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Dynamic Gains Differentiator For Hydraulic System
Control

L. Sidhom, X. Brun, M. Smaoui, E. Bideaux and D. Thomasset

Abstract—This paper deals with online numerical differentia-
tion of a noisy time signal where new higher order sliding modes
differentiators are proposed. The key point of these algorithms
is to include a dynamic on the differentiator parameters. These
dynamics tune-up automatically the algorithm gains in real
time. Convergence properties of the new schemes are derived
using a Lyapunov approach. Their effectiveness is illustrated via
simulations and experimental tests, where comparative studies
are performed between classical schemes and the new ones. Such
algorithms are also used in the feedback control of an electro-
hydraulic system.

Index Terms—Differentiator/Controller design, Higher order
sliding modes, Dynamic gains, Electro-hydraulic system.

I. INTRODUCTION

THe purpose of this paper is to propose a new approach
to design a suitable scheme to estimate the derivatives of

a measured signal. It is well known that the main challenge is
to have a large bandwidth for the differentiator response while
avoiding noise corruption of the signal. These problems come
from the limited information provided by the measured signal.
Therefore, the problem is to find a suitable linear or nonlinear
differentiation algorithm able to reduce noise effect while
leaving the informative signal unchanged without phase shift.
Actually, the ideal differentiator design is a well-known issue
but remains a difficult to achieve. Therefore, the differentiator
that we are looking for should be able to reduce noise effect
while leaving the informative signal unchanged without phase
shift.

There are basically two major approaches to estimate the
signal derivatives. In the first approach, the synthesis of
differentiators requires a good knowledge of the system
model. In this case the differentiator design is reduced
to an observation problem. In [24], [25], the proposed
differentiator is a high gain observer, that is a Luenberger
state observer with particular pole placement. However, the
differentiator parameters are not tuned to reduce sensitivity
to measurement noises or perturbations. The case of random
noises/perturbations (such as Gaussian white noises) is
addressed by Kalman observers whose gains are computed
by the resolution of an algebraic Ricatti equation, [26]. The
high gain differentiators in [38], [39], [40] provide an exact
derivative provided their gains tend to infinity which also
leads to higher sensitivity to small high-frequency noises.
Another drawback of the high-gain differentiators is their
peaking effect. Another example for state estimation is
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based on nonlinear observer theory such as a backstepping
observers [9]. Unfortunately, the lack of information or an
insufficient knowledge on the system dynamics makes the
implementation of the linear or nonlinear state observers
difficult. To overcome this problem, some researches
looked at the synthesis of robust observers taking into
account parametric uncertainties, such as sliding mode
observer [27], [28] which gave an interesting results. In [27],
the super-twisting algorithm was modified in order to be
used as an observer of velocity for uncertain mechanical
systems. In [28], the authors proposed an approach based
on the sliding mode observer to finite-time state estimation
for a class of non-linear systems by taking into account the
modelling uncertainties and unknown inputs.

For the second approach, the design of a differentiator is
unavoidable. To build it, some features about the signal
and the noise should be known. However, in many cases
the structure of the signal is unknown except from some
differential inequalities. In this case, there are standard
approaches to compute derivative numerically such as the
finite difference operators. Such approaches are easy to
implement and are not computationally expensive but they
present bad noise suppression capabilities. Other one, the
approaches that are based on a suitable truncated Taylor
expansion of the signal to differentiate [35], [36], are
potentially interesting. Due to the use of iterated integrals
of the observation signal, these algebraic methods exhibit
good robustness properties with respect to noises. However,
the results provided by such methods are sensitive to the
truncation order also to the size of the sliding window and
the setting of other parameters. Alternative approaches based
on the sliding mode technique can also be used [10]. A
possible choice is to implement a sliding mode differentiator,
as the one proposed by Levant [14], [12]. In this approach,
the author uses an arbitrary-order robust differentiator with
finite-time convergence, which it has a simple form and is
therefore easy to be implemented. According to [12], 1st-
order and 2nd-order differentiator can be defined employing
this approach. The major problem associated with these
algorithms is the tuning of its gains to match convergence
and good performance. The accuracy of these differentiators
depends on the choice of these parameters. In fact, these
parameters depend on the Lipschitz constant of the signal
derivative. This constant is usually not known accurately
beforehand, especially if the signal is noisy. To avoid
this problem, different research works were proposed to
modify the classical 1st-order sliding mode differentiator
(super-twisting). For example, a new adaptive sliding mode
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controller based on super-twisting which is proposed to
reduce the chattering phenomenon [32], [31]. In this work,
the authors synthesized this approach for nonlinear systems
with bounded uncertainties/perturbations whose bounds are
unknown. In [30], a new scheme of the super-twisting
algorithm is proposed with adding linear components. By
using a Lyapunov approach, finite time convergence of the
proposed algorithm and its robustness to strong perturbation
terms is proved. In [29], a variable gain super-twisting
algorithm is proposed which is defined to compensate some
classes of uncertainties/disturbances. In [37], the authors
propose also a new scheme of super-twisting differentiator.
Here, the idea is to adapt the gains only when the estimation
error unacceptably deviates from zero. The proposed scheme
is used to estimate the rod speed of an actuator in order to
detect the fault. To validate this algorithm, only simulations
have been performed on a nonlinear aircraft benchmark
model. In [33], [34], an adaptive sliding mode algorithm is
also applied for other kinds of applications.

For many years, research efforts have been focused on
the development of control laws, especially for fluid
power systems. Most of them were in the field of feedback
linearization [2], [3]. Other investigations have been conducted
on adaptive control [4], [5] backstepping control [6], [7] and
others are based on sliding mode technique [41], [42]. All
of the aforementioned controllers generally require velocity
and acceleration measurements to perform the feedback loop.
However, accelerometers are seldom used in practical drive
systems. Their inclusion increases cost, energy consumption,
system complexity (the accelerometer is mounted to the load
in displacement) and also reduce the system reliability. In
order to avoid these drawbacks, such sensors can be replaced
by a signal estimator on the closed-loop control system.
However, the estimated signal can lead to a noisy and an
inaccurate or delayed signal of the control law. In fact, the
quality of the estimation signals is quite important to perform
a control requirement.

The major contributions of this paper are the following:
(i) A new scheme of 1st-order sliding mode differentiator
is proposed which is different to those already proposed
in [33], [34].
(ii) A 2nd-order sliding mode differentiator is proposed which
has not yet been studied in previous research.
(iii) The basic idea of these proposed algorithms is to include
a dynamic law to the gains of the basic algorithms [12] and
add a new linear terms on equations algorithm. These tuning
laws depend on the sliding surfaces.
(iv) The proposed solution allows an online self-tuning
gains of the algorithms while providing a good compromise
between accuracy and robustness toward noises as compared
to the basic differentiators. This last one is the major problem
for most online differentiation methods.

This paper is organized as follows. In the next section, the
problem of sliding mode differentiators (1st and 2nd order)
is explained and illustrated with some simulation tests. In

section 3, new schemes of algorithms are presented. Section
4 describes the proposed model of the electro-hydraulic test
bench. The last section is devoted to experimental results
obtained when the proposed differentiators are included on
the control loop feedback.

II. DIFFERENTIATORS DESIGN VIA SLIDING MODE

A. Problem Statement

Considered as an approach that is mainly used to design
one of the robust controller, sliding mode technique is also
employed for differentiator design problem [12]. With using
the main features of such technique, good results are obtained
for the differentiation problem.

Let input signal f(t) be a function defined on [0,∞[ and
measurable in Lebesgues sense. Regarded as the input signal of
differentiator, f(t) is described as the sum of the two following
terms:

f(t) = f0(t) + ξ(t) (1)

where f0(t) is an unknown base signal with the (1 + n)th

derivative having a known Lipschitz constant C > 0, and
ξ(t) is a bounded Lebesgue-measurable noise with unknown
features, defined by: |ξ(t)| < ε , with ε sufficiently small.

With infinite number of differentiator scheme proposed in [12],
the aim is to estimate in real time ḟ0(t), f̈0(t), · · · , f (n)

0 (t).
These estimates are exact in the absence of noises. This
scheme is defined by the following equations:

ż0 = v0,

v0 = −λ0|z0 − f |
n

(n+1) sign(z0 − f) + z1

ż1 = v1,

v1 = −λ1|z1 − v0|
(n−1)

n sign(z1 − v0) + z2

.

.

.

żn−1 = vn−1

vn−1 = −λn−1|zn−1 − vn−2|
1
2 sign(zn−1 − vn−2) + zn

żn = −λnsign(zn − vn−1) = −λnsign(zn−1 − vn−2)
(2)

where λi, i ∈ {0, · · · , n} are positive gains depending on
the Lipschitz constant C of f (n+1)

0 (t). Here zi = vi−1, i ∈
{1, · · · , n} are the outputs of the differentiator. At time t = 0,
the initial values z0(0) = f(0), zi(0) = vi−1(0) are taken,
with i ∈ {1, · · · , n}. The parameters λi, i ∈ {0, · · · , n} can
be chosen by using the following expression (see the proof
in [12]):

λi = λi0C
1

n−i+1 (3)

Where λi0 is positive constant. According to this expression,
the gains choice assumes the knowledge in advance of the
Lipschitz constant of the (n + 1)th derivative of the useful
signal, [15]. But, if the signal is noisy, the Lipschitz constant
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is a priori unknown and the choice becomes even more
difficult.

Therefore, the main drawback of such algorithm is the
setting of its gains to keep good performances even when the
frequency of the input signal of differentiator changes or if
the input spectrum has rich frequencies. It is not always easy
to tune the parameters values λi for a given bandwidth of the
input signal. A simple modification of the spectral content
of the input signal or of its magnitude can greatly affect
the estimation of the derivative. Usually, the gain values are
found by guessing with computer simulations.
From (2), it can be seen that the terms zi introduce the
integral components and act as estimators of the input signal
derivative. Theoretically, the ideal sliding mode must ensure
the first terms of equations (2) to zero in finite time. However,
the ideal sliding mode never be realized in practice owing
to the different origin of inaccuracy, such as a measurement
errors. Moreover, the presence of ”sign(.)” function in
these terms leads to high frequency oscillations. Indeed, this
chattering effect can deteriorate the precision of the estimated
signal. Therefore, it is not easy to adjust the gains to reach a
good compromise between accuracy and robustness to noise
ratio.

In this paper, a 1st and a 2nd-order sliding mode differentiator
are studied. From (2), the super-twisting algorithm (n = 1) is
defined by the following equations:

ż0 = v0,

v0 = −λ0|z0 − f |
1
2 sign(z0 − f) + z1

ż1 = v1,

ż1 = −λ1sign(z1 − v0) = −λ1sign(z0 − v1)

(4)

For n = 2, a 2nd-order differentiator can be easily defined
where the system 2 is rewritten as:

ż0 = v0,

v0 = −λ0|z0 − f |
2
3 sign(z0 − f) + z1

ż1 = v1,

v1 = −λ1|z1 − v0|
1
2 sign(z1 − v0) + z2

ż2 = −λ2sign(z2 − v1) = −λ2sign(z1 − v0)

(5)

After a finite time convergence and without any noises, z1 =
v0 is the estimation of ḟ0(t), which represents the output of
the 1st-order differentiator. The second output f̈0(t) of the
2nd-order algorithm is given by z2 = v1.

B. Problem Illustration

To investigate the influence of the choice parameters on the
algorithm accuracy, simulation tests are performed for the
2nd-order sliding mode differentiator. For the 1st-test, the
considered input signal is given by g(t) = sin(πt), where
its frequency is f = 0.5 Hz. Afterwards, this frequency is
changed up to 2 Hz, without changing the gain values of
algorithm. So in this 2nd-test, the Lipschitz constant C is

just increased. This constant is calculated by C = 2πfA,
where A is the magnitude of g(t). With the difference between
the estimated derivative of g(t) and the analytical one, the
error is computed in order to compare its value for each test.
The figure 1 shows the errors function of time. These errors
are greatly increased when the frequency of the input signal
has increased. Thus, the magnitude precision is significantly
degraded.

Fig. 1: Errors with different frequency of g(t)

III. PROPOSED DIFFERENTIATORS

A. New scheme of 1st-Order Differentiator

The proposed 1st-order differentiator is defined by the follow-
ing system:

ż0 = v0

v0 = −λ̂0|z0 − f |
1
2 sign(z0 − f)−K0(z0 − f) + z1

ż1 = v1

v1 = −λ̂1sign(z0 − f)

(6)
The sliding surfaces are given by:{

σ0 = z0 − f

σ1 = z1 − ḟ
(7)
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Taking into account the variables which are defined in (7), the
system (6) can be rewritten as follows:σ̇0 = −λ̂0|σ0|

1
2 sign(σ0)−K0σ0

σ̇1 = −λ̂1sign(σ0)
(8)

Theorem 3.1: For K0 > 0 and with the sliding surfaces
defined by (7), all trajectories of the algorithm (6) converge
at a finite time to the equilibrium point σ0 = σ1 = 0, with
the dynamic gains λ̂i, i ∈ {0, 1} defined by :

˙̂
λ0 =

(
|λ0|

1
2 sign(λ0)

)
λ0, λ̂0(0) ≥ 0 and

˙̂
λ0 > 0 ∀t > 0

˙̂
λ1 = |λ0|, λ̂1(0) ≥ 0 and

˙̂
λ1 > 0 ∀t > 0

(9)
Proof:

Referring to [30], let us introduce the quadratic Lyapunov
function as follows:

V11(σ) = ξT1 Pξ1, with σ = (σ0, σ1)T (10)

At t = 0, let us note σ(t = 0) = σinit = (σ0(0), σ1(0))T .
The vector ξ1 is chosen such that:

ξ1 =

(
|σ0|

1
2 sign(σ0)

σ1

)
(11)

and P ∈ R(2×2) is a symmetric matrix given by:

P =

(
2λ̂1 + Φ0

2

2 −Φ0

2

−Φ0

2 1

)
(12)

where Φ0 = λ̂0 +K0|σ0|
1
2 is a positive quantity since λ̂0 ≥ 0

and K0 > 0.
The matrix P is a positive definite matrix, since its eigenvalues
λ̄1,2 are positive. Indeed, the characteristic polynomial equa-
tion of P is given by (13) and with λ̂1 ≥ 0, we can deduce
that the eigenvalues of P are a positive real.

λ̄2 −
(

1 + 2λ̂1 +
Φ0

2

2

)
λ̄+ 2λ̂1 +

Φ0
2

4
= 0 (13)

Note that the defined Lyapunov function is continuous
everywhere but not differentiable at σ0 = 0. Here,
V11(σ) is continuously differentiable, except on the set
S1 = {(σ0, σ1) ∈ R(2×2)|σ0=0}, the Lyapunov theorem can
only be applied to the points where V11(σ) is differentiable.
Then, a non-smooth version of Lyapunov’s theory is
needed, [17].

Note that V11(σ) is however positive definite and radially
bounded :

λ̄min{P}‖ξ1‖22 ≤ V11 ≤ λ̄max{P}‖ξ1‖22 (14)

where ‖ξ1‖ is the euclidean norm of ξ1 :

‖ξ1‖22 = |σ0|+ σ2
1 (15)

λ̄min{P}, λ̄max{P} are respectively the minimum and
maximum eigenvalues of the matrix P .
The derivative of the vector ξ1 can be expressed as below:

ξ̇1 = |σ0|−
1
2

(
−Φ0

2
1
2

−λ̂1 0

)
ξ1 (16)

= |σ0|−
1
2A(σ)ξ1

The time derivative of V11 along the system trajectories is then
given by:

V̇11 = |σ0|−
1
2 ξT1

(
AT (σ)P + PA(σ)

)
ξ1 (17)

= −|σ0|−
1
2 ξT1 Q(σ)ξ1 (18)

where Q is:

Q =
Φ0

2

(
2λ̂1 + Φ2

0 −Φ0

−Φ0 1

)
(19)

To conclude on the non-negativity of V̇11, Q has to be
positive definite matrix. From its characteristic polynomial
equation (20), we can deduced that the eigenvalues are positive
and consequently that Q is positive definite one:

λ̄2 −
(

1 + 2λ̂1 +
Φ2

0

2

)
λ̄+ 2λ̂1 = 0 (20)

From (14), we can write:

‖ξ1‖2 ≤
V

1
2

11

λ̄
1
2
min{P}

(21)

Using equations (15) and (21), we have:

|σ0|
1
2 ≤

[
|σ0|+ σ2

1

] 1
2 ≤ V

1
2

11

λ̄
1
2
min{P}

(22)

Therefore,

V̇11 ≤ −
λ̄

1
2
min{P}

V
1
2

11

λ̄min{Q}‖ξ1‖22 (23)

Using the right inequality of the expression (14), (23) be-
comes:

V̇11 ≤ −
λ̄

1
2
min{P}λ̄min{Q}

λ̄max{P}
V

1
2

11 = −δV
1
2

11 (24)

where δ =
λ̄

1
2
min{P}λ̄min{Q}

λ̄max{P}
> 0.

Let us consider now the general case of a differential equation
of the following form:

χ̇(t) = −δχ 1
2 (t), χ(0) = χ0 ≥ 0 (25)

The solution of this equation is given by:∫ t

0

χ̇

χ
1
2

dt = −
∫ t

0

δdt⇒ χ(t) =

(
χ

1
2
0 −

δ

2
t

)2

(26)

From (26), χ(t) is equal to zero at a time t∗ given by:

t∗ =
2χ

1
2
0

δ
(27)
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From (27), it follows that V11(σ(t)) and σ(t) converge to zero
in a finite time T given by :

T =
2V

1
2

11(σinit)

δ
(28)

B. New scheme of 2nd-Order Differentiator

Let us define now the new scheme of 2nd-order sliding modes
differentiator:

ż0 = v0

v0 = −λ̂0|s0|
2
3 sign(s0)−K0s0 + z1

ż1 = v1

v1 = −λ̂1|s1|
1
2 sign(s1)− λ̂2

∫ t
0

sign(s1)dt−K1s1

(29)
K0 and K1 are positive gains and s0, s1 are the sliding
surfaces given by: {

s0 = z0 − f

s1 = z1 − v0

(30)

The dynamic gains λ̂i, i ∈ {0, 1, 2} are defined by:
˙̂
λ0 = [|s0|

2
3 sign(s0)]s0

˙̂
λ1 = [|s1|

1
2 sign(s1)]s1

˙̂
λ2 = s1

∫ t
0

sign(s1)dt

(31)

Theorem 3.2: For K0,K1 > 0 and with the dynamic gains
λ̂i, i ∈ {0, 1, 2} defined by (31), the system trajectories (29)
converge locally and asymptotically towards the equilibrium
point s0 = s1 = 0.
Definie λ∗0 and λ∗1, a priori unknown constants which
represent an ideally tuned differentiator:ḟ = −λ∗0|s0|

2
3 sign(s0) + z1

f̈ = −λ∗1|s1|
1
2 sign(s1)− λ∗2

∫ t
0

sign(s1)dt
(32)

Proof:
Let σ0 = s0 = z0 − f . With this change of coordinate, the
two first equations of system (29) can be written as follows:

σ̇0 = −λ̂0|σ0|
2
3 sign(σ0)−K0σ0 + σ1 (33)

where σ1 = z1 − ḟ .

Since λ̂0 ≥ 0 and K0 > 0, from (33) we have:

σ1 − σ̇0 = sign(σ0)
[
λ̂0|σ0|

2
3 +K0|σ0|

]
and we can conclude that:

sign(σ1 − σ̇0) = sign(σ0) (34)

Subtracting ḟ on both sides of the second equation of (29),
then we obtain:

v0 − ḟ = −λ̂0|σ0|
2
3 sign(σ0)−K0σ0 + z1 − ḟ (35)

Substituting ḟ by its expression (32) in (35), we have:

σ̇0 = −λ̃0|σ0|
2
3 sign(σ0)−K0σ0 (36)

with λ̃0 = λ̂0 − λ∗0, which is an error between the dynamic
value of the gain and a priori one.

Considering now σ1 = z1 − ḟ , it gives s1 = σ1 − σ̇0. By
subtracting f̈ from both sides of the last equation of (29) and
taking into account the new expression of s1, we have:

σ̇1 = −λ̃1|σ1 − σ̇0|
1
2 sign(σ1 − σ̇0)−K1(σ1 − σ̇0)

−λ̃2

∫ t

0

sign(σ1 − σ̇0)dt (37)

Let us define a Lyapunov function as:

V12(σ0, σ1, λ̃i) =
1

2
σ2

0 +
1

2
(σ1−σ̇0)2 +

1

2

2∑
i=0

λ̃2
i , i ∈ {0, 1, 2}

(38)
The equilibrium point is defined by Xσ,λ̃

e = (0, 0, 0).
The derivative of this Lyapunov function is given by:

V̇12 = σ0σ̇0 +(σ1− σ̇0)(σ̇1− σ̈0)+ λ̃0
˙̂
λ0 + λ̃1

˙̂
λ1 + λ̃2

˙̂
λ2 (39)

then
σ0σ̇0 + λ̃0

˙̂
λ0 = −K0σ

2
0 (40)

and

(σ1 − σ̇0)σ̇1 + λ̃1
˙̂
λ1 + λ̃2

˙̂
λ2 = −K1(σ1 − σ̇0)2 (41)

Substituting (40) and (41) in (39):

V̇12 = −K0σ
2
0 −K1(σ1 − σ̇0)2 − (σ1 − σ̇0)σ̈0) (42)

We have

−(σ1 − σ̇0)σ̈0 = −(σ1 − σ̇0)[− ˙̂
λ0|σ0|

2
3 sign(σ0)−K0σ̇0

−2

3
λ̃0|σ0|−

1
3 σ̇0] (43)

By introducing the dynamic gain λ̂0 (see system (31)) in (43),
the following equality is satisfied:

−(σ1 − σ̇0)σ̈0 = −|σ1 − σ̇0[−|σ0|
7
3 +K2

0 |σ0|

+
2

3
λ̃2

0|σ0|
1
3 +

5

3
λ̃0K0|σ0|

2
3 ] (44)

Consequently, the equation (39) can be rewritten as follows:

V̇12 = −K0σ
2
0 −K1(σ1 − σ̇0)2 − 2

3
|σ1 − σ̇0|λ̃2

0|σ0|
1
3

−|σ1 − σ̇0|
[
−|σ0|

7
3 +

5

3
λ̃0K0|σ0|

2
3 +K2

0 |σ0|
]

(45)

To show that V̇12 is negative, it is sufficient to prove that :

Υ =

[
−|σ0|

7
3 +

5

3
λ̃0K0|σ0|

2
3 +K2

0 |σ0|
]
≥ 0 (46)

Therefore, let us assume that |λ̃0| ≤ λ̃0M , where λ̃0M is a
positive constant satisfying the following inequality:

λ̃0M <
3

5
K0|σ0|

1
3 (47)
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In order to obtain the condition defined by (46), one must
choose K0 such that:

K0

[
λ̃0 +

3

5
K0|σ0|

1
3

]
≥ 3

5
|σ0|

5
3 (48)

It is obvious that it is always possible to find some value of
K0 (namely a high-value) satisfying both inequalities (47)
and (48).

Under these conditions, we can conclude that V̇ is a negative
function ∀(σ0, (σ1 − σ̇0), λ̃i) ∈ R3 but this property vanishes
for (0, 0, λ̃i)

T 6= Xσ,λ̃
e . Consequently V̇ is a globally semi-

negative definite function on R3 and it is a locally negative def-
inite function on R3|(0, 0, λ̃i)T . Therefore, with this Lyapunov
function, a global convergence on R3 of the equilibrium point
is proven. This means also that a local asymptotic convergence
of the algorithm is only proven on R3|(0, 0, λ̃i)T . It is possible
here to use the LaSalle’s invariance principle, but precisely in
our case, it does not allow to conclude on the global asymptotic
convergence of system equilibrium point.

Thereby, the given proof insures just the convergence of the
estimation errors s0 and s1 to zero, but the convergence of
dynamic gains to λ∗0 and λ∗1 is not guaranteed. Moreover, these
dynamic gains change over time according to the imposed
dynamic laws, which have a bounded evolution depending
on the initial values of the algorithm gains. Obviously, any
dynamic algorithm is sensitive to its initial values. In our
case, the influence of the initial values on the convergence
algorithm has not still been theoretically studied. However,
several simulation tests were performed with different initial
values and without any convergence problems.

IV. SIMULATION RESULTS

In order to examine the performances of the proposed algo-
rithms over the classic one, a comparative study is proposed in
this section. Many criteria are considered. The first one is the
accuracy of the algorithms with respect to the magnitude and
the phase shift due to the estimation of derivative signal. The
second one involves studying the robustness of the different al-
gorithms against noise. In our context, the robustness is defined
by the reduction of the noise amplification rate on the output
signal. To simplify the figures titles, the following abbreviation
are used: Super Twisting: ST, 2nd-Order Differentiator: 2OD,
New scheme for 1st-Order Differentiator: N1OD, New scheme
for 2nd-Order Differentiator: N2OD.

A. Simulation Tests Without Noise

Let us consider a noiseless input signal defined by h(t) =
cos(0.6πt). Since the input signal is already known and not
corrupted by any noises, its Lipschitz constant is also known.
Thus, with using the Levant condition (3), the gains of the
classic algorithms (ST, 2OD) are properly adjusted. For the
proposed algorithms, the initial values of the dynamic gains
are chosen equal to zero and its convergence gains are selected
such that: N1OD (K0 = 500) and N2OD (K0 = 500,K1 =
800). To compare the obtained results, the absolute value

of the maximum error |emaxi| is regarded as one of the
comparison criteria. This error is the difference between the
estimate of the ith derivative and the analytical derivative
signal. Other criterion is also taken into account which is the
maximum phase-shift |∆ϕi|max(◦) resulting by the estimate
of the ith derivative. In order to estimate the 2nd-derivative of
the input signal using ST and N1OD, which are a 1st-order
differentiator, two blocks of these algorithms are arranged in
cascade for acting as a 2nd-order one.

TABLE I: Estimation error and phase-shift

Algorithm ST N1OD 2OD N2OD:

|emax1| 0.024 0.0017 0.00019 0.00018

|emax2| 0.196 0.06 0.016 0.011

|∆ϕ1|max(◦) 0.047 0.046 0.045 0.045

|∆ϕ2|max(◦) 0.07 0.048 0.047 0.05

The table I shows that with a higher order sliding modes
differentiators we can expect a low error with a small phase-
shift. This is can be explained by the properly tuning of the
algorithms gains. Regarding to the magnitude error, the DO2
and the N2OD present relatively similar values. However, the
estimated signals (first and second order) given by the N1OD
are more accurate than obtained by ST. In fact, the error values
are improved by a factor over to 14 for the 1st-order estimate
and by a factor of 3 for the 2nd-order estimate.

Fig. 2: N2OD Outputs: variable frequency signal

Another test simulation is done in order to show the behaviour
of the proposed algorithm for a multi-frequency signal. For
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this test, only the 2nd-order algorithm results are provided.
The setting of the gains algorithm are given such as K0 = 80,
K1 = 70, λ̂0(0) = 0, λ̂2(0) = 0 and λ̂2(0) = 0. The
chosen signal is give by: h1(t) = sin(2f1πt), where the
frequency f1 varies according to the following sequence
(0.1Hz, 0.5Hz, 1Hz). From figure 2, the estimated signals are
too close to the analytical one despite input signal frequency
variation.

B. Simulation Tests With Noise

In this section, the differentiation tests of noisy input signal are
handled. So to show the behaviour of the studied and proposed
differentiator for such signal, a white Gaussian noise with zero
mean and a standard deviation equal to 0.03 is added to the
basic signal h(t) that is used in the previous section.

(a) 2OD (λ0 = 8, λ1 = 7, λ1 = 3)

(b) N2OD (K0 = 7,K1 = 4)

Fig. 3: Estimation of the 2nd-derivative

From figures (3) and (4), we emphasize that the estimate of
the 1st-derivative is more smooth than the second one. In
spite of the similar setting gains (convergence gains for the
new schemes) of the two schemes, it is worth noting that the
results provided by the proposed algorithms have significantly
reduced noise amplification compared to the classical one.
This is illustrated by figure (3) where the noise amplification
is 7 times lower using N2OD than the noise level given by
2OD. These results are mainly owned to the additional linear
component, which is the continuous one, into the equations of
the new schemes.

(a) ST (λ0 = 10, λ1 = 8)

(b) N1OD (K0 = 8)

(c) 2OD (λ0 = 8, λ1 = 7, λ1 = 3)

(d) N2OD (K0 = 7,K1 = 4)

Fig. 4: Estimation of the 1st-derivative
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So it is interesting to note that one of the major contributions
of these proposed differentiators is the notable decrease of the
noise amplification on the estimating derivatives. Since the
measurement noise is inevitable in practice, this advantage
may have a strong interest.

Remarks about the setting of the proposed algorithms:
With noiseless signals, if the chosen of the convergence gains
values Ki, i ∈ {1, 2} becomes high then the convergence time
of the algorithms becomes quick. However, with noisy signals,
there are some compromise between the reduction of noise
amplification and the convergence time of the differentiators.
Indeed, the smoothing of the outputs differentiators is due to
the presence of the linear terms Kisi. Then, it is necessary
not to choose too high values of Ki in this case. It should
also be noted that it is necessary to impose lower initial
values of the dynamic gains to reduce as much as possible
the effect of the discontinuous components, so to reduce the
chattering effect. Other remark according to the dynamic
gains λ̂0 and λ̂1, it is necessary to reset their values after
some computation time otherwise these values becomes so
high.

In the next sections, the goal is to investigate the efficiency of
such algorithms into the control-loop of an electro-hydraulic
system where its model is described in the following section.

V. ELECTRO-HYDRAULIC SYSTEM MODEL

A. Presentation of the test bench

The test bench (see figure 5) is a symmetric double
acting electro-hydraulic servo-drive consisting in double
rod cylinder controlled by two five-way servovalves. The
characteristics of the hydraulic actuator are given in the
table II (see appendix). The servovalves are electro-hydraulic
servomechanisms that constitute the main interface between
the electrical control signal and the hydraulic actuator. These
modulators, developed by MOOG, can provide a quite large
bandwidth, thus a short response time, and a good precision.
As indicated in the MOOG data sheet, the bandwidth
reaches up to 1 kHz for 5% of spool displacement and a rated
flow up to 19 (l/min) at 70 bar pressure drop at full opening.

A perforated block is designed specifically for this test bench.
It allows the implementation of the two servovalves and of
other components that enable different operating modes for
the system. Thus the actuator chambers can be fed either
by a 5/2 single servovalve or by two servovalves in parallel
to increase the flow. The servovalves can also be used in
three-way mode to supply flow independently to each actuator
chamber. To reach this modularity, the perforated block is
equipped with two solenoid valves and two flow regulators.
Spherical accumulators are also mounted on this block to
avoid pressure peaks. However, this block introduces parasite
phenomena (pressure drop, capacitive and inertial effects) that
could present a significant influence on the overall behaviour
of the system in some circumstances. The simplified diagram
of the servo-system is given in figure 6.

In this paper, a single mode is considered to control the
actuator by one 5/2 servovalve.

B. Model system

The model used for the control relies on several assumptions.
The first one consists to only take into account the resistive
effect produced by the perforated block. This hypothesis will
be later justified by the choice of the trajectory.

Fig. 5: Electro-hydraulic test bench

Fig. 6: Simplified diagram of servo-system

According to the second law of Newton, the load mechanical
equation is given by:

Ma = S∆P −Mg − bv + h2(v(t)) (49)

where M is the mass of the moving part, ∆P = p1 − p2 is
the pressure drop across the load piston, S is the effective
area of the actuator chambers, b represents the coefficient of
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the viscous friction force, v, a are respectively the velocity
and the acceleration of the load. Dry friction forces depend
explicitly on velocity and is represented by the function
h2(v(t)).

Friction is a common phenomena for all mechanical systems
and its effects have been widely studied [18]. Its influence
is mostly noticeable at low velocities on account of a
high gain variation around a null velocity. This leads to
achieve an accurate model which requires refinement of the
analytical description of these phenomena. In tribology, many
friction models have been proposed. These models can be
differentiated with respect to their degree of complexity which
is equivalent to the phenomena that is taken into account
during the modeling step. For example, the well-known
quasi-static friction model, known as Tustin model, considers
Coulomb friction, viscous friction and Stribeck effect, [19].
In [18], a dynamic model of friction enables the ”stick/slip”
phenomena to be described by considering the materials
properties. Aside the nonlinearity of these models, they
usually have a discontinuity around null velocity. Therefore,
in many applications the control law is synthesized with
disregarding dry friction as it is done in [20]. This hypothesis
is always made for the synthesis of backstepping control law
because of such controller requires the derivative of friction.

In our work, the dry friction has been identified at low veloc-
ities from experimental trials using equation (49). The results
are obtained for several cycles around the same operating point
and in the same experimental conditions. Different phases of
friction can be observed. With the hydrodynamic bearings
technology used in our actuator, the slope is not too stiff
around null velocity. In fact, such bearing technology allows
the formation of an oily film, even at very low velocity.
This explains that the static dry friction magnitude is small
compared to what is observed in conventional actuators.

Fig. 7: Simulation model of friction

In our case, the dry friction can be approximated around null
velocity by a smooth function such as a tanh(.) instead of the
sign(.) function which is a discontinuous one. Then, the fric-
tion can be defined by a nonlinear and a differentiable function

h2(v(t)). By repeating several times the same experimental
test, we obtained an average maximum value of the friction
about ±150 N for a supply pressure pP = 210 bar. This
corresponds to only 0.75% of the maximum force that can
be developed by the cylinder (20 kN for pP = 210 bar).
A nonlinear model based on the well-known Tustin friction
model [19] was proposed assuming that the dry friction is
symmetric according to velocity and the hysteresis effect is
negligible:

h2(v(t)) =
[
Fsdyn + (Fsdyn − FC)e−C1|v|

]
tanh(

v(t)

v0
)

(50)
Where Fsdyn is the dynamic dry friction, FC is the Coulomb
friction. C1 and v0 are respectively the coefficient of Stribeck
effect and the constant value for velocity scaling.
Using the above assumptions, the empirical model of the
friction is then reduced to the simluation model for low
velocities given by figure 7.

The flow balance in a variable volume chamber is obtained as-
suming that: i) both the temperature and the pressure of the oil
are homogeneous in each chamber. ii) the oil density variation
is small compared to its average density, iii) the temperature
variation is small compared to the average temperature which
is equal to the oil supply temperature.
Using the definition of the isothermal bulk modulus which is
inverse of the oil compressibility at a given temperature, the
nonlinear equations that describe the fluid flow distribution in
the servovalve can be written in their simplest forms, [1]:Q1 −Qleakage = V1(y)

β
dp1
dt + dV1

dt

Qleakage −Q2 = V2(y)
β

dp2
dt + dV2

dt

(51)

According to the manufacturer data, the inter-chamber leakage
flow of is equal to Qleakage = 10−4 (l/min) at a ∆P = 70
bar and therefore this flow rate can be disregarded in equation
(51). V1 and V2 are the total volumes of the cylinder defined
respectively by: V1(y) = V01 + Sy

V2(y) = V02 − Sy
(52)

where V01 = VM1 + S l
2 and V02 = VM2 + S l

2 are the
volumes of the chambers at piston central position, y is the
displacement of the load, l is the cylinder stroke and VM1,
VM2 are both sides dead volumes of the cylinder. The piping
volumes of the perforated block are also taken account in
VM1 and VM2.

The two servovalves are considered identical, symmetric and
controlled by the same input signal u. These power modulators
present a large bandwidth compared to the actuator dynamic,
so we can assumed that the spool valve displacement xt is
directly related to the control voltage u and given by xt =
Ksvu. Let us note that this assumption is only valid in some
operating mode [21], considering the flow regime as mainly
turbulent, the flow rate (51) can be written in affine form with
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a single input:Q1sv = Q1 = αuC∗1ψ1(p1, pP , pT , sign(u))

Q2sv = Q2 = αuC∗2ψ1(p2, pP , pT , sign(u))
(53)

with α = KtKsv

√
2
ρCd is assumed to be a constant parameter

where ρ is the fluid density and Cd the flow coefficient. Thus,
equation (53) can be written as :ψ1(p1, pP , pT , sign(u)) = [h3(u)G11(.) + h3(−u)G12(.)]

ψ1(p2, pP , pT , sign(u)) = [h3(u)G21(.) + h3(−u)G22(.)]

(54)
with 

G11(.) =
√
|pP − p1|sign(pP − p1)

G12(.) =
√
|p1 − pT |sign(p1 − pT )

G21(.) =
√
|p2 − pT |sign(p2 − pT )

G22(.) =
√
|pP − p2|sign(pP − p2)

(55)

and h3(u) = 1+sign(u)
2 . Due to the asymmetry of the circuit

in this operating mode, the constants C∗1 , C
∗
2 have a different

values. These values were determined following specific tests
in order to consider the pressure drop into the perforated block.

Each state variable is physically bounded. Thus the physical
domain of the system can be described by:

Dφ = {(y, v, a) ∈ R3/|y| ≤ l

2
, p1, p1 ∈ Γp ≡]pT , pP [} (56)

Using (56), the terms sign(pP − pj) and sign(pj − pT ), with
j = {1, 2} introduced into (55) can be eliminated, as well as
the absolute values.

The system model can then be put in the normal form as shown
below:

Ẋ = f1(X) + g1(X)u, (57)

with X, f1(X), g1(X) ∈ R4, u ∈ R and X = [y, v, a, p1]T .
f1 and g1 are vector fields locally Lipschitz, defined by:

f1(X)=



v

1
M [S(p1 − p2)− g − bv − h2(v(t))]

−S β
V1(y)v

S β
V2(y)v



T

(58)

g1(X)=



0

0

β
V1(y)αC

∗
1ψ1(p1, pP , pT , sign(u))

− β
V2(y)αC

∗
2ψ2(p2, pP , pT , sign(u))


(59)

VI. EFFECTIVENESS OF PROPOSED DIFFERENTIATOR
DESIGN IN CONTROL PURPOSE

In this section, we address the problem of position trajectory-
tracking for the servo-system using a minimum number of
mechanical sensors. A control law is synthesized in this
paper based on the well-known backstepping technique.
Such controller requires a position sensor, a velocity sensor
and also an accelerometer. However, the accelerometer that
is installed on the system has an accuracy of ±2% of the
operation range (±100) g which is very large according to
the chosen position trajectories. Therefore, at low acceleration
the output signal of this sensor is almost unusable for the
closed-loop controller. Furthermore, no velocity sensor is set
up on the test bench.

All these reasons could justify the benefit of using the
real time numerical differentiators. Then, the aim of the
experimental test is to study the influence of 2nd-order
differentiator (2OD or N2OD) on the control law of the
system. A comparative study between these two algorithm
schemes (2OD and N2OD) is also performed.

Remark that the relative degree of the output system is equal
to three compared to the system order which is equal to
four. So the existence of 1st-order residual dynamic in p1

throughout Dφ is inevitable. With the backstepping controller,
the asymptotic stability of the controlled part is insured.
For the pressure residual dynamic, the asymptotic stability
with meaning of the zeros dynamic [22] was already been
demonstrated in [23].

The obtained control law is given as:

u =
1

Sβ
M [

αC∗
1ψ1(.)
V1(y) +

αC∗
2ψ2(.)
V2(y) ]

[−f1(X) + ȧd −K11e1

−K21e2 −K31e3] (60)

with 
K11 = c31 − 2c1 − c2, , c3 > 0

K21 = 1− c1(c1 + c2)− c22
K31 = c1 + c2 + c3

(61)

and


e1 = y − yd
e2 = v − vd + c1e1, c1 > 0

e3 = a− ad + e1(c21 − 1)− e2(c1 + c2), c2 > 0

(62)

yd, vd and ad are the desired trajectories respectively of the
position y, the velocity v and the acceleration a.
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To show the performances of the differentiation algorithms,
the velocity and the acceleration are reconstructed using a
2nd-order differentiators (2OD or N2OD), as shown in the
diagram given below:

Fig. 8: Schematic diagram: ”Controller/Differentiator”

Our approach of ”Controller/Differentiator” is validated via
Dspace 1104 controller board with a dedicated digital signal
processor. The sampling frequency of the control loop is set
to 1 kHz. As already noted, the relative degree of the position
is equal to three. This means that the electro-hydraulic
system can only track position trajectory at least three times
differentiable. Moreover, to satisfy the assumptions made
during the modeling phase, the chosen trajectories are settled
on low and medium frequency.

In order to examine the performance of N2OD compared to
2OD, two tests have been applied. In the first one (test 1), a
sinusoidal reference position is applied with ±30 mm as a
magnitude and 0.5 Hz as a signal frequency. For the second
test (test 2), the same reference position is used but with
different magnitude and frequency values which are chosen
respectively as ±50 mm and 1 Hz.

The gains of the 2OD differentiator are set to λ0 = 18,
λ1 = l5, λ2 = 8 and those of N2OD are chosen so that
K0 = 25, K1 = 35. For N2OD, the dynamic gains are
initialized to zero. The choice of these gain values has been
made in order to have a good precision and an acceptable
quality of the estimates according to the input reference
defined in test 1.

The choice of the control law parameters is given such as
: c1 = 400, c2 = 400 and c3 = 400. The interest of the
proposed experimental tests (test 1 and test 2) is that the
parameters tuning of the ”controller-differentiator” blocks
remains unchanged during these experiments.

In order to compare the getting results; we make an analytical
study based on multiple criteria which are made up of
quantitative and qualitative criteria. The quantifiable criteria
are chosen as follows: maximum position tracking error

eymax, maximum velocity error evmax and maximum
acceleration error eamax. As stated before, references
(sensors) are not available on the test bench. Then, the
computed errors are defined as the difference between the
measured variable (position) or the estimated one (velocity,
acceleration) and the corresponding desired trajectory. About
the qualitative criterion, the quality of the estimated signal in
terms of noise attenuation is taken into account.

A. Test 1: experimental results

Start us with the results obtained by 2OD. From the figure 9,
the absolute value of the maximum position error is about 0.18
mm. As we can see in the figure 12, the estimated of velocity
and acceleration have practically no phase-shift compared to
the desired signals. This good quality of the obtained signals
is related to the good setting of the 2OD-gains with respect to
the input signal relative to test 1.

Fig. 9: Tracking position error [mm]: (2OD,test 1)

Fig. 10: Control input [V]: (2OD,test 1)

In spite of an appropriate choice of the gains values of
2OD, the estimated derivatives are relatively noisy. Figure 10
shows the obtained command signal for the ”2OD-command”
scheme. Figure 11 presents the position error using the N2OD
algorithm. The maximum value (absolute value) is identical
to the one obtained with the 2OD. The phase-shift is also
very low.
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Fig. 11: Tracking position error [mm]: (N2OD,test 1)

(a) Estimated velocity

(b) Estimated acceleration

Fig. 12: Estimation velocity and acceleration: (2OD, test 1)

Regardless of differentiator (2OD/N2OD) used, there is no
noticeable difference for both control signal and position
error, so it is difficult to conclude of the effectiveness of the
proposed algorithm according these both criteria. That is why;
it is interesting to see the results which are given on the test 2.

From the test 1 results, we can emphasize that the same
maximum value in position error is provided in both cases
(2OD and N2OD). However, the estimated signals by the
N2OD (figure 13) are less corrupted by noises than those
estimated by the 2OD.

(a) Estimated velocity

(b) Estimated acceleration

Fig. 13: Estimation velocity and acceleration: (N2OD, test 1)

B. Test 2: experimental results

The purpose of this second experimental test is to show more
clearly the advantage provided by the new scheme of the
2nd-order differentiator. Recall that for this new trajectory,
the parameters of the ”controller-differentiator” blocks are
unchanged and identical to those chosen for test 1.

Fig. 14: Tracking position error [mm]: (2OD,test 2)

With using the 2OD, the maximum value of the position
error is now about 0.5 mm, (figure 14), which is increased
compared to its value obtained in test 1. This augmentation
of the error can be explained by two reasons. The first one is
the increase of the errors on the estimated signal. The second
one is the change of the parameter uncertainties around the
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new operating range that is due to the change of the reference
trajectory. On figure 15, the estimated acceleration shows a
phase-shift which comes from a maximum acceleration error
that equals to 0.64 m.s−2. For the estimated velocity, the
phase-shift is not noticeable but the maximum velocity error
is equal to 0.011 m.s−1.

(a) Estimated velocity

(b) Estimated acceleration

Fig. 15: Estimation velocity and acceleration: (2OD, test 2)

For N2OD, the position error and the control input are
relatively similar than those given by 2OD. Consequently,
only the curves of the estimated velocity and acceleration
are presented. From figure 16, it is clear that the estimates
given by the N2OD have a smaller phase-shifts and also
better filtered than those given by the 2OD, especially for the
acceleration signal. With the N2OD, the recorded maximal
velocity error is approximately the same as the one given by
the 2OD. However, the maximal error of acceleration is equal
to 0.48 m.s−2, which is significantly lower than the error
given by the 2OD.

Following these experimental tests, several conclusions can be
made :
i) with a good gains adjustment for both algorithm schemes
with respect to a given input signal, the estimate of derivatives
with the N2OD are less noisy than those given by the 2OD, ii)
The two differentiators show good accuracy compared to the
desired trajectories, iii) with the same gains tuning algorithms
and when modifying the input signal, a slight degradation is

observed on the estimated signals. However, the derivatives are
always less noisy when using the N2OD. In order to improve
the differentiators accuracy, the values of the gains must be
increased. But, increasing the gain values for the 2OD tends
to increase the noise amplification. In this case, the signals
become unusable for control purposes. Therefore, it is worth
noting that the lower noise amplification represents a real
advantage for the N2OD.

(a) Estimated velocity

(b) Estimated acceleration

Fig. 16: Estimation velocity and acceleration: (N2OD, test 2)

VII. CONCLUSION

In this paper, a 1st and 2nd-order sliding mode differentiators
with dynamic gains have been proposed to address the problem
of self-tuning gains of the classic schemes. Experimental tests
are performed in the case of the position control of an electro-
hydraulic system in order to test the effectiveness of the pro-
posed differentiator. These tests highlight the advantage of the
new scheme which provides lower noise amplification. Indeed,
the filtering property allowed by the proposed algorithm enable
good accuracy to be achieved for a given spectrum of the input
signal without worrying about the noise amplification on the
estimated signals. From this study we can consider several
further works. One is the proof of finite time convergence of
the 2nd-order proposed differentiator, which it is one of the
properties of the higher order sliding modes. The validation
experimental of the proposed algorithm on other reference
trajectories which have large frequency spectrum is also an
interesting subject to be investigated.
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APPENDIX

TABLE II: Specifications of the hydraulic actuator

Piston diameter 50 mm

Rod diameter 30 mm

Total moving load 5.9 kg

Length max 166 mm

Supply pressure pP 210 bar

Maximum static force 19858 N for pP = 210 bar

Maximum dynamic force 3238 N for pP = 210 bar
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