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Visual Focus of Attention estimation with
unsupervised incremental learning

Stefan Duffner and Christophe Garcia

Abstract—In this paper, we propose a new method for es-
timating the Visual Focus Of Attention (VFOA) in a video
stream captured by a single distant camera and showing several
persons sitting around table, like in formal meeting or video-
conferencing settings. The visual targets for a given person are
automatically extracted on-line using an unsupervised algorithm
that incrementally learns the different appearance clusters from
low-level visual features computed from face patches provided
by a face tracker without the need of an intermediate error-
prone step of head-pose estimation as in classical approaches.
The clusters learnt in that way can then be used to classify the
different visual attention targets of the person during a tracking
run, without any prior knowledge on the environment and the
configuration of the room or the visible persons. Experiments on
public datasets containing almost two hours of annotated videos
from meetings and video-conferencing show that the proposed
algorithm produces state-of-the-art results and even outperforms
a traditional supervised method that is based on head orientation
estimation and that classifies visual focus of attention using
Gaussian Mixture Models.

Index Terms—Unsupervised learning, pattern clustering, image
sequence analysis

I. I NTRODUCTION

GENERALLY, the Visual Focus of Attention (VFOA) of
a person denotes the target – an object or another person

– the person is looking at, at a given point in time (see Fig. 1).
The automatic estimation of the VFOA of a person from
video is of great importance in many applications, such as
human-computer interaction, video-conferencing, smart meet-
ing rooms, or human behaviour analysis in general, and much
research has been conducted in this area in the past years.

A. Related Work

Principally, the VFOA of a person is defined by the per-
son’s eye gaze direction. Many studies about automatic gaze
estimation from video exist [1], [2], [3], [4], [5], [6], buttheir
use is mostly limited to close-up and near-frontal views of
a person’s face, for example in Human-Computer Interaction
applications. Other works [7], [8], [9] rely on the fusion of
information from several cameras. But often the spatial camera
configuration is very constrained or a preceding calibration
step is required, which can be difficult or even impossible
depending on the application and environment. Also depth
sensors, like Kinect, have been used for head pose and eye
gaze estimation [6]. Although, their precision depends highly
on the distance of the person from the sensor, this is an
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Fig. 1. Graphical illustration of VFOA estimation and the type of setting that
is used. Targets 1 to 4 are persons, 5 corresponds to the table.

interesting direction for future research beyond the scopeof
this work. In this paper, we will focus on (non-intrusive)
scenarios where a single camera is fixed at a few meters from
the filmed persons and where the persons stay roughly at the
same places, like in formal meetings or video-conferencing
applications (as illustrated in Fig. 1).

Previous work on VFOA analysis in such open spaces
has mostly been based on the estimation of head pose as a
surrogate for gaze [10], [11], [12], [13], [14], [15], [16],[8],
[17], [18], [19], [20], [21], [22], [23]. This is done either
globally, e.g. by learning to classify image patches of the
head at different angles based on low-level visual features
or locally, i.e. by localising certain facial features [24], [25]
and by geometrically and statistically inferring the global
orientation, or a combination of the two [22] (see [26] for
a literature survey). However, these algorithms mostly require
the person(s) to face the camera more or less and be rather
close to it in order to have a relatively high image resolution
of the face. Using video, head pose estimation can be included
in a joint head and posetracking algorithm [27], [15], [28],
[29]. Early works of Stiefelhagen and Zhu [30], for example,
used a Gaussian Mixture Model (GMM) on head pose angles
to estimate VFOA. The model is initialised withk-means and
further updated with an Expectation-Maximisation algorithm.
They also showed that using the other participant’s speaking
status increases the VFOA performance. Note that, in this
paper, we will concentrate on methods that are relying on
visual information, although there are previous works that use
audio, actions or or types of cues to infer the VFOA [30], [14],
[31], [32]. Otsuka and Yamato [16] proposed a method based
on a Dynamic Bayesian Network that also analyses the group
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behaviour and detects certain conversational patterns. A GMM
and Hidden Markov Model (HMM) approach for modelling
and recognising VFOA was proposed by Smithet al. [33]
for people walking by an outdoor advertisement and by Ba
and Odobez [18] for analysing meeting videos. In the latter
work, the authors also presented a MAP adaptation method
to automatically adapt the VFOA model to the individual
persons as well as a geometrical model (based on findings from
[34], [35]) combining head orientation and eye gaze direction.
Voit and Stiefelhagen [8], [36] built on this geometrical
model and presented VFOA recognition results on a dynamic
dataset with multiple cameras. Recently, Ba and Odobez [37]
extended their approach on VFOA estimation for meetings
with a Dynamic Bayesian Network (DBN) that incorporates
contextual information, like speaking status, slide change, and
modelling conversation behaviour. Donget al. [9] proposed
an approach also based on a DBN which is similar to ours
in the fact that they recognise VFOA by comparing tracked
face image patches with a set of clusters modelling the face
appearance for each attention target. However, the difference to
our approach is that the clusters in their algorithm are trained
before the tracking and in a supervised way. Thus, the number
of targets and the targets itself are known in advance.

The recent work of Benfoldet al. [20] is similar to ours in
that they also performunsupervisedtraining on head images
in order to determine where people look at in a given video.
However, their approach is not incremental (although they
claim that it could be extended) and needs an initial training
of prior models using hand-labelled ground plane velocities
and gaze directions of persons in a given video. They do not
extract VFOA but head orientation (using a given number of
classes), and they apply their approach to video surveillance
data where they take advantage of people moving, which
is different from our indoor scenario. On the one hand, the
advantage of their probabilistic model – a conditional random
field (CRF) – is that a more powerful discriminative head
pose classifier can be learnt taking into account several hidden
variables (walking speed, angle velocities etc). On the other
hand, the complexity of learning and inference is increased,
and the model is also independent from the head tracking as
opposed to our approach that allows for a purely sequential
and joint inference.

B. Motivation

As experimental results of these previous works show, head
pose can be used effectively to estimate the VFOA of a group
of people,e.g. in a meeting room, to a certain extend. However,
there are certain drawbacks of this approach: for example, in
uncontrolled environments it is difficult to estimate head pose
reliably because it often requires a large amount of annotated
training data of head appearances or shapes beforehand in
order to model all the possible variations of a head and face
among different people as well as for a given individual. These
data are often not available, or too time-consuming to produce.
Further, for accurate head pose estimation results, a relatively
precise localisation of the head, the face, or facial features –
commonly called face alignment – is crucial but challenging
in unconstrained application scenarios.

Another difficulty in automatic VFOA estimation is to
determine the number of semantic visual targets for a given
person in a video and to map them to given head pose
or eye gaze angles. A preceding supervised training step is
commonly performed on separate video data, and in some
approaches the model (e.g. a GMM) is adapted on-line to
a given video. However, it is desirable to avoid this scene-
dependant training step or in some applications it might even
be impossible. Further, the subsequent model adaptation can
in many cases not cope with a different number of focusing
targets or when the persons’ locations differ too much from
those in the training data.

In this paper, we propose a novel approach that alleviates
these problems. Our algorithm, given a video stream from
a single camera and the rough 2D position estimation of a
person’s head, incrementally learns to automatically extract the
VFOA of the personwithout explicitly estimating head pose
or gaze and without any prior model of the head, face, the
room configuration, or other external conditions. The proposed
method learnson-the-flythe different classes of targets in an
unsupervised way directly from the low-level visual features.
This means also that, as opposed to supervised algorithms,
it will not assign labels to the different targets (e.g.’table’,
’screen’, ’person 1’). However, we will experimentally show
that the proposed unsupervised approach is able to identify
and estimate the (unlabelled) targets with higher accuracythan
a classical supervised approach. The fact that no pre-trained
model is needed makes this approach especially interesting
for applications where the specific environment, as well as
the configuration of the room and the filmed persons is not
known a priori, and where an explicit training phase is not
possible.

C. Contribution

In [38], we introduced a basic algorithm for unsupervised
incremental learning of VFOA clusters from low-level fea-
tures. We have improved this work in the following way:

• The VFOA recognition has been changed from a sim-
ple frame-by-frame classification into a Hidden Markov
Model (HMM) with full Bayesian inference on an au-
tomatically learnt observation model and state transition
distribution.

• The VFOA estimation process has been integrated in the
Particle Filter framework that now performs acombined
face and VFOA tracking.

• The cluster management of the incremental learning
algorithm has been extended, notably to allow also for
merging two clusters into one during the training.

• Finally, more extensive experiments have been performed
varying different parameters of our approach, showing an
improved classification accuracy compared to [38] as well
as a classical supervised VFOA recognition approach.

The outline of the paper is as follows. Section II briefly
describes the overall VFOA estimation procedure. In section
III, the overall face and VFOA tracking algorithm is explained.
Section IV describes the unsupervised incremental learning al-
gorithm. Finally, experimental results are presented in section
V, and in section VI we draw our conclusions.
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Particle Filter:
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tracking

HMM
training

video stream

face image patches

VFOA model

face position + VFOA

Fig. 2. Principal procedure of the VFOA learning and tracking approach.

II. OVERALL PROCEDURE

The principal procedure of our approach is illustrated in
figure 2. First, a basic tracking algorithm is initialised and
tracks a rectangular face region throughout the video stream.
The image patch inside the tracked face region is extracted and
visual features are computed to initialise the VFOA model
at the first video frame and to update it at each subsequent
frame during the training phase (see section IV). An incre-
mental clustering algorithm on these low-level features isused
to learn face appearances corresponding to attention targets
of the person. At the same time a matrix modelling the
transition probabilities between the different targets islearnt,
and together with the clusters forms a continuous HMM.
Note that this incremental learning is doneon-the-fly and
does not require any prior knowledge on head pose or room
configuration.

After a given number of iterations (a couple of minutes
from the beginning of a video) the training phase stops and
the Particle Filter continues to jointly track face position and
VFOA of a person using the learnt HMM model,i.e. the
transition probabilities and the face clusters. (see section III).

Note also that we assume that the VFOA targets are not
moving, and ourincrementalalgorithm learns the underlying
“static” distributions in a sequential manner as opposed to
on-line learningalgorithms which are also sequential but can
further adapt to non-stationary distributions.

In order to facilitate understanding, before describing the
main contribution of the paper,i.e. the unsupervised VFOA
learning, we will first explain the underlying tracking frame-
work in the following section.

III. FACE AND VFOA TRACKING

For tracking the face position and VFOA of a person, we
used the Sequential Monte Carlo algorithm, commonly known
as Particle Filter (c.f. [39], [29], [40]). It provides a solution
for the classical recursive Bayesian model, where, assuming
we have the observationsY1:t from time 1 to t, we estimate
the posterior probability distribution over the stateXt at time
t:

p(Xt|Y1:t) =
1

C
p(Yt|Xt)

×

∫

Xt−1

p(Xt|Xt−1)p(Xt−1|Y1:t−1) dXt−1 , (1)

whereC is a normalisation constant. In our experiments, the
stateXt = (X̂t, v) is composed of the state of the faceX̂t =

(x, y, s) with x, y being its position ands being its bounding
box scale factor, as well as the current VFOA target index
v ∈ 1..V .

The dynamics of the face statep(X̂t|X̂t−1) are defined by
a first-order auto-regressive model with Gaussian noise:

p(X̂t|X̂t−1) = N (X̂t−1; 0,Σp) . (2)

The dynamics of the discrete VFOA target indexv are defined
by transition probability matrix

A := [aij ], i, j = 1..V with

aij := p(vt = j|vt = i) (3)

being the transition probability from VFOA targeti to j.
The co-variance matrixΣp = diag(σpx, σpy , σps) of the auto-
regressive model is fixed, whereas the matrixA is learnt online
during the tracking of a person in a given video stream. Details
on howA is learnt are presented in section IV-B.

The observations likelihood is defined as the product of a
colour likelihood and texture likelihood::

p(Yt|Xt) = p(YC
t |Xt)p(Y

T
t |Xt) , (4)

where the colour likelihood is used to track the position
and size(x, y, s) of the face bounding box, and the texture
likelihood is mainly used to track the VFOA targetv. We
define:

p(YC
t |Xt) ∝ exp

(

−λ1

9
∑

r=1

(

D2
C [h

∗

r , hr(Xt)]
)

)

, (5)

whereλ1 is a constant,hr(Xt) are HSV colour histograms
extracted from a grid ofr = 9 cells centred atXt, h∗

r is the
reference histogram initialised from the face region in thefirst
frame, andDC is the Bhattacharyya distance. As in [39], the
histogram bins for the H and S channels are decoupled from
the V channel. Also the quantisation is applied at two different
levels,i.e. 4 bins and 8 bins, to improve the robustness under
difficult lighting conditions. This leads to an overall colour
observation vector size of9 · (8 · 8 + 8 + 4 · 4 + 4) = 828.

The texture likelihood is defined similarly:

p(YT
t |Xt) ∝ exp

(

−λ2

16
∑

r=1

(

DT [µr,v, tr(Xt)]
)

)

, (6)

whereλ2 is a constant,tr(Xt) are Histograms of Oriented
Gradients (HOG) (see description below) extracted (similarly
to hr) from a grid of16 cells (indexed byr) centred atXt, and
µr,v are the reference histograms corresponding to the VFOA
target indexv in Xt. The overall texture model is composed of
a set ofN -dimensional clusters with meansµr,i where each
cluster i ∈ 1..V corresponds to a VFOA target.DT is the
normalised Euclidean distance:

DT (µr,i, tr(Xt)) =

√

√

√

√

N
∑

j=1

(tr,j(Xt)− µr,i,j)2

σ2
j + ǫ

, (7)

with ǫ being a small constant avoiding division by zero.
The feature vectorstr(Xt) constitute the visual observa-

tions used for recognising the VFOA targets of a person in
a video by means ofp(YT |Xt). They are computed on a 4
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(a) (b)

Fig. 3. Visual feature extraction for the VFOA model. a) HOG features are
computed on a grid of4× 4 cells placed on the tracked face. b) To compute
the histograms, gradient orientation is quantised into 4 bins (respectively 8
bins) and magnitude into 2 bins.

vt−1 vt

tt−1 tt

A

Fig. 4. The Hidden Markov Model used to estimate the hidden discrete
variablev (the VFOA target) from the observationstt (feature vectors) using
the learnt transition probability matrixA.

by 4 grid of non-overlapping cells on a face image patch as
illustrated in Fig. 3(a). For each cell, two normalised two-
dimensional histograms of unsigned oriented gradients and
magnitudes are computed using a specific quantisation scheme
illustrated in Fig. 3(b). The gradient orientation is quantised
in 4 bins and the magnitude in 2 bins. An additional bin (with
no orientation) is used for very weak gradients (in the centre
of the half circle in the diagram). Also, to improve the overall
robustness and discriminative power, we computetwo his-
tograms at different quantisation levels for orientation:4 and
8, and normalise each of them separately. Thus, the dimension
N of the feature vector is:16 ·(4 ·2+1+8 ·2+1) = 416. One
advantage of these histogram features is that they are relatively
robust to small spatial shifts of the overall bounding box,
which frequently occur with common face tracking methods.

IV. L EARNING VFOA

The VFOA model can be regarded as a dynamic HMM
estimating the hidden variablev, the VFOA target index, from
the observed featurestr(Xt), illustrated in Fig. 4. It consists
of two main parts. First, the data model that is used for the
likelihood computation in Eq. 6 and that contains thek cluster
meansµi and a global co-variance matrixΣ, and second, the
matrix A (Eq. 3) defining the transition probabilities from
one cluster to another. All, these parameters are learnt on-
line during the training phase, and used subsequently in the
tracking (c.f. section III). After training, the learnt parameters
µi, Σ, and A of the HMM are used in the Particle Filter
framework explained in the previous section to jointly estimate
the posterior probability of the stateXt at each time step. In
the following, the training procedures are described in more
detail.

A. VFOA clustering

The visual feature vectorstr(X̄t) computed on the image
region corresponding to the mean state of the current distri-
bution at timet are used to incrementally learn the VFOA
classes. To this end, we propose a specific sequentialk-means
clustering algorithm with an adaptive number of clusters. The
algorithm constructs a model ofk clusters corresponding to
the VFOA classes and described by their mean feature vectors
µr,i (i = 1..k) and a global diagonal co-variance matrix
Σ = diag(σ1, . . . , σN ). For better readability, in the following
notation, we drop the indexes for the cellr and the time step
t, denoting the current cluster means asµi and the current
feature vector ast. Algorithm 1 summarises the main learning
procedure. At each time step the observed feature vectort

Algorithm 1 Incremental VFOA cluster learning algorithm

k = kini
µi = t0 i = 1..k
ni = 0 i = 1..k
Σ = Σini

for t = 1 to T do

c = argmini(DT (t,µi)) ⊲ get closest cluster

D̄T = 2
N(N+1)

∑k

i=1

∑k

j=i+1(DT (µi,µj))

if DT (t,µc) > θcD̄T then ⊲ add new cluster

k ← k + 1

nk = 1

µk = t

else

nc ← nc + 1 ⊲ update closest cluster

µc ← µc +
1
nc
(t− µc)

end if

incrementally updateΣ

for each cluster pair (i,j) do ⊲ merge clusters

if DT (µci
,µcj

) < θdD̄T then

µi = (niµi + njµj)/(ni + nj)

ni = ni + nj

remove clusterj

k ← k − 1

end if

end for

end for

is computed, and the closest clusterc is determined using
the normalised Euclidean distance (Eq. 7). Also, the mean
distanceD̄T between each of thek clusters is calculated,
and a new cluster is created if the distance of the current
feature vector to the closest cluster is greater thanθcD̄T ,
where θc is a parameter of our algorithm (set to2 in our
experiments). Then, the mean vectorµc of the closest cluster
as well as the global covariance matrixΣ are incrementally
updated using the current feature vectort. In the previous
version [38] of the algorithm, the closest cluster means of
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the previous time steps and neighbouring clusters were also
updated. However, with the integration of the model into the
Particle Filter framework, this did not improve the overall
performance significantly. Thus, we removed this step. Finally,
pairs of clusters are merged together if the distance of their
means are below the thresholdθdD̄T (with θd = 0.01 in our
experiments). At each time step, the algorithm classifies the
observed featurest from the mean state of a face into one
of the k clusters:c, and, as we will show in the following
experimental results, the learnt classes correspond to a large
degree to specific targets of VFOA.

B. VFOA Transition Model

The transition probability matrixA of equation 3 is learnt
on-line during the training phase at the same time as the cluster
centres. The main procedure is the following. The visual fea-
ture vectorst of the image patch corresponding to the current
mean state are extracted, and the closest clusterct according to
the normalised Euclidean distance (Eq. 7) is computed. Then,
the transition probabilitiesact−1,j := p(v = j|v = ct−1) are
linearly updated, using the following equation:

act−1,j = γ1j=ct + (1 − γ)act−1,j ∀j ∈ 1..k, (8)

where 1x denotes the indicator function, and the constant
γ = 0.001. Thus, the transition probability fromct−1 to ct is
increased, and fromct−1 to any other clusterj is decreased.
Also, a new row and column is added if a new cluster is
created and inversely if a cluster is removed. At the end of each
iteration, the rowct−1 that has been updated is normalised to
sum up to1.0. Algorithm 2 summarises the overall procedure.
In many cases, the learnt transition matrix will have high

Algorithm 2 Incremental learning of the transition matrix

initialise A to uniform distribution:aij = 1
k

i, j ∈ 1..k
for t = 1 to T do

adapt the size ofA to k × k
ct = argmini D(t,µi)
act−1,j = γ1j=ct + (1− γ)act−1,ct

normalise rowct−1 to sum up to1.0
end for

values on the diagonal (staying in the same state most of
the time) and low values elsewhere. Of course, this depends
on the dynamics of the scene. In our formal meeting setting,
people are interacting frequently and changing their attention
targets quite often. Thus, this seems not to be a limitation.
But even in more static settings (e.g. a person giving a talk),
this model is still appropriate. And we can observe this with
less active persons in some videos in our experiments. Clearly,
transitions with very low probabilities can still be “triggered”
if the observation likelihood of the target state is high enough.
Nevertheless, to prevent extreme cases where a transition
probability becomes zero and thus a state inaccessible, in our
experiments, we set a very small lower boundary (10−3) for
the transition probabilities.

Fig. 5. Example frames from the three datasets that have beenused for
evaluation. Top TA2 dataset, middle: PETS 2003 dataset, andbottom IHPD
dataset. (Faces have been blurred artificially in this figure).

V. EVALUATION

A. Data

We evaluated the proposed approach on three public datasets
from different scenarios, each containing a certain numberof
persons sitting around a table and filmed roughly from the
front (see Fig. 5). Note that we do not evaluate the accuracy of
face or head pose tracking, as this is not the main contribution
of the paper. Our main goal is to correctly estimate the VFOA
of a person, which requires a robust face tracking system.
The VFOA targets are different for each datasets, due to the
scenario and the layout of the room. The three datasets are:

TA21[41]: in this set there are two videos from two different
rooms where people communicated over a video-conferencing
system and performed a shared task on a laptop in front of
them. In the first video, there are four persons and in the
second there are two. The defined VFOA targets are the table,
the camera, and the other persons,i.e. 5 targets for the first
video and 3 for the second. For each person, 7 500 frames (5
minutes 30 minutes in total, have been annotated.

IHPD2[42]: this dataset consists of the ”meeting“ part of the
Idiap Head Pose Database. It contains 8 meeting recordings
with four persons, where each video shows two participants
behind a table. The annotated targets are the table, the slide
screen, and the other persons (the whiteboard target has not
been used here). 110 040 frames (∼ 1 hour 13 minutes) with
VFOA annotation have been used in total for the evaluation.

1https://www.idiap.ch/dataset/ta2
2https://www.idiap.ch/dataset/headpose

https://www.idiap.ch/dataset/ta2
https://www.idiap.ch/dataset/headpose
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dataset number
of videos

number of
persons

VFOA
targets

annotated
frames

TA2 2 6 5 / 3 7500
IHPD 8 16 5 110040
PETS 2003 2 6 5 47000

total 12 28 5/3 164540 (110 min.)

TABLE I
THE THREE DATASETS AND ANNOTATION USED FOR EVALUATION.

PETS 20033: this dataset contains two videos from a formal
meeting of six participants (scenario D), where each video
shows 3 of the persons roughly from the front (similar to
IHPD). Here, the VFOA targets that have been annotated for
each participant are the other five participants. The provided
VFOA annotation for the 6 persons and 47 000 frames (∼30
minutes) in total has been used.

Table I summarises the properties of these datasets.
Annotation has been done manually and frame-by-frame,
where frames with ambiguous visual focus and transition
phases have not been annotated.

B. Qualitative evaluation

First, we will show some qualitative results on the clustering
that is obtained on some of the videos. Fig. 6 illustrates the
result of the proposed on-line clustering algorithm (Alg. 1)
for six different persons and videos. Each point representsa
2D projection of the 416-dimensional gradient feature vectors
tr(X̄t) extracted from the mean state at timet (after the
training phase). The linear embedding has been performed by
applying multi-dimensional scaling with Euclidean distance
measure on the whole data. Different colours (and point
shapes) correspond to different labels produced by a k-Nearest
Neighbour classifier using the normalised Euclidean distance,
Eq. 7, and the learnt cluster meansµi as references. Note
that the clusters means have been trained during the training
phase,i.e. the first few minutes of a video. There are two
difficulties that we want to emphasise here: first, thetest
data might be distributed slightly differently (e.g. the person’s
main focus changes), and second, the training data arrives
sequentially and in a non-random order,i.e. a person’s focus
changes slowly and might be static for long periods. Note also,
that the 2D projection of all points suggests that clustering is
difficult in many cases, like in the top middle, bottom left, and
bottom right example where cluster centres and frontiers are
not so clear. Nevertheless, the output of the algorithm looks
reasonable, apart from the bottom right example.

In order to experimentally verify if the learnt clusters cor-
respond to different VFOA targets, we saved for each tracking
run the face image regions corresponding to the feature vectors
tr(X̄t) that were closest to the cluster centresµi. Fig. 7 shows
some examples. We can see that the images come from dif-
ferent head poses mostly corresponding to real VFOA targets.
Clearly, some targets might not be captured by the model, as
in the top right example of Fig. 7 (corresponding to the left-
most person in the top-left image of Fig. 5) because the three

3http://www.cvg.rdg.ac.uk/slides/pets.html
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Fig. 6. Visualisation of the clustering of low level features produced by the
proposed incremental learning algorithm (Alg. 1) for some examples. (Best
viewed in colour.) From left to right, top to bottom: TA2 room1, TA2 room
2, 2 x IHPD, PETS, and the last example shows a poor clusteringresult for
one TA2 example.

Fig. 7. Four examples of face images that are closest to the corresponding
learnt cluster centres. Upper-left and lower-left: from IHPD dataset. Upper-
right and lower right: from TA2 (first video).

other persons are almost seated in the same gaze direction.
In the bottom right example, two clusters (corresponding to
the second and fourth image) have been created for the same
VFOA target: the table. Apart from these errors, the results
mostly make sense.

Finally, Fig. 8 visualises the VFOA tracking over time for
two example videos. At each time stept, the red circles show
the ground truth targets, and the blue crosses the output of
the tracking algorithm,i.e. thev component of the mean state
X̄t. Some targets have not been learnt by the initial clustering
and thus are not recognised. This is because these targets are
less frequent (apart from target 4 in the bottom example),
and thus, potential clusters would be sparsely representedand
difficult to estimate. In the bottom example, from the IHPD
dataset, targets 2 and 4 corresponds to persons that are sitting
very close to each other. Here, the person’s VFOA is mostly
controlled by his eye gaze, and the head pose is almost the
same. Thus, only target number 2 is recognised.

http://www.cvg.rdg.ac.uk/slides/pets.html


7

 1

 2

 3

 4

 5

 6

 10000  11000  12000  13000  14000  15000  16000  17000  18000

V
F

O
A

 ta
rg

et

frame

ground truth
VFOA tracking output

 2

 3

 4

 5

 6

 7

 8000  8500  9000  9500  10000  10500  11000  11500

V
F

O
A

 ta
rg

et

frame

ground truth
VFOA tracking output

Fig. 8. Visualisation of VFOA classification over time for two example videos
from TA2 and IHPD (best viewed in colour.) Red circles show the ground
truth VFOA targets and blue crosses the output of a k-NearestNeighbour
classifier with the proposed clustering algorithm. Clusters 1, 2, 3 from the
top example and 4 and 5 from the bottom have not been found by the initial
on-line learning algorithm, and thus are not recognised.

Note that, as our algorithm is unsupervised, we do not have
the actual estimated VFOA targets (i.e. meaningful labels) that
we can directly compare to the ground truth. For evaluation
purposes, after running our method on a whole video, we
therefore assign to each cluster the target that maximises
VFOA accuracy,i.e. we assume that we know which target
label each cluster corresponds to. We believe that this is not
a very restrictive assumption, as the labels could be assigned
in a separate processing step, for example by incorporatinga
more general discriminative classifier trained beforehand.

C. Quantitative evaluation

Additionally, we quantitatively evaluated the complete
VFOA tracking algorithm on the three datasets described
above by initialising it manually with a bounding box around
the face and measuring the VFOA recognition accuracy by
assigning a label to each cluster as described above, and
counting the Frame-based Recognition Rate (FRR) of the
VFOA for all the videos and averaging it over each dataset
and over several runs. The FRR is simply the proportion of
frames with correctly recognised VFOA:

FRR =
Nc

Nt

, (9)

whereNc is the number of correct classifications, andNt is
the total number of annotated video frames. As our algorithm
is learning the VFOA modelincrementally, we need to account
for a certain training phase, which we do not include in the
evaluation. We used 8 000 (∼ 5 min.) training frames in the
beginning of the videos (not annotated), and evaluated the FRR
on the following sequence with annotation. This length has
been chosen in order to have enough training data forall the
VFOA targets of a person, as sometimes a target is focused
for the first time only after several minutes. A more detailed
analysis on this parameters is given below (Fig. 9).

TA2 IHPD PETS 2003 average

k = 4 0.7242 0.5248 0.4597 0.5696
k = 5 0.693 0.4816 0.4747 0.5498
k = 6 0.6219 0.4777 0.4639 0.5212
variablek 0.7663 0.5163 0.4437 0.5754

TABLE II
VFOA RECOGNITION RATE OF THE PROPOSED ALGORITHM WITH FIXED

AND VARYING NUMBER OF CLUSTERS.

TA2 IHPD PETS 2003 average

Euclidean (D′

T
) 0.5713 0.5013 0.4308 0.5011

Bhattacharyya (D′′

T
) 0.608 0.5047 0.4033 0.5053

normalised Euclidean (DT ) 0.7915 0.5282 0.4668 0.5955

TABLE III
VFOA RECOGNITION RATE WITH DIFFERENT DISTANCE MEASURES

REPLACINGDT IN EQ. 7.

In our first experiment, we studied the influence of using
a variable number of clustersk, i.e. dynamic cluster creation
and merging in Alg. 1, compared to using afixedk. Table II
shows the results for the three datasets. It can be seen that
the k with the highest average FRR depends on the dataset.
However, on average, avariablecluster number gives the best
average FRR over all datasets. Therefore, we used a variable
k for the following experiments (as presented in Alg. 1).

Further, we replaced the normalised Euclidean distanceDT

of Eq. 7 with the simple Euclidean distance:

D′

T (µr,i, tr(Xt)) =

√

√

√

√

N
∑

j=1

(tr,j(Xt)− µr,i,j)2 , (10)

as well as the Bhattacharyya distance:

D′′

T (µr,i, tr(Xt)) =

√

√

√

√1−
N
∑

j=1

√

tr,j(Xt)µr,i,j . (11)

The results summarised in table III show that thenormalised
Euclidean distanceDT (Eq. 7) largely outperforms the other
distances in terms of the FRR on all the dataset.

In another set of experiments, we varied the number of
iterations for our incremental training algorithm in orderto
understand the impact of this parameter on the overall VFOA
recognition rate. Figure 9 shows the results. As for the other
experiments, the VFOA recognition rates are averaged over
several runs and always computed on the same number of
frames (irrespective of the number of training iterations).
It can be seen that using very few training iterations,i.e.
below 1000-2000, deteriorates the performance for all datasets.
And beyond around 4000 iterations, the performance stays
relatively stable.

Finally, we compared the proposed approach with three
other approaches:

• supervised: a state-of-the-art supervised approach, that
uses a specific face detection and tracking algorithm, a
head pose estimator as in [29], and Gaussian Mixtures
Models (GMM) to model different VFOA targets in terms
of head pose pan and tilt angles as in [30], [18]. In this
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Fig. 9. VFOA recognition rate for the three datasets with varying number of
training iterations.

TA2 IHPD PETS 2003 average

supervised [37] 0.59 0.49 0.26 0.4489
no PF 0.7663 0.5163 0.4437 0.5754
PF, fixed TM 0.6577 0.5235 0.4379 0.5397
PF, learnt TM 0.7915 0.5282 0.4668 0.5955

TABLE IV
VFOA RECOGNITION RATE OF THE PROPOSED ALGORITHM WITH AND

WITHOUT PARTICLE FILTER INTEGRATION, AND WITH FIXED OR LEARNT

TRANSITION PROBABILITY MATRIX A COMPARED TO A CLASSICAL
SUPERVISED APPROACH.

approach, the head pose model is trained beforehand in
a supervised way, and the GMM parameters have been
partly trained and partly defined manually.

• no PF: a variant of the proposed approach that does
not integrate the VFOA estimation into the Particle Filter
tracking, i.e. v is not included in the state vector and is
estimated frame-by-frame by ak-NN classifier using the
feature vectorst(X̄t) of the mean state and the cluster
meansµi, as in our previous work [38].

• PF, fixed TM: a variant of the our approach with Particle
Filter VFOA tracking and a fixed, uniform transition
probability matrixA.

• PF, learnt TM : the proposed approach as presented in
this paper,i.e. with Particle Filter VFOA tracking and
learnt transition matrixA

Table IV shows the average FRR for these different ap-
proaches. One can see that the proposed approach outper-
forms the supervised method with an average FRR of∼60%
compared to∼45%. Tracking the VFOA with a Particle
Filter, as opposed to a frame-by-frame estimation, and learning
the transition probability matrix on-line also improves the
recognition performance on the three tested datasets. These
results are comparable or superior to those published in the
literature, although the evaluation protocols are not exactly
the same due to the unsupervised and incremental nature
of our method. Note that we do not include any contextual
information like speaking status or other external events in
the VFOA estimation process as in other existing work. This
may additionally improve the overall performance.

The overall tracking algorithm, implemented in C++, runs
at∼ 80−90fps on a 3.6GHz processor for a720×576 video,

where around∼ 11% of CPU time is spent on feature extrac-
tion for VFOA (gradient computation on the whole image),
and less than 1% on the VFOA learning and classification.

VI. CONCLUSION

We presented a VFOA tracking algorithm that incremen-
tally, and in an unsupervised way, directly learns a VFOA
model from low-level features extracted from a stream of
face images coming from a tracking algorithm. The VFOA
estimation is based on an HMM whose parameters are learnt
incrementally and which is tightly integrated into a global
Particle Filter framework that is used for face tracking. In
a meeting room or video-conferencing setting, the proposed
method is able to automatically learn the different VFOA
targets of a person without any prior knowledge about the
number of persons or the room configuration. By assigning
a VFOA label to each cluster a posteriori, we evaluated the
VFOA recognition rate for three different datasets and almost
two hours of annotated data. The obtained results are very
promising and show that this type of unsupervised learning
can outperform traditional supervised approaches.

Future work will investigate different types of visual fea-
tures, more dynamic scenarios with moving persons and
the possibility of automatically assigning meaningful labels
to the clusters. Also, it would be interesting to study the
generalisation capability of the algorithm to unseen videos
(same room with different persons) as this might enable a
broader range of practical applications. Finally, a combination
of supervised and unsupervised learning might be beneficial
and improve the overall performance of VFOA recognition.
Especially when there are attention targets that are focused on
only rarely and thus might not be captured by the proposed
clustering algorithm.
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