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Visual Focus of Attention estimation with
unsupervised incremental learning

Stefan Duffner and Christophe Garcia

Abstract—In this paper, we propose a new method for es-
timating the Visual Focus Of Attention (VFOA) in a video
stream captured by a single distant camera and showing sevalr
persons sitting around table, like in formal meeting or video-
conferencing settings. The visual targets for a given persoare
automatically extracted on-line using an unsupervised algrithm
that incrementally learns the different appearance clustes from
low-level visual features computed from face patches proded
by a face tracker without the need of an intermediate error-
prone step of head-pose estimation as in classical approaeh

i
The clusters learnt in that way can then be used to classify & i ) '/ Target 5
(
|

different visual attention targets of the person during a tracking

run, without any prior knowledge on the environment and the
configuration of the room or the visible persons. Experimens on
public datasets containing almost two hours of annotated deos
from meetings and video-conferencing show that the proposke
algorithm produces state-of-the-art results and even outerforms

a traditional supervised method that is based on head oriettion

estimation and that classifies visual focus of attention usg

Gaussian Mixture Models.

|

Fig. 1. Graphical illustration of VFOA estimation and th@éyof setting that
is used. Targets 1 to 4 are persons, 5 corresponds to the table

Index Terms—Unsupervised learning, pattern clustering, image |n'Ferest|ng d'recF'O” for future re_search beyond th_e scxm‘_pe
sequence analysis this work. In this paper, we will focus on (non-intrusive)

scenarios where a single camera is fixed at a few meters from
the filmed persons and where the persons stay roughly at the

. INTRODUCTION same places, like in formal meetings or video-conferencing
ENERALLY, the Visual Focus of Attention (VFOA) of applications (as illustrated in Figl 1).

a person denotes the target — an object or another persoprevious work on VFOA analysis in such open spaces
— the person is looking at, at a given point in time (see[Hig. Jlas mostly been based on the estimation of head pose as a
The automatic estimation of the VFOA of a person fromurrogate for gaze [10]; [11]; [12]. [13], [14]. [L5]. [168],
video is of great importance in many applications, such #7], [18], [19], [20], [21], [22], [23]. This is done either
human-computer interaction, video-conferencing, smarétm globally, e.g by learning to classify image patches of the
ing rooms, or human behaviour analysis in general, and muglad at different angles based on low-level visual features
research has been conducted in this area in the past yearsr |ocally, i.e. by localising certain facial features [24], [25]

and by geometrically and statistically inferring the glbba

A. Related Work orientation, or a combination of the two_[22] (see |[26] for
a literature survey). However, these algorithms mostlyireq

P'r|n0|pally, the_VFQA of berson 1s defined by thg Pelhe person(s) to face the camera more or less and be rather

Lo . ; N C 9%46se to it in order to have a relatively high image resolutio
est|mat|on from_w_deo exisL[1]L[2]LI3]L]4]115].16], bljlhew f the face. Using video, head pose estimation can be indlude
use is mostly limited to close-up and near-frontal views

a person’s face, for example in Human-Computer Interactics, a joint head and poseacking algorithm [27], [15], 28],
applications. Other works [7]1 8] 19] rely on the fusion o 29]. Early works of Stiefelhagen and Zhu [30], for example,

inf tion f | But often th tial used a Gaussian Mixture Model (GMM) on head pose angles
information from several cameras. but often the spatialdiam ., o qimate VFOA. The model is initialised withmeans and
configuration is very constrained or a preceding calibrati

; . . - . "urther updated with an Expectation-Maximisation aldarit
step Is _requwed, Wh'Ch_ can be d|ff|cult_ or even IrnloOss'bl?hey also showed that using the other participant’s spegakin
dependmg on Fhe application and environment. Also depétﬂatus increases the VFOA performance. Note that, in this
sensors,fhketl Klr}%ct, ATt?]\/e bﬁet?] gsed fqr.he:zd pos(;aﬁar_ld S&Ber, we will concentrate on methods that are relying on
gaz?hes(;mta o { ]f' th ough, ?'r pret(;]lsmn eDenth_ Iy!g visualinformation, although there are previous works that use
on the distance ot the person irom the sensor, this 1S g[]dio, actions or or types of cues to infer the VFOAI[30],/ [14]
S. Duffner and C. Garcia are with the Universite de Lyon, cyivsA-  [31], [32]. Ot_SUka anq Yamato [16] proposed a method based
Lyon, LIRIS, UMR5205, F-69621, France on a Dynamic Bayesian Network that also analyses the group



behaviour and detects certain conversational patterndMG  Another difficulty in automatic VFOA estimation is to
and Hidden Markov Model (HMM) approach for modellingdetermine the number of semantic visual targets for a given
and recognising VFOA was proposed by Sméhal [33] person in a video and to map them to given head pose
for people walking by an outdoor advertisement and by B& eye gaze angles. A preceding supervised training step is
and Odobez[[18] for analysing meeting videos. In the latteommonly performed on separate video data, and in some
work, the authors also presented a MAP adaptation methapproaches the modeé. a GMM) is adapted on-line to

to automatically adapt the VFOA model to the individuaa given video. However, it is desirable to avoid this scene-
persons as well as a geometrical model (based on findings frdependant training step or in some applications it mightheve
[34], [35]) combining head orientation and eye gaze dimtti be impossible. Further, the subsequent model adaptation ca
Voit and Stiefelhagen| [8],[[36] built on this geometricain many cases not cope with a different number of focusing
model and presented VFOA recognition results on a dynamargets or when the persons’ locations differ too much from
dataset with multiple cameras. Recently, Ba and Odadbez [3fipse in the training data.

extended their approach on VFOA estimation for meetingsIn this paper, we propose a novel approach that alleviates
with a Dynamic Bayesian Network (DBN) that incorporatethese problems. Our algorithm, given a video stream from
contextual information, like speaking status, slide clearmgnd a single camera and the rough 2D position estimation of a
modelling conversation behaviour. Domg al. [9] proposed person’s head, incrementally learns to automaticallyeexthe

an approach also based on a DBN which is similar to ou¥§~OA of the persorwithout explicitly estimating head pose
in the fact that they recognise VFOA by comparing trackeor gaze and without any prior model of the head, face, the
face image patches with a set of clusters modelling the fa®m configuration, or other external conditiarishe proposed
appearance for each attention target. However, the diféereo  method learn®n-the-flythe different classes of targets in an
our approach is that the clusters in their algorithm arene@i unsupervised way directly from the low-level visual featir
before the tracking and in a supervised way. Thus, the numBéris means also that, as opposed to supervised algorithms,
of targets and the targets itself are known in advance. it will not assign labels to the different targets.g'table’,

The recent work of Benfol@t al. [20] is similar to ours in ’screen’, 'person 1’). However, we will experimentally sho
that they also perfornunsupervisedraining on head imagesthat the proposed unsupervised approach is able to identify
in order to determine where people look at in a given videand estimate the (unlabelled) targets with higher accutzary
However, their approach is not incremental (although theyclassical supervised approach. The fact that no preetiain
claim that it could be extended) and needs an initial trginirmodel is needed makes this approach especially interesting
of prior models using hand-labelled ground plane velogitidor applications where the specific environment, as well as
and gaze directions of persons in a given video. They do rtbe configuration of the room and the filmed persons is not
extract VFOA but head orientation (using a given number &hown a priori, and where an explicit training phase is not
classes), and they apply their approach to video surveilarpossible.
data where they take advantage of people moving, which o
is different from our indoor scenario. On the one hand, tife: Contribution
advantage of their probabilistic model — a conditional @nd  In [38], we introduced a basic algorithm for unsupervised
field (CRF) — is that a more powerful discriminative heathcremental learning of VFOA clusters from low-level fea-
pose classifier can be learnt taking into account severdehid tures. We have improved this work in the following way:
variables (walking speed, angle velocities etc). On theeroth « The VFOA recognition has been changed from a sim-
hand, the complexity of learning and inference is increased ple frame-by-frame classification into a Hidden Markov
and the model is also independent from the head tracking as Model (HMM) with full Bayesian inference on an au-
opposed to our approach that allows for a purely sequential tomatically learnt observation model and state transition

and joint inference. distribution.
o « The VFOA estimation process has been integrated in the
B. Motivation Particle Filter framework that now performscambined

As experimental results of these previous works show, head face and VFOA tracking.
pose can be used effectively to estimate the VFOA of a groupe The cluster management of the incremental learning
of peopleg.g in a meeting room, to a certain extend. However, algorithm has been extended, notably to allow also for
there are certain drawbacks of this approach: for example, i merging two clusters into one during the training.
uncontrolled environments it is difficult to estimate heas@  « Finally, more extensive experiments have been performed
reliably because it often requires a large amount of anadtat  varying different parameters of our approach, showing an
training data of head appearances or shapes beforehand in improved classification accuracy compared td [38] as well
order to model all the possible variations of a head and face as a classical supervised VFOA recognition approach.
among different people as well as for a given individual.§ehe The outline of the paper is as follows. Sectioh Il briefly
data are often not available, or too time-consuming to pcedu describes the overall VFOA estimation procedure. In sactio
Further, for accurate head pose estimation results, avediat [[II] the overall face and VFOA tracking algorithm is explath
precise localisation of the head, the face, or facial festur Sectior IV describes the unsupervised incremental legrain
commonly called face alignment — is crucial but challengingorithm. Finally, experimental results are presented ttise
in unconstrained application scenarios. [Vl and in sectiof Ml we draw our conclusions.



Particle Filter: face position + VFOA (z,y, s) with z, y being its position and being its bounding
face and VFOA > box scale factor, as well as the current VFOA target index

tracking vel.V
face image patches '!'he dynamics of the fa_ce stapeeXt|Xt_1) are.define_‘d by
a first-order auto-regressive model with Gaussian noise:

p(Xe|Xio1) = N (Xi-130,5,) - 2
VFOA model HMM
training

video stream

The dynamics of the discrete VFOA target indeare defined
by transition probability matrix

Fig. 2. Principal procedure of the VFOA learning and tragkapproach. A= [aij]’ ii=1.V with
aij = p(ve = jlvg = 1) 3

Il. OVERALL PROCEDURE . i B
Th incioal d f h is illustrated being the transition probability from VFOA targétto j.
€ principal procedure of our approach 1S 1ustrated Wy, q ¢ yariance matriX, = diag(opz, opy, ops) Of the auto-

figure[2. First, a basic tracking algorithm is 'n't'al'seddanregressive model is fixed, whereas the matiis learnt online

fracks a rectangular face region throughout the video rmeaduring the tracking of a person in a given video stream. Detai

T.he image patch inside the trackeq f_ape_regmn is extractdd 31 how A is learnt are presented in section 1V-B.
visual features are computed to initialise the VFOA model The observations likelihood is defined as the product of a

at the first_ video frar_n(_a and to update it at each subs_equgg}our likelihood and texture likelihood::
frame during the training phase (see secfioh 1V). An incre-
mental clustering algorithm on these low-level featurassisd p(Y¢|X;) = p(YE I X)p(YT|X,) (4)
g; Itehaernngg napf\teat[]aencszsmzortrizsg Ogd:]‘gt rtig ?T:t:ggm;ﬁﬁgherg the colour likelihood is usgd to track the position
e T : . and size(zx,y, s) of the face bounding box, and the texture
transition probabilities between the different targetéemrnt, welihood i inlv used to track the VFOA taraet We
and together with the clusters forms a continuous HMI\}IG'{ ?.' 90 IS mainly ge
Note that this incremental learning is dowa-the-fly and efine: .
does not require any prior knowledge on head pose or room
configuration, " ? P P(YE[X,) o exp (—MZ(Dé[h:,mxt)D) NG
After a given number of iterations (a couple of minutes r=1
from the beginning of a video) the training phase stops aMere\; is a constanth,.(X;) are HSV colour histograms
the Particle Filter continues to jointly track face positiand €xtracted from a grid of = 9 cells centred aX;, h; is the
VFOA of a person using the learnt HMM moddle. the reference histogram initialised from the face region inftret
transition probabilities and the face clusters. (see sefifi). frame, andDc¢ is the Bhattacharyya distance. As in[39], the
Note also that we assume that the VFOA targets are rf¥stogram bins for the H and S channels are decoupled from
moving, and ouiincrementalalgorithm learns the underlyingthe V channel. Also the quantisation is applied at two défer
“static” distributions in a sequential manner as opposed i@vels,i.e. 4 bins and 8 bins, to improve the robustness under
on-line learningalgorithms which are also sequential but ca#lifficult lighting conditions. This leads to an overall cato
further adapt to non-stationary distributions. observation vector size ¢f- (8 -8 +8 +4 -4 +4) = 828.
In order to facilitate understanding, before describing th The texture likelihood is defined similarly:
main contribution of the paper.e. the unsupervised VFOA 16
learning, we will first explain the underlying tracking fram p(YT|X,) o exp <_/\2 Z (DT[ur,v,tr(Xt)])> . (6)
work in the following section.

r=1

where )\ is a constantt,.(X;) are Histograms of Oriented
Hl. FACE AND VFOA TRACKING Gradients (HOG) (see description below) extracted (sityila

For tracking the face position and VFOA of a person, wg h,.) from a grid of16 cells (indexed by) centred aiX,, and

used the Sequential Monte Carlo algorithm, commonly knows_ are the reference histograms corresponding to the VFOA

as Particle Filter.f. [39], [29], [4Q)). It provides a solution target indexs in X,. The overall texture model is composed of

for the classical recursive Bayesian model, where, assmmi set of N-dimensional clusters with means.; where each

we have the observatior¥,.; from time 1 to ¢, we estimate clusteri € 1..V corresponds to a VFOA targeD; is the

the posterior probability distribution over the st&eg at time normalised Euclidean distance:

[

N

(tr-,'(Xt)_ m'-,')Q
p(Xt|Y1:t):ép(Yt|Xt) Dr(py i tr(X0)) = | D a.§+5 . M

j=1
X / p(Xe|Xi—1)p(Xi—1|Y1:4-1) dXi—1, (1) with e being a small constant avoiding division by zero.
Xi-1 The feature vectors, (X;) constitute the visual observa-

whereC' is a normalisation constant. In our experiments, thtens used for recognising the VFOA targets of a person in
stateX; = (X;, v) is composed of the state of the faks = a video by means of(Yr|X:). They are computed on a 4



Vrientation

magnitude

@) (b)

A. VFOA clustering

The visual feature vectors.(X;) computed on the image
region corresponding to the mean state of the current distri
bution at timet are used to incrementally learn the VFOA
classes. To this end, we propose a specific sequéntiaans

clustering algorithm with an adaptive number of clusteitse T

Fig. 3. Visual feature extraction for the VFOA model. a) HOéatlures are
computed on a grid ot x 4 cells placed on the tracked face. b) To comput

algorithm constructs a model &f clusters corresponding to

the histograms, gradient orientation is quantised into & lfrespectively 8 the VFOA classes and described by their mean feature vectors

bins) and magnitude into 2 bins.

m,.; (i = 1.k) and a global diagonal co-variance matrix
3 = diag(oy,. ..,
notation, we drop the indexes for the cellnd the time step
t, denoting the current cluster means jas and the current
feature vector as. Algorithm[d summarises the main learning
procedure. At each time step the observed feature vector

on). For better readability, in the following

Algorithm 1 Incremental VFOA cluster learning algorithm

k= kini

n, =ty i=1.k%k
Fig. 4. The Hidden Markov Model used to estimate the hiddescrdie ni=0 i=1.1k
variablev (the VFOA target) from the observations (feature vectors) using X=X

the learnt transition probability matrid.

by 4 grid of non-overlapping cells on a face image patch as
illustrated in Fig.[3(@). For each cell, two normalised two-
dimensional histograms of unsigned oriented gradients and
magnitudes are computed using a specific quantisation schem
illustrated in Fig[3(H). The gradient orientation is qused

in 4 bins and the magnitude in 2 bins. An additional bin (with
no orientation) is used for very weak gradients (in the aentr
of the half circle in the diagram). Also, to improve the odkera
robustness and discriminative power, we compiwe his-
tograms at different quantisation levels for orientatidrand

8, and normalise each of them separately. Thus, the dimensio
N of the feature vector ist6-(4-2+1+8-2+1) = 416. One
advantage of these histogram features is that they arévedjat
robust to small spatial shifts of the overall bounding box,
which frequently occur with common face tracking methods.

IV. LEARNING VFOA

The VFOA model can be regarded as a dynamic HMM
estimating the hidden variable the VFOA target index, from
the observed featurds (X;), illustrated in Fig[4. It consists

for t=1to T do

¢ = argmin, (Dr(t, ;) > get closest cluster

B k k
Dy = N(]\2/+1) Diz1 Zj:iﬂ(DT(Niv K;))
if Dr(t,p,) > 0.Dr then > add new cluster

k+—k+1
ne = 1
Hy =t
else
Ne ¢ Ne + 1 > update closest cluster
He — M + nlc(t _""c)
end if

incrementally updat&
for each cluster pairi(j) do
if Dr(p,,,p.,) < 04Dr then
p; = (nip; + ”j/ij)/(”i +ny)
n; =n; +n;
remove cluster
k+—k—1
end if

end for

> merge clusters

of two main parts. First, the data model that is used for theend for

likelihood computation in Eq.]6 and that contains theluster

meansy,; and a global co-variance matr®, and second, the is computed, and the closest clustetis determined using

matrix A (Eq.[3) defining the transition probabilities fromthe normalised Euclidean distance (Ed. 7). Also, the mean

one cluster to another. All, these parameters are learnt alistance Dr between each of thé clusters is calculated,

line during the training phase, and used subsequently in thied a new cluster is created if the distance of the current

tracking €.f. sectior 1l). After training, the learnt parameterseature vector to the closest cluster is greater thabr,
w;, X, and A of the HMM are used in the Particle Filterwhere 6. is a parameter of our algorithm (set ®in our
framework explained in the previous section to jointly estie experiments). Then, the mean vecjor of the closest cluster
the posterior probability of the stad€, at each time step. In as well as the global covariance matik are incrementally
the following, the training procedures are described inenoupdated using the current feature vectorln the previous

detail.

version [38] of the algorithm, the closest cluster means of



the previous time steps and neighbouring clusters were alsg
updated. However, with the integration of the model into the
Particle Filter framework, this did not improve the overall
performance significantly. Thus, we removed this step.I§ina
pairs of clusters are merged together if the distance of thei
means are below the threshdlgD, (with 6, = 0.01 in our
experiments). At each time step, the algorithm classifies th
observed features from the mean state of a face into one
of the k clusters:c, and, as we will show in the following
experimental results, the learnt classes correspond toge la
degree to specific targets of VFOA.

B. VFOA Transition Model

The transition probability matrixA of equatior B is learnt
on-line during the training phase at the same time as théetlus
centres. The main procedure is the following. The visual fea
ture vectorg of the image patch corresponding to the current
mean state are extracted, and the closest clustacording to
the normalised Euclidean distance (Eh. 7) is computed. ,Then
the transition probabilities., , ; := p(v = jlv = ¢;—1) are
linearly updated, using the following equation:

ey = Vhj=e, + (1 = 7)c,_y 5 Vjel.k, (8) Fig. 5. Example frames from the three datasets that have bsed for
o ) evaluation. Top TA2 dataset, middle: PETS 2003 dataset,battom IHPD
where 1, denotes the indicator function, and the constadataset. (Faces have been blurred artificially in this figure

~ = 0.001. Thus, the transition probability fromy_; to ¢; is

increased, and from;_; to any other clustey is decreased.

Also, a new row and column is added if a new cluster is V. EVALUATION
created and inversely if a cluster is removed. At the end dfieaa. Data

iteration, the FOWE: -1 that has bee*.‘ updated is normalised to We evaluated the proposed approach on three public datasets
sum up tol.0. Algorithm[2 summarises the overall procedure, ; . g :

" T .e[1rom different scenarios, each containing a certain nunatber
In many cases, the learnt transition matrix will have hig o .

persons sitting around a table and filmed roughly from the

front (see Figlb). Note that we do not evaluate the accurficy o
face or head pose tracking, as this is not the main contabuti
initialise A to uniform distribution:a;; = 1 i,j € 1.k of the paper. Our main goal is to correctly estimate the VFOA

Algorithm 2 Incremental learning of the transition matrix

for t = 1to T do of a person, which reqqires a robust face tracking system.
adapt the size ofd to k x k The VFOA targets are different for each datasets, due to the
¢, = argmin, D(t, p;) scenario and the layout of the room. The three datasets are:
Qepoy,j = YLj=c: + (1 = V)ac; e TA2@[41]: in this set there are two videos from two different
normalise rowc;—; to sum up tol.0 rooms where people communicated over a video-conferencing

end for system and performed a shared task on a laptop in front of

them. In the first video, there are four persons and in the
values on the diagonal (staying in the same state mostsafcond there are two. The defined VFOA targets are the table,
the time) and low values elsewhere. Of course, this deperttle camera, and the other persons, 5 targets for the first
on the dynamics of the scene. In our formal meeting settingdeo and 3 for the second. For each person, 7500 frames (5
people are interacting frequently and changing their #dan minutes 30 minutes in total, have been annotated.
targets quite often. Thus, this seems not to be a limitatio
But even in more static settingse.¢ a person giving a talk),

this model is still appropriate. And we can observe this WltWith four persons, where each video shows two participants

less active persons in some videos in our experiments.ngIeaBehinol a table. The annotated targets are the table, the slid

transitions with very low probabilities can still be “trigged” )
. Lo . screen, and the other persons (the whiteboard target has not
if the observation likelihood of the target state is high eglto. been used here). 110040 frames 1 hour 13 minutes) with

Nevertheless, to prevent extreme cases where a transifj : : :
. . . . OA annotation have been used in total for the evaluation.
probability becomes zero and thus a state inaccessiblayrin o

experiments, we set a very small lower boundary—¢) for Yhttps:/Awww.idiap.chidataset/ta2
the transition probabilities. 2nttps://www.idiap.ch/dataset/headpose

IrI‘-IPD|3[42]: this dataset consists of the "meeting" part of the
Hjiap Head Pose Database. It contains 8 meeting recordings


https://www.idiap.ch/dataset/ta2
https://www.idiap.ch/dataset/headpose

number number of VFOA annotated

dataset of videos persons  targets frames

TA2 2 6 5/3 7500

IHPD 8 16 5 110040

PETS 2003 2 6 5 47000

total 12 28 5/3 164540 (110 min.)
TABLE |

THE THREE DATASETS AND ANNOTATION USED FOR EVALUATION

PETS 2008: this dataset contains two videos from a formal
meeting of six participants (scenario D), where each video
shows 3 of the persons roughly from the front (similar to
IHPD). Here, the VFOA targets that have been annotated for -
each participant are the other five participants. The pexvid
VFOA annotation for the 6 persons and 47000 frame8(
minutes) in total has been used.

Table [1 summarises the properties of these datasets. o
Annotation has been done manually and frame-by-frame, ’ S ’
where frames with ambiguous visual focus and transition
phases have not been annotated.

B. Qualitative evaluation

First, we will show some qualitative results on the clustgri
that is obtained on some of the videos. Fiy. 6 illustrates tipgy. 6. Visualisation of the clustering of low level featarproduced by the
result of the proposed on-line clustering algorithm (Alg. 1p_r0p0§e_d inclfem)ental lelaqc?ing _alﬁorithm (Nblﬁ- 1) for Séomamplez- (Best
. . . . iewed in colour.) From left to right, top to bottom: TA2 rooiy TA2 room
for six ,dlﬁ,erent persons and Vld_eos' EaCh_ point represant , 2 x IHPD, PETS, and the last example shows a poor clusteesglt for
2D projection of the 416-dimensional gradient feature et one TA2 example.

t,.(X;) extracted from the mean state at timeafter the

training phase). The linear embedding has been performed by -2 l:‘ -, B
applying multi-dimensional scaling with Euclidean distan h E E
measure on the whole data. Different colours (and point 3 N g 3
shapes) correspond to different labels produced by a kddear m F“1 g ﬂ I l . l
Neighbour classifier using the normalised Euclidean désan _ o ! _
Eq.[d, and the learnt cluster meaps as references. Note m“ B.I :

that the clusters means have been trained during the teainjn . .
. . . . ig. 7. Four examples of face images that are closest to thresponding
phase,i.e. the first few minutes of a video. There are tW@earnt cluster centres. Upper-left and lower-left: fromPIBl dataset. Upper-

difficulties that we want to emphasise here: first, tiest right and lower right: from TA2 (first video).
data might be distributed slightly differentlg.¢ the person’s

main focus changes), and second, the training data arriveﬁ | din th directi
sequentially and in a non-random ordiee, a person’s focus other persons are almost seated in the same gaze direction.

changes slowly and might be static for long periods. Note,ald" the bottom right example, two clusters (corresponding to
that the 2D projection of all points suggests that clustgitn the second and fourth image) have been created for the same
difficult in many cases, like in the top middle, bottom leftda VFOA target: the table. Apart from these errors, the results

bottom right example where cluster centres and frontiees dPOSty make sense.

not so clear. Nevertheless, the output of the algorithm ook Finally, Fig.[8 visualises the VFOA tracking over time for
reasonable, apart from the bottom right example. two example videos. At each time stephe red circles show

In order to experimentally verify if the leamnt clusters corth€ ground truth targets, and the blue crosses the output of

respond to different VFOA targets, we saved for each tragkif® tracking algorithmi.e. thev component of the mean state
X;. Some targets have not been learnt by the initial clustering

run the face image regions corresponding to the featurergect s b
t,(X,) that were closest to the cluster centzesFig.[7 shows and thus are not recognised. This is because these targets ar
some examples. We can see that the images come from S frequent (apart from target 4 in the bottom example),
ferent head poses mostly corresponding to real VFOA targe?®d thus, potential clusters would be sparsely represemted
Clearly, some targets might not be captured by the model, gfficult to estimate. In the bottom example, from the IHPD
in the top right example of Fig]7 (corresponding to the lefd@taset, targets 2 and 4 corresponds to persons that g sitt
most person in the top-left image of Fig. 5) because the thré@Y close to each other. Here, the person’s VFOA is mostly
controlled by his eye gaze, and the head pose is almost the

3http://www.cvg.rdg.ac. uk/slides/pets.html same. Thus, only target number 2 is recognised.



http://www.cvg.rdg.ac.uk/slides/pets.html

VFOA target

VFOA target

TA2 IHPD PETS 2003 average
k=4 0.7242 0.5248 0.4597 0.5696
k=5 0.693 0.4816 0.4747 0.5498
k=6 0.6219 0.4777 0.4639 0.5212
variablek  0.7663 0.5163 0.4437 0.5754
2 o TABLE 1l

ground truth O

VFOA RECOGNITION RATE OF THE PROPOSED ALGORITHM WITH FIXED

VFOA tracking output

1
10000

11000 12000 13000 14000 15000 16000 17000 18000 AND VARYING NUMBER OF CLUSTERS

frame

ground truth O

6 VFOA tracking output TA2 IHPD PETS 2003 average
5 ) @0 o Euclidean 07 0.5713  0.5013 0.4308 0.5011
Bhattacharyya 107, 0.608  0.5047 0.4033 0.5053
4 © 6 o6 @Boo emmn ® O em» o normalised EuclideanI§7) 0.7915 0.5282 0.4668 0.5955
3 - = = —— S S = — =
TABLE llI

VFOA RECOGNITION RATE WITH DIFFERENT DISTANCE MEASURES
REPLACING D7 IN EQ.[7.

2
8000

8500

9000 9500

frame

10000 10500 11000 11500

Fig. 8. Visualisation of VFOA classification over time fordvexample videos
from TA2 and IHPD (best viewed in colour.) Red circles show tiround
truth VFOA targets and blue crosses the output of a k-Neadesghbour
classifier with the proposed clustering algorithm. Clustér 2, 3 from the
top example and 4 and 5 from the bottom have not been foundebjnitil
on-line learning algorithm, and thus are not recognised.

In our first experiment, we studied the influence of using
a variable number of clusterg, i.e. dynamic cluster creation
and merging in Alg[l, compared to usindiged k. Table[T]
shows the results for the three datasets. It can be seen that

Note that, as our algorithm is unsupervised, we do not hattee £ with the highest average FRR depends on the dataset.
the actual estimated VFOA target®( meaningful labels) that However, on average,\ariable cluster number gives the best
we can directly compare to the ground truth. For evaluatiaverage FRR over all datasets. Therefore, we used a variable
purposes, after running our method on a whole video, wefor the following experiments (as presented in Alg. 1).
therefore assign to each cluster the target that maximise$-urther, we replaced the normalised Euclidean distdnge
VFOA accuracy,i.e. we assume that we know which targebf Eq.[d with the simple Euclidean distance:
label each cluster corresponds to. We believe that this tis no
a very restrictive assumption, as the labels could be asdign
in a separate processing step, for example by incorporating
more general discriminative classifier trained beforehand

N

> (i (Xe) = pirig)?

J=1

D/T(Hr,iatr(xt)) = (10)

as well as the Bhattacharyya distance:

C. Quantitative evaluation

N
1 _ _ . .
Additionally, we quantitatively evaluated the complete Dyt tr(Xe)) = |1 z} brj Xy - (1)
=

VFOA tracking algorithm on the three datasets described

above by initialising it manually with a bounding box around he results summarised in talplel Ill show that tiegmalised
the face and measuring the VFOA recognition accuracy IReclidean distancér (Eq.[7) largely outperforms the other
assigning a label to each cluster as described above, #&giances in terms of the FRR on all the dataset.

counting the Frame-based Recognition Rate (FRR) of theln another set of experiments, we varied the number of
VFOA for all the videos and averaging it over each dataségrations for our incremental training algorithm in order

and over several runs. The FRR is simply the proportion gnderstand the impact of this parameter on the overall VFOA
frames with correctly recognised VFOA: recognition rate. Figurg] 9 shows the results. As for the rothe

experiments, the VFOA recognition rates are averaged over
FRR = Ne , several runs and always computed on the same number of
N frames (irrespective of the number of training iterations)
where N, is the number of correct classifications, aig is It can be seen that using very few training iterations,
the total number of annotated video frames. As our algorithiglow 1000-2000, deteriorates the performance for allstdsa
is learning the VFOA modehcrementallywe need to account And beyond around 4000 iterations, the performance stays
for a certain training phase, which we do not include in th&latively stable.
evaluation. We used 8000-(5 min.) training frames in the  Finally, we compared the proposed approach with three
beginning of the videos (not annotated), and evaluatedffe Fother approaches:
on the following sequence with annotation. This length hase supervised a state-of-the-art supervised approach, that
been chosen in order to have enough training datalothe uses a specific face detection and tracking algorithm, a
VFOA targets of a person, as sometimes a target is focused head pose estimator as in_[29], and Gaussian Mixtures
for the first time only after several minutes. A more detailed Models (GMM) to model different VFOA targets in terms
analysis on this parameters is given below (Eig. 9). of head pose pan and tilt angles asl(inl[30],/[18]. In this

9)
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Fig. 9. VFOA recognition rate for the three datasets withyway number of
training iterations.

TA2 IHPD PETS 2003 average

supervised([37] 0.59 0.49 0.26 0.4489

no PF 0.7663  0.5163 0.4437 0.5754

PF, fixed TM 0.6577  0.5235 0.4379 0.5397

PF, learnt TM  0.7915 0.5282 0.4668 0.5955
TABLE IV

VFOA RECOGNITION RATE OF THE PROPOSED ALGORITHM WITH AND
WITHOUT PARTICLE FILTER INTEGRATION, AND WITH FIXED OR LEARNT
TRANSITION PROBABILITY MATRIX A COMPARED TO A CLASSICAL
SUPERVISED APPROACH

approach, the head pose model is trained beforehand,

where around- 11% of CPU time is spent on feature extrac-
tion for VFOA (gradient computation on the whole image),
and less than 1% on the VFOA learning and classification.

VI. CONCLUSION

We presented a VFOA tracking algorithm that incremen-
tally, and in an unsupervised way, directly learns a VFOA
model from low-level features extracted from a stream of
face images coming from a tracking algorithm. The VFOA
estimation is based on an HMM whose parameters are learnt
incrementally and which is tightly integrated into a global
Particle Filter framework that is used for face tracking. In
a meeting room or video-conferencing setting, the proposed
method is able to automatically learn the different VFOA
targets of a person without any prior knowledge about the
number of persons or the room configuration. By assigning
a VFOA label to each cluster a posteriori, we evaluated the
VFOA recognition rate for three different datasets and &imo
two hours of annotated data. The obtained results are very
promising and show that this type of unsupervised learning
can outperform traditional supervised approaches.

Future work will investigate different types of visual fea-
tures, more dynamic scenarios with moving persons and
the possibility of automatically assigning meaningful déb
to the clusters. Also, it would be interesting to study the
generalisation capability of the algorithm to unseen v&leo
(same room with different persons) as this might enable a
fdader range of practical applications. Finally, a coraton

a supervised way, and the GMM parameters have begflg nervised and unsupervised learning might be beneficial

partly trained and partly defined manually.
no PF a variant of the proposed approach that do

and improve the overall performance of VFOA recognition.

§Sspecially when there are attention targets that are facase

not integrate the VFOA estimation into the Particle FiIteBmy rarely and thus might not be captured by the proposed
tracking,i.e. v is not included in the state vector and i%lustering algorithm.

estimated frame-by-frame by/aNN classifier using the
feature vectors(X;) of the mean state and the cluste
meansy;, as in our previous work [38].

Filter VFOA tracking and a fixed, uniform transition
probability matrix A.

PF, learnt TM: the proposed approach as presented
this paper,i.e. with Particle Filter VFOA tracking and
learnt transition matrixA

Table [[M shows the average FRR for these different a

PF, fixed TM: a variant of the our approach with Particle[
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