, in the setting of vagueness modelling, semantic precision [31]

or sharpening relation [36]. For valuations, it reads:

Ev1 ¹I Ev2 iff ∀a v1(a) ≤ v2(a) v2(a) ≤ v1(a).

Under an epistemic reading, it means Ev2 is at least as informative as Ev1 . In the scope of a logic of vagueness, it means that 
Ev2 is at least as clear-cut as (or less fuzzy than) Ev1 (the latter involves more variables taking the borderline value).

Once interpreted on 3, it can be seen that it does not generate a lattice structure but only the meet-semilattice of Fig. 3.
The meet with respect to this order is defined on orthopairs as

(P1,N1) ⊓I (P2,N2) := (P1 ∩ P2,N1 ∩ N2) (14)

It is pessimistic as it only retains what both orthopairs hold as being true or false, so that (P1, N1) ⊓I (P2, N2) is less 
informative (epistemic reading) or less sharp (vagueness) than each of the arguments of the combination. It is akin to the 
union of epistemic sets. This fusion operation can be expressed via a connective ⊓I on consistent BVP’s as follows [31]:

Ev1 ⊓I Ev2 = Ev(P1∩P2,N1∩N2) =
(

min(v1, v2),max(v1, v2)
)

In terms of truth-values, it corresponds to an idempotent operation minI on 3 such that minI (1, 0) = minI (0, 1) =
minI (0, 12 ) = minI (

1
2
, 1) = 1

2
(see Table 6). Remarkably, minI (x, y) is the median of {x, y, 1

2
}, the only associative opera-

tion ∗ such that x ⊓ y ≤ x ∗ y ≤ x ⊔ y, known as a nullnorm [26].



•
0

•
1
2

•
1

Fig. 3. The semilattice structure of 3.

Table 6

Information-ordering-based conjunction and disjunction.
minI 0 1

2
1

0 0 1
2

1
2

1
2

1
2

1
2

1
2

1 1
2

1
2

1

maxI 0 1
2

1

0 0 0 ×

1
2

0 1
2

1

1 × 1 1

Clearly, the corresponding join can be naturally defined in terms of orthopairs as

(P1,N1) ⊔I (P2,N2) := (P1 ∪ P2,N1 ∪ N2) (15)

It does not always yield an orthopair as the result may become paraconsistent. It corresponds to the optimistic combination 
operator ⊔I on consistent valuation pairs [31]:

Ev1 ⊔I Ev2 = Ev(P1∪P2,N1∪N2) =
(

max(v1, v2),min(v1, v2)
)

.

where the resulting valuation pairs may fail to be consistent. In terms of an operation max I on 3, it is a partially de-
fined idempotent one such that maxI (0,

1
2
) = 0, maxI (

1
2
, 1) = 1, and where maxI (0,1) is undefined. Interestingly, it is the 

restriction to {0, 1
2
, 1} of the (associative) uninorm xy

xy+(1−x)(1−y)
[26] on [0, 1], which is indeed undefined for (0, 1) and 

(1, 0).
It is optimistic as it retains what at least one orthopair holds as being true or false, so that (P1, N1) ⊔I (P2, N2) is more 

informative (epistemic reading) or sharper (vagueness) than each of the arguments of the combination, when it is defined. 
It is akin to the consistent intersection of epistemic sets, and is undefined when this intersection is empty.

The cases where the result exists then correspond to the situation where the two orthopairs are logically consistent with 
each other, that is: P1 ∩ N2 = P2 ∩ N1 = ∅. Generalising both orderings to paraconsistent pairs yields a bilattice structure 
revealed by Belnap [4], corresponding to the bilattice 4 (and then maxI (0, 1) = b).

7.3. One-sided ordering relations

Now, by relaxing the requirements of the information ordering ¹I , we can obtain two other ordering relations on or-
thopairs, which generate two lattice operations. They are one-sided in the sense that the negative and positive literals do 
not play the same role. In one case, we keep the inclusion condition on the negative part of the orthopair and on the 
positive part in the other case. These order relations on orthopairs are:

(P1,N1) ¹N (P2,N2) iff N1 ⊆ N2 and P1 ∪ N1 ⊆ P2 ∪ N2, (16)

(P1,N1) ¹P (P2,N2) iff P1 ⊆ P2, and P1 ∪ N1 ⊆ P2 ∪ N2, (17)

In fact, (P1, N1) ¹N (P2, N2) means that (P2, N2) is at least as negative as (P1, N1) and not less informed than the latter 
and likewise for ¹P , replacing negative by positive. It can be easily seen that the information ordering ¹I implies orders 
¹N and ¹P but not conversely. Together, however, they reconstruct the information ordering5 as follows:

(P1,N1) ¹I (P2,N2) ⇐⇒ (P1,N1) ¹N (P2,N2) and (P1,N1) ¹P (P2,N2). (18)

Fig. 4 represents these three orderings on orthopairs.
On pairs of valuations the two orders are translated as:

5 Condition P1 ∪ N1 ⊆ P2 ∪ N2 becomes redundant.



Fig. 4. Representations of orders ¹N , ¹P and ¹I .

Ev1 ¹N Ev2 iff min
(

1− v2(a), v2(a)
)

≤ min
(

1− v1(a), v1(a)
)

and v2(a) ≤ v1(a)

Ev1 ¹P Ev2 iff min
(

1− v2(a), v2(a)
)

≤ min
(

1− v1(a), v1(a)
)

and v1(a) ≤ v2(a).

In terms of truth-values this corresponds to:

τ1 ¹N τ2 iff ∀x τ1(x) = 0 ⇒ τ2(x) = 0 and τ1(x) 6= 1
2

⇒ τ2(x) 6= 1
2

τ1 ¹P τ2 iff ∀x τ1(x) = 1 ⇒ τ2(x) = 1 and τ1(x) 6= 1
2

⇒ τ2(x) 6= 1
2

the order relations (16) and (17) do not correspond to the standard ordering on numbers, but are expressed as follows:

τ1 ¹N τ2iff ∀x τ1(x) ¹N τ2(x) where 1
2

≺N 1 ≺N 0. (19)

τ1 ¹P τ2iff ∀x τ1(x) ¹P τ2(x) where 1
2

≺P 0 ≺P 1. (20)

These two linear orderings on 3 are naturally associated with the following meet and join operations on orthopairs:

(P1,N1) ⊔N (P2,N2) := (P1\N2 ∪ P2\N1,N1 ∪ N2)

(P1,N1) ⊓N (P2,N2) :=
((

P1 ∩ (P2 ∪ N2)
)

∪
(

P2 ∩ (P1 ∪ N1),N1 ∩ N2

))

(P1,N1) ⊔P (P2,N2) := (P1 ∪ P2,N1\P2 ∪ N2\P1)

(P1,N1) ⊓P (P2,N2) :=
(

P1 ∩ P2,
(

N1 ∩ (P2 ∪ N2)
)

∪
(

N2 ∩ (P1 ∪ N1)
))

Clearly, the orthopair (P1, N1) ⊔N (P2, N2) is always more negatively balanced than its operands, while (P1, N1) ⊓N (P2, N2)

is less negatively balanced. Likewise, (P1, N1) ⊔P (P2, N2) is always more positively balanced than its operands, while 
(P1, N1) ⊓P (P2, N2) is less positively balanced.

Proposition 7.1. The two following equivalences hold:

1. (P1, N1) ¹N (P2, N2) if and only if (P1, N1) ⊔N (P2, N2) = (P2, N2) if and only if (P1, N1) ⊓N (P2, N2) = (P1, N1);

2. (P1, N1) ¹P (P2, N2) if and only if (P1, N1) ⊔P (P2, N2) = (P2, N2) if and only if (P1, N1) ⊓P (P2, N2) = (P1, N1).

Proof. ⊔N : Let us prove that if N1 ⊆ N2 and N1 ∪ P1 ⊆ N2 ∪ P2 then (P1 \ N2) ∪ (P2 \ N1) = P2 .

• P c
2 ∩ ((P1 \ N2) ∪ (P2 \N1)) = P c

2 ∩ (P1 \ N2) since P c
2 ∩ P2 is empty. Moreover, P c

2 ∩ (P1 \N2) = ∅. Indeed, proceeding by 
refutation, if there exists a ∈ P c

2 ∩ (P1 \ N2) then a /∈ P2 , a /∈ N2 and a ∈ P1 implies a /∈ N1 , which violates the condition 
N1 ∪ P1 ⊆ N2 ∪ P2 . Hence (P1 \ N2) ∪ (P2 \ N1) ⊆ P2 .

• Now, P2 ∩ ((P1 \N2) ∪ (P2 \ N1))
c = P2 ∩ (P c

1 ∪N2) ∩ (P c
2 ∪ N1) = ∅, since P2 ∩ (P c

2 ∪ N1) = P2 ∩N1 = ∅. Indeed, N1 ⊆ N2

and (P2, N2) is an orthopair. So P2 ⊆ (P1 \ N2) ∪ (P2 \ N1). Hence (P1 \ N2) ∪ (P2 \ N1) = P2 .

Conversely, we must prove that if N1 ⊆ N2 and (P1 \ N2) ∪ (P2 \ N1) = P2 then N1 ∪ P1 ⊆ N2 ∪ P2 . Consider an element a
such that a ∈ N1 ∪ P1 . There are two cases:

• a ∈ N1 . Then N1 ⊆ N2 leads immediately to a ∈ N2 ∪ P2 .

• a ∈ P1 . Either a ∈ P1 \ N2 hence a ∈ P2 hence a ∈ N2 ∪ P2 . Or a ∈ P1 ∩ N2 , hence a ∈ N2 ∪ P2 .

The other cases can be proved similarly. ✷

Expressed as operations on 3, ⊔N and ⊔P become maxN and maxP as shown in Table 7. These operations are not new. 
They are the only two everywhere defined uninorms on {0, 1

2
, 1} (semi-groups with identity 1

2
[26]); maxN and maxP also 



Table 7

Disjunctive and Conjunctive uninorms.

maxP 0 1
2

1

0 0 0 1

1
2

0 1
2

1

1 1 1 1

maxN 0 1
2

1

0 0 0 0

1
2

0 1
2

1

1 0 1 1

Table 8

Operations corresponding to ⊓P and ⊓N .

minP 0 1
2

1

0 0 1
2

0

1
2

1
2

1
2

1
2

1 0 1
2

1

minN 0 1
2

1

0 0 1
2

1

1
2

1
2

1
2

1
2

1 1 1
2

1

coincide with maxI when the latter is defined. In the probabilistic literature, the operation maxN is named quasi-conjunction
[1] and we call maxP quasi-disjunction. They are used in the three-valued logic of conditional events [17] to combine 
conditionals (which are indeed orthopairs of examples and counterexamples). Actually, these operations first appeared in 
Sobocinski’s three-valued logic [38]. For orthopairs, ⊔N looks like a disjunction, but the truth-table of maxN (right-hand side 
of Table 7) makes it clear it is a generalised conjunction.

Expressed as operations on 3, ⊓N and ⊓P become minN and minP as shown in Table 8. Interestingly, the table of 
operation minI (Table 6) can be obtained as the arithmetic mean of the tables of operation minN and minP , which reflects 
property (18). We note that ⊓P corresponds to Kleene weak conjunction and ⊓N to Kleene weak disjunction [29], where 
the third value is interpreted as undefined. Again, ⊓N looks like a conjunction on orthopairs and its truth-table (right-hand 
side of Table 8) makes it clear it is a generalised disjunction.

If we apply the two meet operations ⊓N , ⊓P to two orthopairs, one dominating the other in the sense of ¹N or ¹P , then 
they both reduce to ⊓I .

Let us note that we can express the two conjunctions of orthopairs in the following way:

⊓N :
(

(P1 ∩ P2) ∪
[

(P1 ∩ N2) ∪ (P2 ∩ N1)
]

,N1 ∩ N2

)

(21)

⊓P :
(

P1 ∩ P2, (N1 ∩ N2) ∪
[

(N1 ∩ P2) ∪ (N2 ∩ P1)
])

(22)

from which we better understand that we “add” something to the intersection of positive (resp., negative) parts. The corre-
sponding operations on valuation pairs are:

Ev1 ∧N Ev2 =
(

max
(

min(v1, v2),min(v1,1− v2),min(v2,1− v1)
)

,max(v1, v2)
)

(23)

Ev1 ∧P Ev2 =
(

min(v1, v2),min
(

max(v1, v2),max(v1,1 − v2),max(v2,1 − v1)
))

(24)

Ev1 ∨N Ev2 =
(

max
(

min(v1, v2),min(v2, v1)
)

,min(v1, v2)
)

(25)

Ev1 ∨P Ev2 =
(

max(v1, v2),min
(

max(v1, v2),max(v2, v1)
))

(26)

Thus, orderings ¹P and ¹N are less demanding from the “knowledge” point of view than the information ordering, but 
they have the advantage of generating a lattice structure, with the possibility to define genuine operations of conjunction 
and disjunction on 3.

7.4. Fusion of orthopairs by consensus

In [31], a difference operation is equivalently defined in three formats by:

Ev1 ⊖ Ev2 :=
(

min(v1, v2),max(v1, v2)
)

(P1,N1) ⊖ (P2,N2) := (P1\N2,N1\P2)

(τ1 ⊖ τ2)(x) :=











1 τ1 = 1,τ2 6= 0

0 τ1 = 0,τ2 6= 1
1
2

otherwise

On orthopairs, it consists in removing from (P1, N1) the literals that make this partial model inconsistent with (P2, N2). 
This can be viewed as a contraction operation, that is a prerequisite for a consistent fusion step.



Table 9

Consensus operation.
⊙ 0 1

2
1

0 0 0 1
2

1
2

0 1
2

1

1 1
2

1 1

Table 10

Mutual translations (maxI (x, y) is not always defined).

3 Orthopairs

0 < 1
2

< 1 ¹t
1
2

¹I 1;
1
2

¹I 0 ¹I
1
2

¹N 1 ¹N 0 ¹N
1
2

¹P 0 ¹P 1 ¹P

min(⊓) ⊓t

max(⊔) ⊔t

minI (x, y) = med(x, y, 1
2
) = minN (x,y)+minP (x,y)

2
⊓I
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If we consider the so-called consensus operation ⊙ in [31], defined as

(P1,N1) ⊙ (P2,N2) = (P1\N2 ∪ P2\N1,N1\P2 ∪ N2\P1)

we can see that it is a sequence of difference operations followed by operation ⊔I that increases information. The difference 
operations are used to symmetrically eliminate the discrepancies between the orthopairs (P1, N1) and (P2, N2) prior to 
merging, eliminating conflicting literals. This is akin to variable forgetting [30] in propositional logic for the handling of 
inconsistency: the truth-value of conflicting variables (in (P1 ∩ N2) ∪ (P2 ∩ N1)) is forgotten. So we have that

(P1,N1) ⊙ (P2,N2) =
(

(P1,N1) ⊖ (P2,N2)
)

⊔I

(

(P2,N2) ⊖ (P1,N1)
)

.

We can also relate the consensus operation to the asymmetric relations ⊔N and ⊔P . Namely it can be checked that:

(P1,N1) ⊙ (P2,N2) =
(

(P1,N1) ⊔N (P2,N2)
)

⊓I

(

(P2,N2) ⊔P (P1,N1)
)

. (27)

Thus we can think of interpreting ⊔N and ⊔P as one-sided consensus operations where in ⊔N both agents give up their 
conflicts on the positive parts and in ⊔P on the negative parts of the orthopairs.

The consensus operation can be expressed in terms of valuation pairs as ( Ev1 ⊖ Ev2) ⊔I ( Ev2 ⊖ Ev1):

Ev1 ⊙ Ev2 =
(

max
(

min(v1, v2),min(v1, v2)
)

,min
(

max(v1, v2),max(v1, v2)
))

(28)

On 3 the consensus operator is based on the following three-valued commutative connective:

(τ1 ⊙ τ2)(x) =











1 if τ1(x) = 1, τ2(x) 6= 0 or τ2(x) = 1, τ1(x) 6=: 0

0 if τ1(x) = 0, τ2(x) 6= 1 or τ2(x) = 0, τ1(x) 6= 1
1
2

otherwise

which is pictured on Table 9. It lays bare the fact that it is a kind of degenerated qualitative counterpart of an average. It 
has 1

2
as an identity and differs from the conjunctive and disjunctive uninorms only for the result of 1 ⊙ 0 = 0 ⊙ 1 = 1

2
, 

hence it is not the extension of a Boolean connective. Moreover, it is not associative. It can be obtained as the arithmetic 
average of the two uninorms maxP and maxN of Table 7, which is consistent with the abstract construction of ⊙ from ⊔N

and ⊔P in Eq. (27).
Table 10 summarises the results of this section in terms of mutual translation of orderings and connectives between 

3-valued logic and orthopairs. For consistent BVP’s, not all the above results apply over the whole language, involving more 
complex formulas. The problem seems to lie in the formulas containing negations. However, this issue will need a further 
in-depth study.

8. From orthopairs to epistemic sets of interpretations

We now investigate whether it is feasible to translate all the above orderings and operations so as to express them in 
terms of comparison and combinations of subsets of Ω , understood as possibility distributions representing epistemic states.



8.1. Order relations

The order relation ¹I is just the subsethood relation of 2Ω , i.e., E(P1,N1) ¹I E(P2,N2) iff E(P2,N2) ⊆ E(P1,N1) . In the case 
of orders ¹t, ¹N , ¹P , we only get a partial overlap of the two subsets, which displays no special features. This is due to 
the fact that the representation in terms of orthopairs highlights the polarity of the known variables (positive or negative) 
while the standard propositional setting represents an epistemic set by any subset of Boolean interpretations where positive 
or negative literals play no specific roles.

Let us consider order ¹N . We have N1 ⊆ N2 and P1 ∪ N1 ⊆ P2 ∪ N2 . So, we can also derive P1 ⊆ P2 ∪ N2 . That is, for all 
p ∈ P1 , agent 2 may believe that w(p) = 1 (like agent 1) or that w(p) = 0 (contrary to agent 1). A similar explanation can 
be given in the case of ¹P . The ordering ¹t is similar. This order requires that agent 1 has more knowledge on the negative 
part (N2 ⊆ N1) but less on the positive one (P1 ⊆ P2). So, we can have the case where a valuation belongs to the epistemic 
set E1 but not to E2 and another one to the epistemic set E2 but not to E1 . So, most of the orderings introduced previously 
are dedicated to orthopairs of sets of variables and hardly extend to the general propositional setting.

8.2. Intersection and union

Given that for possibility distributions we can only represent the order relation ¹I we take into account here only 
the operations derived from it: ⊓I and ⊔I . As we have seen, they are the meet and join (when it exists) on orthopairs. 
Generally, the join and meet with respect to the subsethood relation are the intersection and union of sets, respectively. 
However, ⊓I does not correspond to the union between possibility distributions, i.e., E(P1,N1)⊓I (P2,N2) 6= E(P1,N1) ∪ E(P2,N2) . 
Indeed E(P1,N1) ∪ E(P2,N2) is generally not rectangular. We can just prove:

Proposition 8.1.

E(P1,N1) ∪ E(P2,N2) ⊆ E((P1,N1)⊓I (P2,N2)).

Proof. We have that (P1 ∩ P2) ⊆ P1 and (N1 ∩ N2) ⊆ N1 . That is, (P1,N1) ⊓I (P2,N2) ¹I (P1, N1). So, E(P1,N1) ⊆
E(P1,N1)⊓I (P2,N2) .

Likewise for E(P2,N2) . Hence E(P1,N1) ∪ E(P2,N2) ⊆ E((P1,N1)⊓I (P2,N2)) . ✷

The other direction does not hold. Indeed we can only prove the following: consider the valuation w∗ characterised by 
the orthopair (P1 ∩ P2, (P1 ∩ P2)

c): then w∗ ∈ E(P1,N1)⊓I (P2,N2) but w∗ /∈ E(P1,N1) ∪ E(P2,N2) .

This behaviour is due to the impossibility of representing non-rectangular regions using orthopairs. Indeed, we can only 
represent the smallest hyper-rectangle which contains E(P1,N1) and E(P2,N2) (the rectangular closure of their union), which 
corresponds indeed to E((P1,N1)⊓I (P2,N2)) .

Proposition 8.2. E((P1,N1)⊓I (P2,N2)) = ×i(Proji E(P1,N1) ∪ Proji E(P2,N2)) = RC(E(P1,N1) ∪ E(P2,N2)).

Proof. It is clear that E((P1,N1)⊓I (P2,N2)) = E(P1∩P2,N1∩N2) contains all the valuations w that have value 1 on P1 ∩ P2 and 
value zero on N1 ∩ N2 . Now, if we consider the Cartesian product of the union of the projections of E(P1,N1) and E(P2,N2) , 
we have that, for each variable ai , ai must be equal to 1 iff both E(P1,N1) and E(P2,N2) assume value 1 for a1 . This is only 
possible if ai ∈ P1 ∩ P2 . The same applies to the negative part. Thus, ×i(Proji E(P1,N1) ∪ Proji E(P2,N2)) is the set of all the 
valuations w that have value 1 on P1 ∩ P2 and value zero on N1 ∩ N2 . ✷

As pointed out before, the disjunction of two rectangular possibility distributions is generally not representable by one 
orthopair, but by several orthopairs, since it corresponds to the disjunction of two partial models. We can denote this 
disjunction of orthopairs as (P1, N1) + (P2, N2) with the meaning that it refers the set {(P1, N1), (P2, N2)} of orthopairs, 
and computes the disjunction of the corresponding partial models:

E((P1,N1)+(P2,N2)) = E(P1,N1) ∪ E(P2,N2)

Alternatively, we can interpret this as collecting together all the situations where at least one of two agents is right, without 
specifying which one. Of course, we cannot express this operation on three-valued functions, since it is not closed: it just 
collects together the two valuations representing the two orthopairs τ(P1,N1) + τ(P2,N2) = {τ(P1,N1), τ(P2,N2)}. Similarly in the 
case of valuations pairs.

If we consider the case of two consistent orthopairs, then the operation ⊔I is defined, and we have:

Proposition 8.3. If (P1, N1) and (P2, N2) are consistent orthopairs, then E(P1,N1) ∩ E(P2,N2) = E(P1,N1)⊔I (P2,N2) = E(P1,N1)⊙(P2,N2) .

Proof. Under consistency we have that (P1, N1) ⊔I (P2, N2) = (P1, N1) ⊙ (P2, N2). Then, E(P1,N1)⊔I (P2,N2) = E{(P1∪P2),(N1∪N2)} , 
the latter being equal by definition to: {w ∈ Ω : w(p) = 1, ∀p ∈ P1 ∪ P2 and w(p) = 0, ∀p ∈ N1 ∪ N2} = {w ∈ Ω :



w(p) = 1, ∀p ∈ P1 and w(p) = 1, ∀p ∈ P2 and w(p) = 0, ∀p ∈ N1 and w(p) = 0, ∀p ∈ N2}, from which E(P1,N1) ∩ E(P2,N2) =
E(P1,N1)⊔I (P2,N2) follows. ✷

8.3. Consensus and difference

By a straightforward application of its definition, we get that the consensus E(P1,N1)⊙(P2,N2) contains the intersection of 
the two epistemic subsets E(P1,N1) and E(P2,N2) , and is also contained in E(P1,N1)⊓I (P2,N2) .

Proposition 8.4.

E(P1,N1) ∩ E(P2,N2) ⊆ E(P1,N1)⊙(P2,N2) ⊆ E(P1,N1)⊓I (P2,N2).

However, it is incomparable with their union E(P1,N1) ∪ E(P2,N2) , that is there can exist w ∈ E(P1,N1)⊙(P2,N2) such that 
w /∈ E(P1,N1) ∪ E(P2,N2) and conversely.

Example 8.1. Consider the Boolean valuation w1 , corresponding to the orthopair (P1\N2 ∪ P2\N1, (P1\N2 ∪ P2\N1)
c). It 

belongs to E(P1,N1)⊙(P2,N2) (by definition) and not to E(P1,N1) ∪ E(P2,N2) , since it belongs neither to E(P1,N1) nor to E(P2,N2) .

Conversely, the Boolean valuation w2 encoded by ((N1 ∪ (P2\P1))
c, N1 ∪ (P2\P1)) = (Nc

1 ∩ (P c
2 ∪ P1), N1 ∪ (P2\P1))

belongs to E(P1,N1) ∪ E(P2,N2) (since it lies in E(P1,N1)) and not to E(P1,N1)⊙(P2,N2) , since any a ∈ P c
1 ∩ P c

2 ∩ Nc
1 ∩ N2 is 

such that w2(a) = 1 but note that ∀w ∈ E(P1,N1)⊙(P2,N2), w(a) = 0 since a ∈ (N1\P2) ∪ (N2\P1) (the negative literals of 
(P1, N1) ⊙ (P2, N2)).

Furthermore, by Propositions 8.1 and 8.4 we can derive

E(P1,N1) ∪ E(P2,N2) ∪ E((P1,N1)⊙(P2,N2)) ⊆ E(P1,N1)⊓I (P2,N2).

But not the opposite direction, as can be seen by considering the valuation w∗ above, characterised by the orthopair (P1 ∩
P2, (P1 ∩ P2)

c).

If we write (P1, N1) ⊙ (P2, N2) in terms of unions between orthopairs, namely (P1, N1) ⊙ (P2, N2) = (P1\N2, N1\P2) ⊔I

(P2\N1, N2\P1), by Proposition 8.3, we get

E((P1,N1)⊙(P2,N2)) = E(P1\N2,N1\P2) ∩ E(P2\N1,N2\P1),

which expresses the already outlined relation between consensus and difference. The latter operation can be expressed in 
terms of possibility distributions associated with E(P i ,Ni) . Consider an orthopair (P , N) and a valuation w ∈ Ω such that 
w /∈ E(P ,N) . Then define:

E+w
(P ,N)

= RC
(

E(P ,N) ∪ {w}
)

Now clearly we obtain: E+w
(P ,N)

= E(P∩Pw ,N∩P c
w ) , where Pw = {a : w(a) = 1}, and ∀w1 6= w2 it holds that E+w1

(P ,N)
∩ E

+w2

(P ,N)
6= ∅

(it contains E(P ,N)).

Proposition 8.5. Let (P1, N1) and (P2, N2) be mutually inconsistent orthopairs (i.e. E(P1,N1) ∩ E(P2,N2) = ∅). Then

E(P1,N1)⊖(P2,N2) = E(P1\N2,N1\P2) =
⋂

w∈E(P2,N2)

E+w
(P1,N1)

Proof. By Proposition 8.3 it follows that:
⋂

w∈E(P2,N2)

E+w
(P1,N1)

=
⋂

w∈E(P2,N2)

E(P1∩Pw ,N1∩P c
w ) = E⊔I w∈E(P2,N2)

(P1∩Pw ,N1∩P c
w )

Now,

⊔
w∈E(P2,N2)

(

P1 ∩ Pw ,N1 ∩ P c
w

)

=

(

P1 ∩
⋃

w∈E(P2,N2)

Pw ,N1 ∩
⋃

w∈E(P2,N2)

P c
w

)

=
(

P1 ∩
{

ai : ∃w ∈ E(P2,N2), w(ai) = 1
}

,N1 ∩
{

ai : ∃w ∈ E(P2,N2), w(ai) = 0
})

=
(

P1 ∩ Nc
2,N1 ∩ P c

2

)

as required. ✷



Table 11

Translation between epistemic sets and orthopairs.

Orthopairs Epistemic sets

(P1,N1) ¹I (P2,N2) E(P1,N1) ⊇ E(P2,N2)

(P1,N1) ⊓I (P2,N2) RC(E(P1,N1) ∪ E(P2,N2))

(P1,N1) ⊔I (P2,N2) E(P1,N1) ∩ E(P2,N2) (if consistency)

(P1,N1) ⊙ (P2,N2) (
⋂

w∈E(P2 ,N2 )
E+w

(P1,N1)
) ∩ (

⋂

w∈E(P1 ,N1 )
E+w

(P2,N2)
)

(P1,N1) ⊖ (P2,N2) E(P1\N2,N1\P2) =
⋂

w∈E(P2 ,N2 )
E+w

(P1,N1)
(Proposition 8.5)

(P1,N1) + (P2,N2) E(P1,N1) ∪ E(P2,N2)

(P ,N)′ = (N, P ) ×pi∈V (Proji E)c

E((P ,N)′) Complement Ec
(P ,N)

Finally, from this proposition it follows that:

E(P1,N1)⊙(P2,N2) =

(

⋂

w∈E(P2,N2)

E+w
(P1,N1)

)

∩

(

⋂

w∈E(P1,N1)

E+w
(P2,N2)

)

8.4. Negations vs. complements

Consider now the case of Kleene negation (P , N)′ = (N, P ). The set of models of the negation of a Boolean proposition 
with set of models E is its set complement Ec . For a partial model (P , N), we obtain:

(E(P ,N))
c =

{

w : ∃p ∈ P , w(p) = 0 or ∃p ∈ N, w(p) = 1
}

which is clearly different from the epistemic set we obtain from the Kleene (involutive) negation of (P , N):

E(P ,N)′ = E(N,P )

which swaps positive and negative literals in the orthopair. The latter comes down to considering the projections of E(P ,N)

on each variable domain and complementing them with respect to these variable domains. This operation cannot be ex-
tended to general epistemic sets.

In contrast, the + operation, that concatenates orthopairs (see Subsection 8.2) can express the complement of an epis-
temic set corresponding to an orthopair. Let us define the unary operations E(P , N) = (+pi∈P ({pi}, ∅)) + (+ni∈N (∅, {ni})), 
that is, E = {({pi}, ∅), (∅, {ni}) : pi ∈ P , ni ∈ N}. Then:

(E(P ,N))
c = EE((P ,N)′) =

(

⋃

pi∈P

E(∅,{pi})

)

∪

(

⋃

ni∈N

E({ni},∅)

)

.

The operation E on three-valued valuations is a multimapping that collects all the following three-valued valuations 
E(τ ) = {τ+

i : pi ∈ P } ∪ {τ+
i : ni ∈ N} where:

τ+
i (x) =

{

1 x = pi

1
2

otherwise
or τ−

i (x) =

{

0 x = ni
1
2

otherwise

and we can define the 3-valued logic counterpart of the complement of an epistemic set as τ c = E(τ ′) = {(τ+
i )′ : pi ∈

A, τ (pi) = 1} ∪ {(τ−
i )′ : ni ∈A, τ (ni) = 0}. Likewise on Boolean valuations, we must collect all pairs such that:

(

v i(x), v i(x)
)

=

{

(1,1) x = pi

(0,1) otherwise
or

(

v i(x), v i(x)
)

=

{

(0,0) x = ni

(0,1) otherwise.

Table 11 summarises the possible translations from the language of orthopairs and three-valued valuations into the 
language of general epistemic sets. Not all three-valued connectives can be expressed in terms of general epistemic sets. 
The impossibility of expressing ⊔t and ⊓t , or likewise, ⊔N and ⊓N , ⊔P and ⊓P in terms of general subsets of valuation is 
due to the fact that the former operations do not consider positive and negative literals on a par. Other impossible direct 
translations come from the fact that the set-union of hyper-rectangles of interpretations is generally not an hyper-rectangle, 
or in other words, that the disjunction of partial models is not a partial model.

9. Conclusion

The bijection between three-valued valuations and partial models has often been a source of confusion. In particular, the 
truth-functionality assumption of three-valued logic, for which there is a case as an elementary modelling of vagueness, 
becomes counterintuitive when applied to incomplete Boolean information. Another well-known example of such confusion 



between truth and certainty is the alleged inconsistency of fuzzy set theory, claimed by Elkan [21], on the grounds that 
degrees of uncertainty cannot be compositional.

This paper has presented a comparative overview of the simplest representation frameworks for the truth-functional 
account of vagueness or incomplete information, namely three-valued logics where the third truth-value means borderline
or unknown. We have shown the connections existing between pairs of sets of literals, pairs of Boolean valuations, and 
three-valued valuations. We have explored their differences with non-truth-functional accounts using possibility theory 
or, in the case of vagueness, supervaluations. We have shown that supervaluations play the same role with respect to 
truth-functional approaches to vagueness as do possibility and necessity functions with respect to partial or Kleene logic 
approaches to incomplete information. In addition, we have highlighted the difference in expressive power between partial 
model approaches and the use of general epistemic sets for handling incomplete information.

Finally, we have described various natural orderings and aggregation operations in the three-valued setting, in terms of 
orthopairs and Boolean valuation pairs. We have shown that some of these aggregations, expressed on the three-valued 
truth-set are already known in the literature. The systematic assumption that knowledge pertains to individual variables has 
led to asymmetric ordering relations where positive and negative literals do not play the same role (as in logic program-

ming, or logic-based diagnosis). As a consequence these polarity-sensitive orderings between partial models as well as the 
aggregation operations they induce make sense for partial models but not to the same extent for general epistemic sets, 
where positive literals do not play a specific role.

Hopefully, the analysis given in this paper will contribute to bridging the gap between various communities (databases, 
logic programming, epistemic logic, possibilistic logic, vagueness) that use different languages for handling similar issues in 
the modelling of vague predicates or incomplete information.
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