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In the field of Supply Chain Risk Management, the attitude of managers toward risk affect the tactical

decision-making process in collaborative supply chains under an uncertain environment, concerning

especially capacity levels, lot-sizing rules, purchasing strategies, production scheduling,…, etc. The issue

can be formulated as a sequential decision problem under uncertainty where the customer decisions affect

the decisions made by the supplier. In this paper we deal with two kinds of uncertainties. The first one is

the uncertainty on the indicators of performance (which are not comparable) used by the decision maker

to choose a solution (for example: service quality or inventory cost). Hence, we propose an approach based

on subjective probability to evaluate the probability that a decision is optimal for the first actor and the

probability that it is optimal for both. From these two evaluations, we propose a ranking function to help

the first actor to take into account the second one when selecting a decision. The second kind of

uncertainty pertains to the demand. A classical criterion under total uncertainty is Hurwicz criterionwhere

a weight expresses a degree of pessimism. Nevertheless, the degree of pessimism is itself ill-known. Thus,

it becomes difficult to take into account the behavior of the actors. Hence, we propose an approach based

on possibility theory and the so-called pignistic transform, which computes a subjective probability

distribution over the criteria. Then, we apply the method used for uncertain criterion. This approach is

illustrated through an example and an industrial case study.

1. Introduction

In an increasingly competitive business world, where the

sources of disturbance are drastically changing and increasing,

supply chains actors are faced with the necessity to constantly

improve their decision-making practices. The companies identify-

ing supply chain risk as “an unavoidable and necessary task that

continues to pose certain problems” (Lavastre et al., 2012). Faced

with a “networked environment”, “companies deepen their rela-

tionship with partners and thus become more dependent on each

other” (Hallikas et al., 2005). Risk, in the context of an enterprise,

is defined by Zsidisin (2003) as: “the danger that events or

decisions will obstruct the company's achievement of its objec-

tives”. In this context, “The process of supply chain actors main can

either amplify or absorb the effect of risks in the supply chain”

(Juttner, 2005) when the principal risk comes from supply and

demand. Mastering the decision making processes of actors is

therefore a key to minimizing the risks.

In this paper, we focus on the problem of designing the

collaborative purchasing processes in the supply chain context

under uncertainty. Moreover, we specifically consider a supplier-

customer relationship in a dyadic supply chain where actors are

independent. This situation may be described as a 2-actor sequen-

tial decision problem. For an industrial Decision-Maker (DM) in a

supply chain, the anticipation of the decisional behavior of his/her

partners is common practice (capacity level, lot sizing rules,

purchasing strategies, production scheduling…). He/she knows

that his/her decision will be followed by a series of partner's

decisions, which will impact the performance of his decision. The

decisional behaviors of independent partners are extremely diffi-

cult to anticipate. These potential different behaviors can be

interpreted as different sources of uncertainty for a particular

actor of the chain.

In this paper, we deal with two sources of uncertain behavior.

First, we consider the uncertainty of an actor about the performance

criteria of the other actor (for instance one considers the inventory

level whereas the other the service quality), criteria that are not

commensurate. Moreover, we deal with behaviors under uncertainty
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(the pessimism or optimism of decision maker) which comes down

of the occurrence of uncertain events (scraps, breakdowns, delays,

demand fluctuations…) for which a probability distribution may not

be accessible. Hence, in the context of uncertainty, the criterion

should take into account the level of pessimism of decision makers.

This paper is organized in 7 sections. First, a literature review

on supply chains is made (Section 2), then we provide some

background on decision trees, possibility theory, pignistic prob-

ability, criteria under uncertainty and multi-actors decision that

will be used in our proposal (Section 3). In the fourth section, we

present our approach to model and support the decision-making

process with one DM and then we propose a model for sequential

multi-DM problem (Sections 5 and 6). Finally, Section 7 illustrates

this proposal through an industrial case study.

2. Literature review

In our review, we distinguish the literature that focuses on

minimizing risk in supply chains under uncertainty and the

literature on coordination mechanisms inside the supply chain.

On the first topic, mostly optimization approaches have been

proposed with a global supply chain optimization model and a

single decision maker (Liang and Cheng, 2009; Peidro et al., 2009;

Wang and Shu, 2005; Petrovic et al., 1999). Besides there exist

robust optimization methods where suppliers share information

with the customer (Guillaume et al., 2012, 2013). In these studies,

the sources of uncertainty pertain to the demand, supply and

process. Nevertheless, predefined criteria are used and the pro-

blem of distributed decision is not investigated, whereas it creates

risks since the decisions made by suppliers impact decisions made

by the customer.

Besides, the studies on coordination mechanisms focus on the

minimization of sub-optimality of the distributed decision in the

supply chain. Hence, an important part of the literature proposes

and studies coordination mechanisms to obtain the optimal deci-

sion for the supply chain as a whole. For example, game theory is

used for designing coordination mechanisms that may optimize the

distributed system and studying coordination mechanisms as a

form of cooperative advertising; see Aust and Buscher (2014) for a

recent review. On their side, Chen, 2007, 2012 and Li et al., 2005

focus on procurement policy (price-only policies, quantity discount

policy, etc.). Recently, Xiao et al. (2014) added the lead time as

decision variable, on top of the price in context of make to order

supply chains. Furthermore, the supply chains studied in this

literature are mostly manufacturer-retailer supply chains, and these

studies do not consider the planning process. Another part of this

literature proposes coordination mechanism when the actors use

linear mathematic models for production planning (Dudek and

Stadtler, 2005) under perfect demand. In this part of the literature,

the criterion of decision makers is predefined and the uncertainty is

not taken into account. Moreover, in addition to this important

academic research works, empirical analysis based on industrial

case studies and decision-maker interviews have emphasized the

fact that conceptual research has focused on the supply disruption

risk with a little attention to the questions:

(i) “How views of supply disruption risk are developed and how

these views affect the decision-making process” (Ellis et al.,

2010),

(ii) What are supply chain managers' attitudes toward risk?

(iii) What are the ways in which decisions are made? (Lavastre et

al., 2012)?

Moreover, Singh and Benyoucef (2013) emphasize the role of

decision-making processes inside collaborative supply chains.

It shows the difficulty to establish decisions when confronted

with conflicting individual interests and where “every company is

responsible for its own risks and identifies the risks from its own

viewpoint” (Hallikas et al., 2005).

3. Background

In this section, we recall formal tools we shall use to build the

proposed approach.

3.1. Tools for decision under imprecision

In this section, we recall a model to represent the imprecision

on the information (possibility distributions), how to derive a

subjective probability from it (pignistic probability), a well-known

criterion under total uncertainty.

3.1.1. Possibility distributions

Imprecise information is modeled by expressions of the form

vAA where A is a subset of S that contains more than one element.

Imprecision is always expressed by a disjunction of values (Dubois

and Prade, 2009) that form a possibility distribution on S. The

assertion vAA implies that all values from v outside A are

supposed to be impossible.

A possibility distribution πv attached to an ill-known quantity v

quantifies the plausibility of values taken by v (Dubois and Prade,

1988). It is a function from S to a plausibility scale L ([0,1] for

numerical possibility). A numerical possibility distribution taking a

finite number of values λiA ½0; 1", for i¼1,…,M, may express

imprecise probabilistic knowledge of the form P(Ei)Z1$λi, i¼1,

…,M, where Ei is a confidence set provided by the DM (Dubois and

Prade, 2009). It can also be viewed as a random set ðm; FÞπ , with

focal sets Ei and masses mðEiÞ; such that:

Ei ¼ fxASjπðxÞZλig

mðEiÞ ¼ λi$λi$1

(

ð1Þ

The possibility distribution is then such that: πðxÞ ¼∑x AEimðEiÞ

(Dubois and Prade, 1982).

3.1.2. Pignistic probability distribution

The so-called pignistic probability extends Laplace principle of

insufficient reason to possibility theory and to belief functions. It

presupposes the idea that, while the knowledge or an actor can be

too imprecise to be represented by a single probability distribu-

tion, the latter is needed when evaluating decisions in order to

comply with the classical (Savage) decision theory (Smets, 2005).

This probability distribution reflects betting odds used by the actor

possessing a certain body of information. When the actor has no

information, all alternatives are viewed as equally possible and the

actor will bet on them at equal odds. Deriving the pignistic

probability from a belief function consists in equally sharing the

masses ðm; FÞ over each element of focal set E for a random set

ðm; FÞ

PgsðxÞ ¼ ∑
EDS

mðEÞ

jEj
8xAS ð2Þ

It can be viewed as the subjective probability distribution the

decision-maker would provide via betting rates, had his knowl-

edge been faithfully represented by the possibility distribution πv.

This probability distribution has been proposed by Dubois and

Prade (1982) and axiomatized by Smets (2005), who coined it

“pignistic”. It coincides with the (older) Shapley value (Shapley,

1953) in the game theory. The pignistic probability distribution

can be applied to possibility distributions and is also used in the

simulation of “fuzzy variables” (Chanas and Nowakowski, 1988).



Example 1. For example, let Πðc1Þ ¼ 1 and Πðc2Þ ¼ 0:8 be a

possibility distribution over two possible criteria. It expresses the

incomplete information that the probability that the actor uses

criterion c1 is at least 0.2, while the other one is unknown. Let us

compute the pignistic probability of each criterion. First, we

compute the masses mðEiÞ. In this case, the values of λi are discrete

values: λ0 ¼ 0; λ1 ¼ 0:8; λ2 ¼ 1. Then:

$ E1 ¼ fc1; c2g with mðE1Þ ¼ 0:8$0¼ 0:8

$ E2 ¼ fc1g with mðE2Þ ¼ 1$0:8¼ 0:2

From Eq. (6) we have: Pgðc1Þ ¼ ðmðE1Þ=2ÞþðmðE2Þ=1Þ ¼ ð0:8=2Þþ

0:2¼ 0:6 and ðc2Þ ¼ ðmðE1Þ=2Þ ¼ ð0:8=2Þ ¼ 0:4.

While in the finite case, letting the DM directly provide such

subjective probability degrees may be possible, it is too difficult for

a DM to provide precise continuous subjective probability. In that

case, it is more user-friendly to ask for weak information (like

support and mode, or confidence intervals), to represent it faith-

fully in possibility theory, and then to extract the pignistic

probability from it.

3.1.3. Hurwicz criterion

Hurwicz (1951) criterion for decision under total uncertainty is

a parametric criterion which takes into account the optimism of

decision maker. Let D¼ fd1; ::; dng be the set of possible decisions,

S the set of possible states of the world, X the set of the potential

consequences of the decisions, f di ðsÞAX the function defined for

each decision diAD which associates to each state sAS a precise

consequence xAX, uðf dðsÞÞAℝ the utility function that attaches a

value to each consequence xAX and α the degree of pessimism of

decision maker. The Hurwicz criterion achives a trade-off between

the most cautious and the most risk evaluations:

Huðf dÞ ¼ α,min
sA S

ðuðf dðsÞÞÞþð1$αÞ ,max
sA S

ðuðf dðsÞÞÞ ð3Þ

dn
¼ argmax

dAD

ðHuðf dÞÞ ð4Þ

3.2. Tools for multi-actors decision making

In this section, we recall the model of sequential decision more

precisely, namely decision trees and an egalitarist approach to

multifactorial ranking of decisions: leximin.

3.2.1. Decision tree

In a real dynamic situation, the DM does not make a single

decision, but a sequence thereof, according to the successive arrivals

of relevant pieces of information. This type of problem is called

dynamic decision under uncertainty. The decision made at time t

depends on the information available at t. By hypothesis, the

information known at time t is still known at time tþΔt. The

incoming information is commonly viewed as “events”. They are the

results of an external independent entity, for example nature. In

such conditions, we can call βt ¼ fe1t ;…; emt g and βtþ1 ¼

fe1tþ1;…; entþ1g the sets of mutually exclusive and exhaustive events

at time t and tþ1. The set βtþ1 refines a partition of states induced

by the set βt . We call D¼ fD1;…;DT g the set of decisions that have

been made at various times, where decision Dt is made at time t.

This kind of problem has motivated many research works

especially in the Artificial Intelligence literature (Nielsen and

Jaffray, 2006; Jeantet et al., 2008; Jaffray and Jeleva, 2008). They

are relevant in situations where a DM has a sequence of decisions

(at prescribed times) to make. In this context, a strategy, called Δ,
is defined as a particular choice of decisions (one decision per

possible situation). The set of all strategies is denoted by Δ. The
target is therefore to support the DM who must choose the best

strategy, Δ
n
¼ argmax

ΔAΔ

ðuðΔÞÞ. All decisions are known when the

strategy is applied.

A Decision Tree (DT) is often used to represent this kind of

decisions. A DT may be defined as a directed acyclic graph

T ¼ ðN ;ℰÞ where N is the set of nodes and ε the set of arcs and

there exists a unique node (root node), fromwhich there is a single

path leading to any other node. The set of nodes is made of

(Nielsen and Jaffray, 2006):

– N D: the set of decision nodes (represented by squares). They

characterize states where the DM has to decide and to choose

one alternative among several ones. Each output arc of a

decision node represents an alternative (some d AD);

– N c: the set of chance (or event) nodes (represented by circles).

Event nodes represent the sources of uncertainty in the

problem, i.e. states of nature. Each output arc of an event node

shows a possible state of the world after the event has occurred

(some eAE );

– C: the set of terminal nodes (leaves). A leaf is defined as a node

without children ðchildðNÞ ¼∅; 8NACÞ and represents a term-

inal state of the sequential decision problem (a final conse-

quence). A utility value is associated to each terminal node

ðuðNÞ; 8NACÞ.

In a decision tree, a strategy Δ is therefore defined as a set

of arcs: Δ¼ fðN;N0Þ : NAN
DΔ ;N0

AN
Δ
g Dℰ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2þb2
p

where

N
DΔ ¼ N D \ N

Δ and N
Δ
DN is the set of nodes involved in the

strategy Δ, i.e. the set of nodes made of:

– The root node: Nr (a decision by hypothesis);

– A unique child for each decision made according to the strategy,

i.e. NAN
DΔ ;

– All the children of an event node met in the strategy, i.e.

NAN cΔ ¼N c \ N
Δ.

We call Δ
T
, the set of strategies in a given DT, T. An example of

DT is given on Fig. 1.

It represents a decision situation where a DM has to decide at

node D1, then the event E1 will occur, after what a second decision

at D2 will be made followed by a last event E2. Formally:

– N D ¼ fD1;D2g, with D1 ¼ fd11; d
2
1g and D2 ¼ fd12; d

2
2g;

– N c ¼ fE1; E2g, with S1 ¼ fe11; e
2
1g and S2 ¼ fe12; e

2
2g;

– β1 ¼ fe11; e
2
1g and β2 ¼ fe11 \ e12; e

1
1 \ e22; e

2
1 \ e12; e

2
1 \ e22g:

One example of strategy is pictured in Fig. 1 (in bold).

Enumerating the strategies may become a very hard computa-

tional problem because of the complexity of the decision situation

(the number of strategies increases exponentially). Different

methods have been proposed to find the best strategy

(Hammond, 1988; Machina, 1989; McClennen, 1990; Nielsen and

Jaffray, 2006).

Considering a multiple actor sequential game, algorithms based

on the Dynamic Programming principle, i.e., backward induction,

have to be preferred to search and find (if they exist) equilibria in

this kind of game (Cachon and Netessine, 2006).

3.2.2. Leximin criterion

In the next section we shall use the leximin criterion to build a

ranking function taking into account the collective satisfaction of

several decision-makers without favoring any of them.

Definition 1. (Barbera and Jackson, 1988) Let ujðdÞ; jAf1;…;mg be

the levels of satisfaction of the DMj for decision d, and aA ½0;1",



we define Jða; dÞ ¼ fjjujðdÞrag and jJða; dÞj the cardinality of Jða; dÞ.

We write ug Lmv if decision u is preferred to the decision v using

the leximin criterion. The leximin is defined as follows (Eq. (5)):

ug Lmv2(a such that jJða;uÞjo jJða; vÞj&8boajJðb;uÞj ¼ jJðb; vÞj

ð5Þ

This criterion can also be defined by first reordering compo-

nents of vectors u and as v in increasing order, and then ranking

the two rearranged vectors in lexicographic order (see also Dubois

et al., 1996). The leximin optimal decision can be interpreted in the

context of multi-actor decision-making as an egalitarist solution.

4. Ranking decisions taking into account uncertainty on

criteria

In this section, we present how a DM can make decision under

uncertainty about his/her own criterion. Here we focus on the case

where the criteria are not commensurable so an aggregation of

ratings is not allowed. In this context, we suppose that the DM is

satisfied if the decision dAD is optimal and not satisfied other-

wise. More formally, the utility function of DM is:

uðdÞ ¼
1 if decision d is optimal

0 otherewise

$

Moreover, we distinguish the case where the criteria are

discrete (set of distinct criteria) and the case where the criterion

has an imprecise parameter especially we focus on the case where

the optimism degree of Hurwicz criterion is imprecise.

4.1. Discrete case

In the discrete case, we consider that the DM is able to give a

subjective probability on each possible criterion cAC noted PgðcÞ.

The DM will take the decision that maximizes the expected value:

dn
¼ argmaxdADð∑cACPgðcÞuðdÞÞ.

Example 2. C ¼ fc1; c2; c3g with the subjective probability

Pgðc1Þ ¼ 0:4, Pgðc2Þ ¼ 0:3 and Pgðc2Þ ¼ 0:3 and the set of decisions

D¼ fd1; d2; d3g. Decisions d1 and d3 are both optimal for the

criterion c1, d2 is optimal for criteria c2and c3. So, the evaluation

for each decision is: 0:4, 1þ0:3, 0þ0:3, 0¼ 0:4 for d1, 0:4,

0þ0:3, 1þ0:3, 1¼ 0:6 for d2 and 0:4 for d3. The optimal

decision is d2.

4.2. Model of imprecise degree of optimism

The model is based on the hypothesis that DM is able to give

possibility distributions on the value of α: a possibility distribution
~α on his/her degree of optimism. Those possibility distributions

can model vague adjectives like: pessimistic, optimistic, neutral (see

Fig. 2(a)) or more precise as very pessimistic, little pessimistic,

strongly neutral, (see Fig. 2(b)). Another way is to ask for the most

plausible value of α and the maximal interval that contains α. We

can then build a triangular possibility distribution with these three

values (see Fig. 2(c)).

Based on these possibility distributions and the study of change

decision point (see Fig. 3), we can evaluate the stability of decisions

(which in our approach comes down to computing the pignistic

probability of being optimal). More precisely, we first build the

pignistic probability distribution from the possibility distribution (cf

Section 3.1.2), then compute the pignistic probability for each decision

to be optimal. Namely, Pgðd¼ optimalÞ ¼ Pgðαϵ½αd ;αd "Þ with ½αd ;αd "

the interval of values of α where d is optimal. As before, DM will

choose the decision that maximizes the expected value: dn
¼

argmaxdADðPgðd¼ optimalÞuðdÞÞ .

Example 3. consider two decisions d1 and d2 with respectively the

minimal value equal 10 and 8 and maximal equal 25 and 30. So the

Fig. 1. Example of Decision Tree.



Hurwicz criteria of both decisions yield Huðd
1
Þ ¼ α, 10þð1$αÞ ,

25 and Huðd
2
Þ ¼ α, 8þð1$αÞ , 30 (see Fig. 4).

If αA ½ð5=7Þ;1" the decision d1 is optimal so ½α
d1
;α

d1
" ¼ ½ð5=7Þ;1"

and Pgðαϵ½ð5=7Þ;1"Þffi0:9.

If αA ½0; ð5=7Þ" the decision d2 is optimal so ½α
d2
;α

d2
" ¼ ½0; ð5=7Þ"

and Pgðαϵ½0; ð5=7Þ"Þffi0:1.

Hence, the utility of DM for decision d1 is 0.9 and 0.1 for d2.

Finally, DM chooses d1.

5. Sequential decision problem taking into account

uncertainty on criteria

In this section, we first introduce the main principles of our

method of ranking decisions in a game with two players when

(i) DM1 makes his decision before DM2 and (ii) DM1 only partially

knows his/her own criterion and likewise for DM2 criterion.

Moreover, we consider that under uncertainty on the criteria,

the DM focuses on optimal decisions for each criterion. In other

words, a decision may satisfy the DM if it is optimal for at least one

criterion. Otherwise the decision is not considered.

We adopt the following notations:

– Ci: set of criteria ci of DMi with i¼ 1; 2

– D1: set of decisions d1 of DM1

Fig. 2. Choice of the possibility distribution.

Fig. 3. Decision using Hurwicz criterion.

Fig. 4. Decision under imprecise optimism degree.



– D2
j : set of decisions d

2
j of DM2 such that DM1 chooses decision j,

j being the index of decision node of DM1 with j¼ 1;…; J and

J ¼ jD1j

– D¼D2
1 ,…, D2

J : set of decision vectors d2
%!

¼ ðd21;…; d2J Þ of DM2

– C2ð d
2
%!

Þ: set of criteria c2AC2 for which decision vector d2
%!

is

optimal.

– C1;2ðd
1
; d2
%!

Þ: set of pairs of criteria ðc1; c2Þ for which d1 is

optimal for c1AC1 and d2
%!

is optimal for c2AC2.

– C1ðd
1
Þ: set of pairs of criteria ðc1; c2Þ for which decision d1 is

optimal

– C1
2ðd

1
Þ: set of criteria c2AC2 for which decision d1 is the best

decision of DM1 for the DM2 using c2

– PgðciÞ: Pignistic probability of criterion ci

– Pgðd1jDM1Þ: is the pignistic probability that d1 is an optimal

decision from the point of view of DM1. The optimality of the

decision depends on the criterion c1of DM1 and the criterion

c2of DM2. It depends on the probability of using c1and c2. So

Pgðd1jDM1Þ is the sum of the probabilities of pairs ðc1; c2Þ for

which d1 is optimal.

– Pgðd1jDM2Þ: is the pignistic probability that d1 is an optimal

decision from the point of view of DM2. In other terms, the

pignistic probability induced when the choice of d1 is optimal

for the DM2.

– uiðdÞ ¼
1 if decision d is optimal

0 otherwise

$

the utility function for

DMi with dADi

5.1. Overview of the approach

To evaluate the probability that the decision d is optimal in

front of the possible criteria, we use the concept of pignistic

probabilities (i.e. Section 3.1.2). Indeed the decision that has the

maximal expected value to be optimal (using pignistic probability)

is the one that is most likely to be optimal, taking into account the

uncertainty on the criterion. Note that the expected value of DMi,

Ei½d"; with utility function uiðdÞ, is equivalent to the pignistic

probability that d is an optimal decision from the point of view

of DMi: PgðdjDMiÞ. So in the next part of the paper we will use the

notation PgðdjDMiÞ to refer to this expected value.

Since the decision of DM1 affects the possible decision of DM2,

we propose to evaluate the decision of DM1 using the points of

view of DM1 and DM2. Formally we assign a pair of valuesða
d1
;b

d1
Þ

to each decision d1AD1 where a
d1
¼ Pgðd1jDM1Þ and

b
d1
¼ Pgðd1jDM2Þ.

In order to compute the pignistic probability that decision is

optimal, we have to know for which criteria this decision is optimal

and then to sum the pignistic probabilities of these criteria. More-

over, we propose to rank the decisions using the importance given

by DM1 to DM2. This importance is linked to the kind of relationship

among DM1 and DM2. For instance DM1 will grant a high level of

importance to her/his strategic or/and constraining partners

whereas his/her non strategic and/or dependant partners will have

a low level of importance (Marcotte et al., 2009).

5.2. Evaluation of decisions under uncertain criteria

The problem of computing the chance of optimality for DM1

and DM2 can be computed in 6 steps:

– Step 1. Computation of C2ð d
2

%!
Þ for each vector d2

%!
AD, as

follows:

C2ð d
2
%!

Þ¼ fc2j d2
%!

is optimalg ð6Þ

– Step 2. Computation of C1;2ðd
1
; d2
%!

Þ for each vector

d2
%!

Af d2
%!

jC2ð d
2

%!
Þa∅g and each decision d1

AD1, as follows:

C1;2ðd
1
; d2
%!

Þ¼ fðc1; c2Þjd1 and d2
%!

are optimalg ð6Þ

– Step 3. Computation of C1ðd
1
Þ ¼ [

d2
%!

AD

C1;2ðd
1
; d2
%!

Þ for each

d1AD1

– Step 4. Computation of Pgðd1jDM1Þ as follows:

Pgðd1jDM1Þ ¼ ∑
ðc1 ;c2ÞAC1ðd

1
Þ

Pgðc1Þ , Pgðc2Þ ð8Þ

– Step 5. Computation of C1
2ðd

1
Þ for each decision d1AD1as

follows:

C1
2ðd

1
Þ ¼ fc2jd1 ¼ argmin

d1 AD1 ðmin
d2 AD2

d1
c2ðd1; d2ÞÞg ð9Þ

– Step 6. Computation of Pgðd1jDM2Þ as follows:

Pgðd1jDM2Þ ¼ ∑
c2 AC1

2ðd
1
Þ

Pgðc2Þ ð10Þ

5.3. Taking into account the importance given to the point of view of

DM2

To help ssthe DM1 choose a decision, we propose to rank the

possible optimal solutions according to the importance given to the

point of view of DM2. If the importance given by DM1 to DM2 is very

low, then she/he chooses the decision which maximizes her/his

probability to be optimal for her/him. On the contrary, if the

importance given by DM1 to DM2 is very high, then she/he chooses

the decision which maximizes the probability for DM2. Between

these extremes, different levels of importance will be considered.

More formally let f 12 be the utility of a decision of DM1 from the point

of view of DM2 (the latter being measured by Pgðd1jDM2Þ.

The function f 12 is a mapping Pgðd1jDM2ÞA ½0;1"↦½$1;1" that

has to respect two requirements:

2 If DM1 grants very low importance to DM2:

Pgðd1jDM1Þ4 f 12ðPgðd
1
jDM2ÞÞ; 8Pgðd1jDM1ÞA ½0;1"

2 If DM1 grants the same importance to DM2 as to himself:

Pgðd1jDM2Þ ¼ f 12ðPgðd
1
jDM2ÞÞ; 8Pgðd1jDM2Þ; A ½0;1"

To respect these characteristics, we propose that f 12ðPgðd
1
j

DM2ÞÞ ¼ Pgðd1jDM2Þþs12 with s12A ½$1;1" such that if s12 ¼ 1 the

importance given by DM1 to DM2 is very low otherwise if s12 ¼ $1

then the importance given by DM1 to DM2 is very high.

In order to find the decision that ensures equity between the

two decision makers DM1 and DM2 taking into account the

importance given by DM1 to DM2, we propose to use the leximin

criterion on the vector v¼ 〈Pgðd1jDM1Þ; f
1
2ðPgðd

1
jDM2ÞÞ〉. There are

sevsseral cases:

2 if s12 ¼ 1 (very low importance given by DM1 to DM2): we

maximize first Pgðd1jDM1Þ and then f12ðPgðd
1
jDM2ÞÞ such that

Pgðd1jDM1ÞrPgðd1jDM2Þþ1, 8 Pgðd1jDM1Þ; Pgðd
1
jDM2ÞA ½0;1"

2 if s12 ¼ 0 (no difference between DM1and DM2): we maximize

indifferently the minimum between Pgðd1jDM1Þ and Pgðd1j

DM2Þ and the other



2 if s12 ¼ $1 (very high importance given by DM1 to DM2): we

maximize first f 12ðPgðd
1
jDM2ÞÞ and then Pgðd1jDM1Þ such that

Pgðd1jDM2Þ$1rPgðd1jDM1Þ, 8Pgðd
1
jDM1Þ; Pgðd

1
jDM2ÞA ½0;1".

Note that we do not ask the decision-maker DM1 for parameter

s12. It is just an artifact of the method. By letting parameter s12 range

over its domain, we can explainwhether a decision made by DM1 is

likely to be accepted or not by DM2 in all situations. For instance:

2 If 8s12A ½$1;1" optimal decision is the same then this decision

will be accepted by the two DMs.
2 If they exist an optimal decision ðd1nÞ for s12A ½$1; a" with a

close to $1 and other one ðd2nÞ for s12A ½a;1" the decision d1n

will be to be accepted by DM2.

5.4. Example

We illustrate the method in a general context, where DM1 does

not know if DM2 will take him/her decision according to the minmax

criterion (with probability 0.6) or Laplace's weighted average (with

probability 0.4) on the indicator f ðd1; d2;nÞ and DM1 hesitates

between the utility functions gðd1; d2;nÞ (with probability 0.7) and

hðd1; d2;nÞ (with probability 0.3) within the minmax criteria:

– C2
¼ fminmax; Laplaceg

– C1
¼ fg;hg

5.4.1. Evaluation of decision under uncertain criteria

DM1 has 2 possible decisions {1; 2} and DM2 has two possible

decisions {one, two} and nature induces three possible realizations

{a, b, c}. The evaluation of decision strategies is represented in

Table 1 and Fig. 5.

To solve this problem, we apply the method presented in

Section 5.2

– Step 1. Computation of C2ð d
2

%!
Þ for each vector d2

%!
AD

We have 4 vectors d2
%!

: 〈one; one〉; 〈one; two〉; 〈two; one〉;

〈two; two〉. For this 4 vectors we compute C2ð d
2

%!
Þ:

1. C2ð〈one; one〉Þ ¼∅

2. C2ð〈one; two〉Þ ¼ fminmaxg

3. C2ð〈two; one〉Þ ¼ fLaplaceg

4. C2ð〈two; two〉Þ ¼∅

– Step 2. Computation of C1;2ðd
1
; d2
%!

Þ for each vector

d2
%!

AfDjC2ð d
2

%!
Þa∅g and each d1

AD1

We have 4 combinations ðd1; d2
%!

Þ with C2ð d
2

%!
Þa∅

ð1; 〈one; two〉Þ; ð 2; 〈one; two〉Þ; ð1; 〈two; one〉Þ and ð2; 〈two; one〉Þ

For this 4 combinations we compute C1;2ðd
1
; d2
%!

Þ:

1. C1;2ð1; 〈one; two〉Þ ¼ fðh;minmaxÞg

2. C1;2ð2; 〈one; two〉Þ ¼ fðg;minmaxÞg

3. C1;2ð1; 〈two; one〉Þ ¼ fðg; LaplaceÞ; ðh; LaplaceÞg

4. C1;2ð2; 〈two; one〉Þ ¼∅

– Step 3. Computation of C1ðd
1
Þ ¼ [

d2
%!

AD

C1;2ðd
1
; d2
%!

Þ for

each d1AD1

1. C1ð1Þ ¼
ðh;minmaxÞ; ðg; LaplaceÞ;

ðh; LaplaceÞ

( )

2. C1ð2Þ ¼ fðg;minmaxÞg

– Step 4. Computation of Pgðd1jDM1Þ

1. Pgð1jDM1Þ ¼∑C1ð1ÞPgðc
1Þ , Pgðc2Þ ¼ 0:3, 0:6þ0:7,

0:4þ0:3, 0:4¼ 0:58

2. Pgð2jDM1Þ ¼∑C1ð2ÞPgðc
1Þ , Pgðc2Þ ¼ 0:7, 0:6¼ 0:42

– Step 5. Computation of C1
2ðd

1
Þfor each decision d1AD1

First we compute min
d2 AD2

d1
c2ðd1; d2Þ for d1AD1 and c2AC2

1. min
d2 AD2

1
max
nAN

f ð1; d2;nÞ ¼ 10

2. min
d2 AD2

2
max
nAN

f ð2; d2;nÞ ¼ 15

3. min
d2 AD2

1
∑nAN

f ð1;d2 ;nÞ
jNj ¼ 7

4. min
d2 AD2

2
∑nAN

f ð2;d2 ;nÞ
jNj ¼ 10

Then we compute:

1. argmin
d1 AD1 ðmin

d2 AD2

d1
max
nAN

f ð1; d2;nÞÞ

¼ argminðmin
d2 AD2

1
max
nAN

f ð1; d2;nÞ;min
d2 AD2

2
max
nAN

f ð2; d2;nÞÞ

¼ argminð10;15Þ ¼ 1

2. argmin
d1 AD1 min

d2 AD2

d1
∑nAN

f ð1;d2 ;nÞ
jNj

' (

¼ argmin min
d2 AD2

1
∑nAN

f ð1; d2;nÞ

jNj
;

 

min
d2 AD2

2
∑nAN

f ð2; d2;nÞ

jNj

!

¼ argminð7;10Þ ¼ 1

From the previous results we build C1
2ð1Þ and C1

2ð2Þ:

1. C1
2ð1Þ ¼ fminmax; Laplaceg

2. C1
2ð2Þ ¼∅

Table 1

Evaluation of the decision strategies.

DM1 DM2 f ðd1; d2;nÞ gðd1; d2;nÞ hðd1; d2;nÞ

max Laplace max max

1 one 10 8 10 12

two 14 7 11 10

2 one 20 10 14 11

two 15 12 9 15

Fig. 5. DT of the example.

–



– Step 6. Computation of Pgðd1jDM2Þ

1. Pgð1jDM2Þ ¼∑c2 AC1
2ð1Þ

Pgðc2Þ ¼ 0:7þ0:3¼ 1

2. Pgð2jDM2Þ ¼∑c2 AC1
2ð2Þ

Pgðc2Þ ¼ 0

5.4.2. Ranking of decisions taking into account the importance given

to DM2

In this example, we have Pgð1jDM1Þ ¼ 0:58; Pgð2jDM1Þ ¼ 0:42;

Pgð1jDM2Þ ¼ 1 and Pgð2jDM2Þ ¼ 0.

To help DM1 rank the decisions in terms of the importance given

by DM1to DM2, s
1
2 evolves from $1 (very low importance) to 1 (very

high importance). In order to summarize the knowledge and therefore

to visualize possible change in the decision-making, we collect

information in a table (Table 2). On the first line, you find the optimal

solution depending of the value of s12 recalled in line two. Thenwe give

for each decision d1AD1 the vector rearranged in increasing order.

From Table 2, DM1 chooses decision 1 whatever the importance

he/she gives to DM2 (best likelihood to be optimal for both DMs).

6. The case of imprecise optimism degrees

In this section, we consider the case of Hurwicz criterion with

imprecise value of optimism degree α. We describe how to

compute the sets C2ð d
2

%!
Þ, C1;2ðd

1
; d2
%!

Þ and C1
2ðd

1
Þ, in this context.

We detail some steps of this method when (i) both DM1 and DM2

criteria are Hurwicz criteria with respectively ~α1 and ~α2
1 the fuzzy

optimism degree of this criterion.

6.1. Determination of C2ð d
2

%!
Þ (step 1)

In this section, we give the framework of the algorithm to

compute C2ð d
2

%!
Þ:

– Step 1.1. Computation of the value of ~α2
1 for which decision d2j

changes, denoted by ~α2
change

, for each node of decision of DM2,

(cf: Fig.3)

– Step 1.2. Computation of the set of ~α2
1 such that vector d2

%!
is

optimal for DM2: C2ð
~
d2 Þ

The maximal cardinality of C2ð
~
d2 Þ appears when all decisions

are optimal for a given α2 and each α2
change are different for each

decision nodes of DM2. Thus, in the worst case, we have jD1j , jD2j

sets C2ð d
2

%!
Þ.

6.2. Determination of C1;2ðd
1
; d2
%!

Þ(step 2)

After determining all C2ð d
2

%!
Þ, we compute the set C1;2ðd

1
; d2
%!

Þ

for each d1AD1. The outline of the algorithm is:

– Step 2.1. Computation of the value of α1 for which decision d1

changes, denoted by α1
change, for each d2

%!
such that C2ð d

2
%!

Þa∅,

(see Fig. 4 Section 4.2)

– Step 2.2. Computation of the set of α1 such that d2
%!

is the optimal

vector of DM2 and d1 is the optimal decision of DM1: C1;2ðd
1
; d2
%!

Þ

In the worst case, we must compute jD1j for each C2ð d
2

%!
Þa∅

so at most jD1j2 , jD2j C1;2ðd
1
; d2
%!

Þ.

6.3. Determination of C1
2ðd

1
Þ (step 5)

In this section we present the algorithm to compute the set of

criteria giving an optimal solution the decision d1 of DM1. This

algorithm the result of C2ð d
2

%!
Þ

– Step 5.1. Computation, for each vector d2
%!

AC2ð d
2

%!
Þ, of the

value of α2 for which decision d1 changes, denoted by α1
change,

for each d2
%!

such that C2ð d
2

%!
Þa∅, (see Fig. 4 Section 4.2)

– Step 5.2. Computation of the set of α1 such that d2
%!

is optimal

vector of DM2 and d1 is optimal decision of DM1: C1;2ðd
1
; d2
%!

Þ

using Eq. (11)

C1
2ðd

1
Þ ¼ fc2jd1 ¼ argmin

d1 AD1 ðmin
d2 AD2

d1
uc2 ðd

1
;d2ÞÞg ð11Þ

7. Application of the method to an industrial case-study

In this section, we apply the method on a real-life case based

on a dyadic supply chain where the customer, a French worldwide

dermo-cosmetic maker (Pierre Fabre Dermo-Cosmétique), has to

choose a collaboration protocol (2 possibilities) with its packaging

product supplier. According to the traditional collaboration proto-

col the customer has to release orders (a product, a quantity) and

the supplier responds. A DM's decision variable is the order lead

time (here 12, 8 or 6 weeks). With the advanced collaboration

protocol the customer commits on purchases associated to a

family of products 8 weeks in advance (product family aggregation

is related to supplier's set up considerations). Then, the customer

releases delivery needs about the product 1 week in advance.

A DM's decision lever is the minimal volume associated to the

family engagement (here 50,000, 100,000 or 150,000 products).

7.1. Problem modeling

According to the notation defined in previous parts, we denote

by DM1 the customer (PFDC) and by DM2 one of his packaging

suppliers. Two sequential decisions have to be made:

– DM1 has to define the collaboration protocol and its parameter

(6 possibilities) (Table 3),

– then, DM2 will define his lot sizing strategy (3 possibilities).

Table 2

Results taking into account the importance given to the DM2.

Optimal decision d¼1 d¼1 d¼1 d¼1 d¼1 d¼1 d¼1 d¼1 d¼1 d¼1 d¼1 d¼1 d¼1 d¼1 d¼1 d¼1 d¼1 d¼1 d¼1 d¼1 d¼1

s12 $1 $0.9 $0.8 $0.7 $0.6 $0.5 $0.4 $0.3 $0.2 $0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

d¼1 0 0.1 0.2 0.3 0.4 0.5 0.58 0.58 0.58 0.58 0.58 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

0.58 0.58 0.58 0.58 0.58 0.58 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

d¼2 $1 $0.9 $0.8 $0.7 $0.6 $0.5 $0.4 $0.3 $0.2 $0.1 0 0.1 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4

0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.4 0.4 0.4 0.4 0.5 0.6 0.7 0.8 0.9 1



In addition, the performance of the supply chain will be subject

to a global uncertain event that models the uncertainty of the

performance due to different risk sources (scrap, production/

transport delay, breakdowns…) (7 possible situations).

According to the number of scenarios that have to be evaluated,

we use a simulation tool called LogiRisk for the evaluation of each

scenario (each leaf of the tree) on real data from PFDC (Marques,

2010). Developed in the Perl language, it is dedicated to tactical

and mostly strategic SC planning processes. This simulator is based

on a discrete event simulation modeling approach. Authors have

established a generic representation of the different planning

processes for each SC actor based on the MRPII (Manufacturing

Resource Planning) processes. An upstream planning process is

used between partners: plans are made by the customer and

passed to its suppliers. The procedure is repeated all over the chain

in the upstream direction. No information circulates downstream

(Lamothe et al., 2007, Marques et al., 2009).

The customer's cost function is 2/3 average customer's stock-

out 1/3 average customer's stock and supplier's cost function is 1/2

average supplier's stock-out 1/2 average supplier's inventory level.

7.2. Problem solving

The customer provides two possibility distributions on the

optimism degree of himself/herself and on the supplier. The

optimism degrees are represented in Fig. 6. Here, the DM1 is

optimistic (black line) and the DM2 is known to be pessimistic

(dotted line) by DM1.

From the simulation we build the decision tree (with 6 deci-

sions for DM1 {1;2;3;4;5;6} and 3 decisions for DM2 {1;2;3}) and

the cost function for each DM (DM1: customer's cost and DM2:

supplier's cost).

7.3. Determination of C2ð d
2

%!
Þ (step 1)

Decision 1 of DM2 is Pareto-optimal for all decisions of DM1. In

other words, decision 1 has the minimal “min” and minimal “max”

for each decision of DM1. So, whatever the optimism degree of

DM2, DM2 chooses decision 1 for each node.

C2ðð1;1;1;1;1;1ÞÞ ¼ ½0:5;1" 8 d2
%!

a ð1;1;1;1;1;1Þ C2ð d
2

%!
Þa∅

7.4. Determination of C1;2ðd
1
; d2
%!

Þ(step 2)

Then we compute the set C1;2ðd
1
; ð1;1;1;1;1;1ÞÞ 8d1AD1.

Whatever the optimism degree of DM1, decisions 1,4,5,6 can be

chosen:

8d1a2;3 C1;2ðd
1
; ð1;1;1;1;1;1ÞÞa∅

DM1 has two possible optimal solutions: solution 2 and 3.

So we compute α1
change (Fig. 7): C1;2ð2; ð1;1;1;1;1;1ÞÞ ¼ ½0;0:429"

and C1;2ð3; ð1;1;1;1;1;1ÞÞ ¼ ½0:429;0:5".

7.5. Computation of C1ðd
1
Þ (step 3)

In this example: C1ðd
1
Þ ¼ C12ðd

1
; ð1;1;1;1;1;1ÞÞ 8d1AD1:

C1ð2Þ ¼ C12ð2; ð1;1;1;1;1;1ÞÞ ¼ ½0;0:429"

C1ð3Þ ¼ C12ð3; ð1;1;1;1;1;1ÞÞ ¼ ½0:429;0:5"

Table 3

Decision protocols for DM1's decisions.

Notation Protocol decision Parameter decision

1 Advanced collaboration Low volume (50,000)

2 Advanced collaboration Medium volume (100,000)

3 Advanced collaboration High volume (150,000)

4 Basic order Little order lead time (6w)

5 Basic order Medium order lead time (8w)

6 Basic order Big order lead time (12w)

Fig. 6. Fuzzy optimism degree of DM1 and DM2.

Fig. 7. Comparative analysis of decisions 2 and 3.

Table 4

Data of decision tree of the case-study.

DM1 DM2 Supplier's cost Customer's cost

min max min max

1 1 7.175 7.696 0.471 0.537

2 14.516 17.563 0.415 0.475

3 20.436 25.396 0.411 0.453

2 1 6.022 6.907 0.422 0.462

2 13.078 14.34 0.380 0.425

3 18.92 21.57 0.375 0.414

3 1 5.905 6.956 0.414 0.468

2 12.975 14.734 0.382 0.420

3 18.267 21.257 0.374 0.412

4 1 6.177 7.272 0.547 0.656

2 11.862 14.444 0.505 0.605

3 17.268 20.824 0.478 0.554

5 1 6.427 6.946 0.571 0.622

2 12.131 13.985 0.567 0.624

3 17.540 20.445 0.542 0.639

6 1 7.307 7.549 0.765 1.009

2 13.010 14.628 0.763 1.009

3 18.968 21.294 0.765 1.008

0

0.5

1

1.5

0 0.5 1 1.5

2

3

Fig. 8. Conflict of decisions.



7.6. Computation of Pgðd1jDM1Þ (step 4)

To choose between decisions 2 and 3 we compute the pignistic

probability that decision 2 is optimal: Pgð2jDM1Þ ¼ Pgðα1
A

½0;0:429"Þ , Pgðα2
A ½0;1"Þffi0:992, 1 and the pignistic probability

that decision 3 is optimal: Pgð3jDM1Þ ¼ Pgðα1
A ½0:429;0:5"Þ,

Pgðα2
A ½0;1"Þffi0:008, 1¼ 0:008 (Table 4).

7.7. Determination of C1
2ðd

1
Þ (step 5)

We compute C1
2ðd

1
Þ for 1 to 6. Noted that the decision 1, 4,

5 and 6 are dominated by decision 2 and 3. But decision 3 is

optimal for α2
A ½0:5;1". So we deduce that C1

2ð1Þ ¼ C1
2ð2Þ ¼

C1
2ð4Þ ¼ C1

2ð5Þ ¼ C1
2ð6Þ ¼∅, and C1

2ð3Þ ¼ ½0:5;1".

7.8. Computation of Pgðd1jDM2Þ (step 6)

So, Pgð1jDM2Þ ¼ Pgð2jDM2Þ ¼ 0 and Pgð3jDM2Þ ¼ 1.

A graphical representation of the resulting conflict of decisions

(step 7) is pictured (Fig. 8):

Based on the evaluation of the pignistic probability of each

decision of DM1 from the point of view of DM1 and DM2we

compute the optimal solution taking into account the importance

given by DM1to DM2 (Table 5).

In this case, the final decision depends on the balance of power

between actors. Table 5 shows that the decision chosen by DM1

strongly depends on the importance given by DM1 to DM2. In fact,

if DM1 gives low importance to DM2 ðs1240;1Þ she/he imposes

decision 2 to DM2 otherwise DM1 will choose decision 3 to satisfy

DM2.

8. Conclusion

In this paper we focused on a decision problem in a dyadic

collaborative supply chain. More precisely we addressed the

problem of decision making for a customer, taking into account

the future decision of his supplier under imprecise information

on the criteria of the two SC partners. We proposed a decision

method ensuring optimal stability. In other words we focus

on the decision that has the best chance to be optimal under an

imprecise criterion.

Industrial DMs are daily faced to the issue of exploiting their

empirical knowledge of their partners' decisional behavior. This

knowledge is rarely precise and quantified. Being able to exploit

this knowledge may be a strategic advantage in term of value

creation and preservation. The model presented in this paper and

the associated case study illustrate the advantage to identify the

decision which has the best chance of being optimal under

imprecise knowledge, even if research efforts have to be made to

improve the robustness of the results and to use real life colla-

boration experience in order to improve the mutual knowledge of

partners' decisional behaviors.
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