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In information processing tasks, sets may have a conjunctive or a disjunctive reading. In the

conjunctive reading, a set represents an object of interest and its elements are subparts

of the object, forming a composite description. In the disjunctive reading, a set contains

mutually exclusive elements and refers to the representation of incomplete knowledge. It

does not model an actual object or quantity, but partial information about an underlying

object or a precise quantity. This distinction between what we call ontic vs. epistemic

sets remains valid for fuzzy sets, whose membership functions, in the disjunctive reading

are possibility distributions, over deterministic or random values. This paper examines the

impact of this distinction in statistics. We show its importance because there is a risk of

misusing basic notions and tools, such as conditioning, distance between sets, variance,

regression, etc. when data are set-valued. We discuss several examples where the ontic

and epistemic points of view yield different approaches to these concepts.

1. Introduction

Traditional views of engineering sciences aim at building a mathematical model of a real phenomenon, via a data set

containing observations of the concerned phenomenon. This mathematical model is approximate in the sense that it is a

simplified abstraction of the reality it intends to account for, but it is often precise, namely it typically takes the form of

a real-valued function that represents, for instance, the evolution of a quantity over time. Approaches vary according to

the class of functions used. The oldest and most common class is the one of linear functions, but a lot of works dealing

with non-linear models have appeared, for instance and prominently, using neural networks and fuzzy systems. These

two techniques for constructing precise models have been merged to some extent due to the great similarity between the

mathematical account of fuzzy rules and neurons, and their possible synergy due to the joint use of linguistic interpretability

of fuzzy rules and learning capabilities of neural nets [9]. While innovative with respect to older modeling techniques, these

methods remain in the traditional school of producing a simplified and imperfect substitute of reality as observed via precise

data.

Besides, there also exists a strong tradition of accounting for the non-deterministic aspect of many real phenomena

subject to randomness in repeated experiments, including the noisy environment of measurement processes. Stochastic

models enable to capture the general trends of populations of observed events through the use of probability distributions

having a frequentist flavor. The probability measure attached to a quantity then reflects its variability through observed

statistical data. Again in this approach, a stochastic model is a precise description of variability in physical phenomena.



More recently, with the emergence of Artificial Intelligence, but also in connection with more traditional human-centered

research areas like Economics, Decision Analysis and Cognitive Psychology, the concern of reasoning about knowledge has

emerged as a major paradigm [42]. Representing knowledge requires a logical language and this approach has been mainly

developed in the framework of classical or modal logic, due to the long philosophical tradition in this area. Contrary to

the numerical modeling tradition, such knowledge-based models are most of the time tainted with incompleteness: a set

of logical formulae, representing an agent’s beliefs is seldom complete, that is, cannot establish the truth or falsity of any

proposition. This concern for incomplete information in Artificial Intelligence has strongly affected the development of new

uncertainty theories [32], and has led to a critique of the Bayesian stance viewing probability theory as a unique framework

for the representation of belief that mimics the probabilistic account of variability.

These developments question traditional views of modeling as representing reality independently of human perception

and reasoning. They suggest a different approach where mathematical models should also account for the cognitive limi-

tations of our observations of reality. In other words, one might think of developing the epistemic approach to modeling.

We call ontic model a precise representation of reality (however inaccurate it may be), and epistemic model a mathematical

representation both of reality and the knowledge of reality, that explicitly accounts for the limited precision of our mea-

surement capabilities. Typically, while the output of an ontic model is precise (but possibly wrong), an epistemic model

delivers an imprecise output (hopefully consistent with the reality it accounts for). An epistemic model should of course be

as precise as possible, given the available incomplete information, but it should also be as plausible as possible, avoiding

unsupported arbitrary precision.

This position paper1 discusses epistemic modeling in the context of set-based representations, and the mixing of vari-

ability and incomplete knowledge as present in recent works in fuzzy set-valued statistics. The outline of the paper is as

follows. In Section 2, we discuss the use of sets for the representation of epistemic states as opposed to the representation

of objective entities. Then in Section 3 we draw the consequences of this discussion in the theory of random sets, laying

bare three approaches relying on the same mathematical tool. In Section 4, we show that the distinction drawn between

epistemic and ontic random sets affects the practical relevance of formal definitions one can pose in the random set setting.

It is shown that notions of conditioning, independence and variance differ according to the adopted point of view. The

consequences of this distinction in the way interval regression problems can be posed are briefly discussed in Section 5.2.

Finally, Section 6 carries the distinction between ontic and epistemic sets over to fuzzy sets, and, more briefly, to random

fuzzy sets.

2. Ontic vs. epistemic sets

A set S defined in extension, is often denoted by listing its elements, say, in the finite case {s1, s2, . . . , sn}. As pointed

out in a recent paper [33] this representation, when it must be used in applications, is ambiguous. In some cases, a set

represents a real complex lumped entity. It is then a conjunction of its elements. It is a precisely described entity made

of subparts. For instance, a region in a digital image is a conjunction of adjacent pixels; a time interval spanned by an

activity is the collection of time points where this activity takes place. In other cases, sets are mental constructions that

represent incomplete information about an object or a quantity. In this case, a set is used as a disjunction of possible

items, or of values of this underlying quantity, one of which is the right one. For instance I may only have a rough idea

of the birth date of the president of some country, and provide an interval as containing this birth date. Such an interval

is the disjunction of mutually exclusive elements. It is clear that the interval itself is subjective (it is my knowledge), has

no intrinsic existence, even if it refers to a real fact. Moreover this set is likely to change by acquiring more information.

The use of sets representing imprecise values can be found for instance in interval analysis [54]. Another example is the

set of models of a proposition in logic, or a propositional knowledge base: only one of them reflects the real situation; this

is reflected by the DNF form of a proposition, i.e., a disjunction of its models, each of which is a maximal conjunction of

literals.

Sets representing collections C of elements forming composite objects will be called conjunctive; sets E representing

incomplete information states will be called disjunctive. A conjunctive set is the precise representation of an objective entity

(philosophically it is a de re notion), while a disjunctive set only represents incomplete information (it is de dicto). We also

shall speak of ontic sets, versus epistemic sets, in analogy with ontic vs. epistemic actions in cognitive robotics [43]. An ontic

set C is the value of a set-valued variable X (and we can write X = C ). An epistemic set E contains the ill-known actual

value of a point-valued quantity x and we can write x ∈ E . A disjunctive set E represents the epistemic state of an agent,

hence does not exist per se. In fact, when reasoning about an epistemic set it is better to handle a pair (x, E) made of a

quantity and the available knowledge about it.

A value s inside a disjunctive set E is a possible candidate value for x, while elements outside E are considered impossi-

ble. Its characteristic function can be interpreted as a possibility distribution [77]. This distinction between conjunctive and

disjunctive sets was already made by Zadeh [78] distinguishing between set-valued attributes (like the set of sisters of some

person) from ill-known single-valued attributes (like the unknown single sister of some person). The study of incomplete

1 An expanded version of a first draft (by the second author) that is part of the COST702 final report published by Springer as an edited volume “Towards

Advanced Data Analysis by Combining Soft Computing and Statistics”, in: C. Borgelt, et al. (Eds.), Studies in Fuzziness and Soft Computing, vol. 285, 2013.



conjunctive information (whose representation requires a disjunctive set of conjunctive sets) was carried out quite early

and can be found in papers by Yager [74] and Dubois and Prade [29]. More recently Denoeux et al. [21] have proposed an

approach to formalize uncertain conjunctive information using belief functions.

An epistemic set (x, E) does not necessarily account for an ill-known deterministic value. An ill-known quantity may

be deterministic or stochastic. For instance, the birth date of a specific individual is not a random variable even if it can

be ill-known. On the other hand, the daily rainfall at a specific location is a stochastic variable that can be modelled by a

probability distribution. An epistemic set then captures in a rough way information about a population via observations. For

instance, there is a sample space Ω , and x can be a random variable taking values on S , but the probability distribution

induced by x is unknown.2 All that is known is that x(ω) ∈ E , for all ω ∈ Ω . It implies P x(E) = 1 where P x is the probability

measure of x. Then, E represents the family PE of objective probability measures on Ω such that P ({ω: x(ω) ∈ E}) = 1,

one of which being the proper representation of the random phenomenon. In this case, the object to which E refers is not

a precise value of x, but a probability measure P x describing the variability of x.

Note that in the probabilistic literature, an epistemic set is more often than not modelled by a probability distribution.

In the early 19th century, Laplace proposed to use a uniform probability on E , based on the insufficient reason principle,

according to which what is equipossible must be equiprobable. This is a default choice in PE that coincides with the

probability distribution having maximal entropy. This approach was until recently often adopted as natural if x is a random

variable. In case x is an ill-known deterministic value, Bayesians [50] propose to use a subjective probability Pb
x in place of

set E . Then, the occurrence of x is not a matter of repetitions, and the degree of probability is made sense of via a betting

interpretation on a single occurrence of event A: Pb
x (A) is the price of a lottery ticket chosen by an agent who agrees to

earn $1 if A turns out to be true, in an exchangeable bet scenario where the bookmaker exchanges roles with the buyer

if the proposed price is found unfair. It forces the agent to propose prices pb(s) that sum exactly to 1 over E . Then Pb
x (A)

measures the degree of belief of the (non-repeatable) event x ∈ E , and this degree is agent-dependent.

However clever it may be, this view is debatable (see [32] for a summary of critiques). Especially, this representation

is unstable: if Pb
x is uniform on E , then Pb

f (x)
may fail to be so if E is finite and the image f (E) does not contain the

same number of elements as E , or if E is an interval and f is not a linear transformation. Moreover, the use of unique

probability distributions to represent belief is challenged by experimental results (like Ellsberg paradox [5]), which show

that individuals do not make decisions based on expected utility in front of partial ignorance.

3. Random sets vs. ill-known random variables

As opposed to the case of an epistemic set representing an ill-known probability distribution, another situation is when

the probability space (Ω, P ) is available,3 but each realization of the random variable is represented as a set. This case

covers two situations:

1. Random conjunctive sets: The random variable X(ω) is multivalued and takes values on the power set of a set S .

For instance, S is a set of spoken languages, and X(ω) is the set of languages spoken by an individual ω. Or X(ω)

is an ill-known area of interest in some spatial domain, and ω is the outcome of an experiment to locate it. Then a

probability distribution pX is obtained over 2S , such that pX (C) = P (X = C). It is known in the literature as a random

set (Kendall [45], Matheron [53]). In our terminology this is a random conjunctive (or ontic) set.

2. Ill-known random variables: The random variable x(ω) takes values on S but its realizations are incompletely observed.

It means that ∀ω ∈ Ω , all that is known is that x(ω) ∈ E = X(ω) where X is a multiple-valued mapping Ω → 2S

representing the disjunctive set of mappings (often called selections) {x: Ω → S,∀ω, x(ω) ∈ X(ω)} = {x ∈ X} for short.

In other words, the triple (Ω, P , X) is an epistemic model of the random variable x and the probability pX (E) =
∑

ω: X(ω)=E p(ω) represents the proportion of the population in Ω for which all that is known is that x(ω) ∈ E .

This is the approach of Dempster [19] to imprecise probabilities. He uses this setting to account for a parametric prob-

abilistic model Pθ on a set U of observables, where θ ∈ Θ is an ill-known parameter but the probability distribution of

a function φ(u, θ) ∈ Ω is known. Then S = Θ × U and X(ω) = {(θ,u): φ(u, θ) = ω}. It is clear that, for each observa-

tion u, Xu(ω) = {θ : φ(u, θ) = ω} is an epistemic set restricting the actual (deterministic) value θ , and the probability

distribution of φ generates an epistemic random set on the parameter space Θ .

Shafer [62] has proposed a non-statistical view of the epistemic random set setting, based on a subjective probability m

over 2S , formally identical to pX . In this setting called the theory of evidence, m(E) represents the subjective probability

that all that is known of a deterministic quantity x is of the form x ∈ E . This is the case when an unreliable witness testifies

that x ∈ E and p is the degree of confidence of the receiver agent in the validity of the testimony. Then with probability

m(E) = p, x ∈ E is a reliable information. It means that the testimony is useless with probability m(S) = 1 − p assigned

2 We will use lower case for both deterministic and random point-valued quantities, in contrast with set-valued deterministic/random objects, that will

be denoted by capitals.
3 In this paper, we assume Ω is finite to avoid mathematical difficulties. The probability measure P will be assumed to be defined over the discrete

σ -field, ℘(Ω).



to the empty information S . This view of probability was popular until the end of the 18th century (see [57] for details

and a general model of unreliable witness). More generally the witness can be replaced by a measurement device or a

message-passing entity with state space U , such that if the device is in state u then the available information is of the form

x ∈ E(u) ⊆ S , and p(u) is the subjective probability that the device is in state u [63].

The above discussions lay bare the difference between random conjunctive and disjunctive sets, even if they share the

same mathematical model. In the first case one may compute precise probabilities that a set-valued variable X takes value

in a family A of subsets:

P X (A) =
∑

X(ω)∈A

p(ω) =
∑

C∈A

pX (C). (1)

For instance, in the language example, and S = {English, French,Spanish}, one may compute the probability that someone

speaks English by summing the proportions of people in Ω that respectively speak English only, English and French, English

and Spanish, and the three languages.

In the second scenario, the random set X(ω) represents knowledge about a point-valued random variable x(ω). For

instance, suppose S is an ordered height scale, x(ω) represents the height of individual ω and X(ω) = [a,b] ⊆ S is an

imprecise measurement of x(ω). Here one can compute a probability range containing the probability P x(A) =
∑

x(ω)∈A p(ω)

that the height of individuals in Ω lies in A, namely lower and upper probabilities proposed by Dempster [19]:

P X (A) =
∑

X(ω)⊆A

p(ω) =
∑

E⊆A

pX (E); (2)

P X (A) =
∑

X(ω)∩A 6=∅

p(ω) =
∑

E∩A 6=∅

pX (E) (3)

such that P X (A) = 1 − P X (Ac), where Ac is the complement of A. Note that the set of probabilities PX on S induced by

this process is finite: since Ω and S are finite, the number of selections x ∈ X is finite too. In particular, PX is not convex.

Its convex hull is P̂X = {P ; ∀A ∈ S, P (A) > P X (A)}. It is well-known that probability measures in this convex set are of the

form

P (A) =
∑

E⊆S

pX (E)P E(A)

where P E , a probability measure such that P E (E) = 1, defines a sharing strategy of probability weight pX (E) among ele-

ments of E . As explained by Couso and Dubois [10], it corresponds to a scenario where when ω ∈ Ω occurs, x(ω) is tainted

with variability (due to the measurement device) that can be described by a conditional probability P (·|ω) on S . Hence the

probability Px(A) is now of the form:

Px(A) =
∑

ω∈Ω

P (A|ω)p(ω),

which lies in P̂X . However, all we know about P (A|ω) is that P (X(ω)|ω) = 1 for some maximally specific epistemic subset

X(ω). This is clearly a third (epistemic) view of the random set X . It is easy to see that the choice of PX vs. its convex hull

is immaterial in the computation of upper and lower probabilities, so that

P X (A) = inf

{

∑

ω∈Ω

P (A|ω)p(ω): P
(

X(ω)|ω
)

= 1,∀ω ∈ Ω

}

(4)

= inf
{P E : E⊆S}

∑

E⊆S

pX (E)P E(A). (5)

In the evidence theory setting, Dempster upper and lower probabilities of an event are directly interpreted as degrees

of belief Bel(A) = P X (A) and plausibility Pl(A) = P X (A), without reference to an ill-known probability on S (since the

information is not frequentist here). This is the view of Smets [69]. The mathematical similarity between belief functions

and random sets was quite early pointed out by Nguyen [55]. But they gave rise to quite distinct streams of literature that

tend to ignore or misunderstand each other.

4. When the meaning of the model affects results: conditioning and independence

The reader may consider that the difference between the three above interpretations of random sets is just a philo-

sophical issue, that does not impact on the definition of basic notions that can be studied in each case. For instance the

mean interval of a random interval has the same definition (interval arithmetics or Aumann integral) independently of the

approach. However this is not true for other concepts. Two examples are given here: conditioning and independence.



4.1. Conditioning random sets

Given a random set in the form of a probability distribution on the power set of S , and a non-impossible event A ⊂ S ,

the proper method for conditioning the random set on A depends on the adopted scenario.

Conditioning a conjunctive random set In this case the problem comes down to restricting the set-valued realizations X(ω)

so as to account for the information that the set-valued outcome lies inside A. Then the obtained conditional random set is

defined by means of the standard Bayes rule in the form of its weight distribution pX (·|A) such that:

pX (C |A) =

{

pX (C)
∑

B⊆A pX (B)
if C ⊆ A;

0 otherwise.
(6)

Example 1. Let S be a set of spoken languages including c = Chinese, e = English, f = French and s = Spanish. Let us

consider the sets C = {e, f , s} and A = S \ {c}. Then pX (C |A) denotes the proportion of people that speak English, French

and Spanish (and nothing else), among those who cannot speak Chinese.

Eq. (6) can be generalized by considering a pair of arbitrary families of subsets of S , C and A, and writing

P X (C|A) =
P X (C ∩A)

P X (A)
=

∑

B∈C∩A pX (B)
∑

A∈A pX (A)
. (7)

Eq. (7) is nothing else but the classical rule of conditioning, where the images of the random set X , which are subsets of S ,

are seen as “elements” of the actual “universe”, and the families of subsets of S are the actual “events”. In fact, in Eq. (6),

we should write pX (C |A) where A= {B: B ⊆ A}.

Example 2. Let S be again the set of spoken languages considered in Example 1 and let us consider the families of sets

C = {C : C ∋ e} and A = {A: A /∋ c}. Then, pX (C|A) =
∑

C∈C∩A pX (C)
∑

A∈A pX (A)
represents the proportion of people that can speak (at

least) English, among those who do not speak Chinese.

Conditioning an ill-known random variable Suppose the epistemic random set X(ω) relies on a population Ω , and is repre-

sented by a convex set P̂X of probabilities Px on S , one of which is the proper frequentist distribution of the underlying

random variable x. Suppose we study a case for which all we know is that x ∈ A, and the problem is to predict the value

of x. Each probability pX (E) should be recomputed by restricting Ω to the subset ΩA = {ω: x(ω) ∈ A} of population Ω .

However, because x(ω) is only known to lie in X(ω), the set ΩA is itself ill-known.

Suppose we know for each focal set E , the proportion αA(E) of the population (for which all we know is x(ω) ∈ E) that

lies inside ΩA . Namely:

• If A and E are disjoint sets, αA(E) will be equal to zero.

• Moreover, if E ⊆ A, then αA(E) = 1 necessarily.

• In the rest of the cases (E ∩ A 6= ∅ and E ∩ Ac 6= ∅), αA(E) may take any value between 0 and 1.

We can obtain αA if, for each non-empty subset E , we know the probability distribution pE such that pE (s) = P (x(ω) =
s|X(ω) = E) sharing the mass pX (E) defined in the previous Section 3. It is clear that we can define α{s}(E) = pE ({s}), so
that

∑

s∈E α{s}(E) = 1, ∀E ∈F and:

αA(E) =
∑

i: s∈A

α{s}(E) = P E(A), ∀A ⊆ S, ∀E ∈ F .

It defines a set A = {αA(E): A ⊆ S, E ∈ F} of coefficients taking values on the unit interval [0,1]. Each set A determines a

probability measure, Pα
x ∈ P̂X such that:

pα
x (s) =

∑

E∈F

α{s}(E) · pX (E), ∀s ∈ S. (8)

If the set of coefficients {αA(E), E ∈F} is fixed, it is possible to condition pX by restricting it to subsets of A as follows

[17]:

p
αA
X (F |A) =

{ ∑

F=E∩A αA(E)pX (E)
∑

E∩A 6=∅ αA(E)pX (E)
if F ⊆ A;

0 otherwise.

(9)

The idea is that the probability assigned to a subset F of A, when restricting to the population ΩA is obtained by as-

signing to it all fractions αA(E)pX (E) of the population in Ω for which all we know is that x(ω) ∈ E and that we



Table 1

Joint distribution of the pair of random sets (X1, X2).

X1\X2 {r} {w} {r, w}

{r} 1/6 1/6 0

{w} 1/6 1/6 0

{r, w} 0 0 1/3

know to actually lie in F = A ∩ E . It gives birth to plausibility and belief functions P
αA
X (B|A) =

∑

F∩B 6=∅ p
αA
X (F |A) and

P
αA
X (B|A) =

∑

F⊆B p
αA
X (F |A) over A. Varying the vector (αA(E)E⊆S) leads to conjugate upper and lower set-functions as

follows [17]:

P X (B|A) = sup
αA

P
αA
X (B|A); P X (B|A) = inf

αA

P
αA
X (B|A). (10)

These bounds are attained by the following choices of αA vectors, where B ⊆ A:

• Upper bound P X (B|A): αA(E) = 1 if E ∩ B 6= ∅ or E ⊆ A, 0 otherwise.

• Lower bound P X (B|A): αA(E) = 1 if E ∩ A ⊆ B or E ⊆ A, 0 otherwise.

In fact, it has been proved that the same bounds can be obtained by applying Bayesian conditioning to all probabilities in

PX with Px(A) > 0. They are upper and lower conditional probabilities that take an attractive closed form [17,34]:

P X (B|A) = sup
{

Px(B|A): Px ∈ PX

}

=
P X (B ∩ A)

P X (B ∩ A) + P X (Bc ∩ A)
, (11)

P X (B|A) = inf
{

Px(B|A): Px ∈ PX

}

=
P X (B ∩ A)

P X (B ∩ A) + P X (Bc ∩ A)
, (12)

where P X (B|A) = 1− P X (Bc|A) and Bc is the complement of B .

In fact this is not surprizing since each vector αA corresponds to a subset of probability measures Pα
x ∈PX obtained from

all sets A of coefficients containing {αA(E): E ∈F} and each Px ∈PX is generated by some set A: more precisely Pα
x (B) =

∑

E⊆S pX (E)αB(E) due to Eqs. (3) and (8). Noticeably, P X (B|A) and P X (B|A) are still plausibility and belief functions, as

proved in [40,56], so that Eqs. (9) and (10) justify this form of conditioning (familiar in imprecise probability theory [73])

in the setting of belief functions.

The following example is a variant of Example 6 in [11].

Example 3. Suppose that we have three urns. The first one has 3 balls: one white, one red and one unpainted. The second

urn has two balls: one red and one white. The third urn has two unpainted balls. We randomly select one ball from the first

urn. If it is colored, then we randomly select a second ball from the second urn. Else if it is unpainted, we select the second

ball from the third urn. Once the two balls have been selected, they will be painted red or white according to an unknown

procedure. The information about the final color of the pair of randomly selected balls can be represented by means of a

random set X = X1 × X2 taking values on the product space Ω × Ω = {r, w} × {r, w}, where X1 and X2 respectively denote

our incomplete information about the final color of the first and the second ball, respectively. X1 and X2 are set-valued

functions, each one of them with the possible outcomes {r} (red color) {w} (white color) and {r, w} (unknown color).

According to above process of selection, the probability of appearance of each pair of outcomes is provided in Table 1.

The actual pair of colors of both (randomly selected) balls can be represented by means of a random vector x = (x1, x2).

All we know about it is that its values belong to the (set-valued) images of X = X1 × X2 , or, in other words, that the

random vector x belongs to the family of selections of X , S(X). Let us now consider, for instance the events A = {w} × Ω

and B = Ω × {w}. The conditional probability px(B|A) denotes the probability that the color of second ball (x2) is also

white, if we know that the first one (x1) was white. Our knowledge about this value is determined by the pair of bounds

P X (B|A) = sup
y∈S(X)

p y(B|A) =
1/6+ 1/3

1/6+ (1/6+ 1/3)
= 3/4

and

P X (B|A) = inf
y∈S(X)

p y(B|A) =
1/6

(1/6+ 1/3) + 1/6
= 1/4.

Conditioning a belief function In this case, there is no longer any population, and the probability distribution m = pX on

2S represents subjective knowledge about a deterministic value x. Conditioning on A means that we come to hear that

the actual value of x lies in A for sure. Then we perform an information fusion process (a special case of Dempster rule

of combination [19]). It yields yet another type of conditioning, called Dempster conditioning, that systematically transfers



masses m(E) to E ∩ A when not empty, eliminates m(E) otherwise, then normalizes the conditional mass function, dividing

by
∑

E∩A 6=∅m(E) = Pl(A). It leads to the conditioning rule

Pl(B|A) =
Pl(A ∩ B)

Pl(A)
=

P X (A ∩ B)

P X (A)
, (13)

and Bel(B|A) = 1 − Pl(Bc|A). Note that it comes down to the previous conditioning rule (9) with αA(E) = 1 if E ∩ A 6= ∅,
and 0 otherwise (an optimistic assignment, justified by the claim that A contains the actual value of x).

Example 4. Let us suppose that we have the following incomplete information about an unknown value x: It belongs to

the interval E1 = [25,35] with probability greater than or equal to 0.5. Furthermore, we are completely sure that it belongs

to the (less precise) interval E2 = [20,40]. This information can be represented by means of a consonant mass function m

assigning the following masses to the above intervals (the focal elements):

m
(

[25,35]
)

= 0.5 and m
(

[20,40]
)

= 0.5.

According to this information the degree of belief associated to the set B = [30,35], Bel(B) =
∑

C⊆B m(C) = 0 and Pl(B) =
1. Now, in addition, we are told that x belongs, for sure, to the interval of values A = [30,40]. In order to update our

information, we transfer the masses m(E1) and m(E2) respectively to E1 ∩ A and E2 ∩ A. The updated information is

therefore represented by means of a new consonant mass assignment m′ defined as m′([30,35] ∩ [30,40]) =m′([30,35]) =
0.5, and m′([30,40]) =m′([20,40]∩[30,40]) = 0.5. Let us calculate the conditional belief Bel(B|A). According to Dempster’s

rule of combination we get:

Bel(B|A) = 1− Pl
(

Bc|A
)

= 1−
Pl(Bc ∩ A)

Pl(A)

= 1−
Pl([35,40])

Pl([30,40])
= 1−

∑

C∩(B∩A) 6=∅m(C)

1
= 0.5.

It is clear that the belief–plausibility intervals obtained by this conditioning rule are contained within those obtained by

(11)–(12). In fact, Dempster conditioning operates a revision of the disjunctive random set, while the previous conditioning

only computes a prediction within a given context. The two conditioning methods coincide when for all focal sets E , either

E ⊆ A or E ⊆ Ac , which is the case in the application of the generalized Bayes theorem [26].

Remark 4.1. Interestingly the conditioning rule for conjunctive random sets comes down to the previous conditioning rule

(9) with αA(E) = 1 if E ⊆ A, and 0 otherwise, that could, in the belief function terminology, be written as Bel(B|A) =
Bel(A∩B)
Bel(A)

. It is known as the geometric rule of conditioning. Such a pessimistic weight reassignment can hardly be justified

for disjunctive random sets.

4.2. Independence

The proper notion of independence between two random sets also depends on the specific interpretation (conjunctive or

disjunctive) considered.

Random set independence Under the conjunctive approach, two random sets are assumed to be independent if they satisfy

the classical notion of independence, when considered as mappings whose “values” are subsets of the final space. Mathe-

matically, two random sets taking values respectively in the power sets of the finite universes4 S1 and S2 are said to be

independent if they satisfy the equalities:

P (X = A, Y = B) = P (X = A) · P (Y = B), ∀A ⊆ S1, B ⊆ S2. (14)

Under the above condition, some noticeable probabilities can be also factorized, i.e.:

P
(

{X × Y ⊆ A × B}
)

=
∑

C×D⊆A×B

P (X = C) · P (Y = D)

= P (X ⊆ A) · P (Y ⊆ B), ∀A, B, (15)

4 The definition of independence between two random sets can be easily extended to the general case where either the initial space Ω , or the final

universes, S1 and S2 , are necessarily finite. We just need to consider appropriate σ -fields, σ ⊆ ℘(Ω), σ1 ⊆ ℘(℘(S1)) and σ2 ⊆ ℘(℘(S2)) and assume that

the two-dimensional vector (X, Y ) : Ω → ℘(S1) × ℘(S2) (whose images are pairs of subsets of S1 and S2 , respectively) is σ − σ1 ⊗ σ2 measurable, so that

it induces a probability measure on the product σ -field. In our particular case, we consider by default the three discrete σ -fields ℘(Ω), ℘(℘(S1)) and

℘(℘(S2)), respectively. For the sake of simplicity, we will not get into further details about the general definition.



P
(

{X × Y ∩ A × B 6= ∅}
)

=
∑

C×D∩A×B 6=∅

P (X = C) · P (X = D)

= P (X ∩ A 6= ∅) · P (Y ∩ B 6= ∅), ∀A, B. (16)

They are random set counterparts of belief and plausibility functions.

Example 5. Let us consider two random sets defined on a population of people. Random set X represents the set of spoken

languages (one of them being e = English), and it assigns, to each randomly selected person, the set of languages (s)he

can speak. Random set Y assigns to each person the set of countries (s)he has visited during more than two months (we

will respectively denote by s and u the USA and the UK). Let us take a person at random and consider the events “(S)he

speaks (at least) English” and “(S)he has visited the USA or the UK for more than two months”. Those events can be

mathematically expressed as X ∋ e and Y ∩ {s,u} 6= ∅, respectively. If they are not independent, i.e., if the probability of

the conjunction P (X ∋ e, Y ∩ {s,u} 6= ∅) does not coincide with the product of the probabilities of both events, P (X ∋ e)

and P (Y ∩ {s,u} 6= ∅), then we claim that X and Y are stochastically dependent. The above probabilities can be written in

the language of plausibility measures as Pl({e} × {s,u}), Pl1({e}) and Pl2({s,u}) respectively (although this is not the correct

interpretation here). These three values do not satisfy Eq. (16), and therefore it is clear that the random sets X and Y are

not stochastically independent.

Let the reader notice that, when two random sets are, in fact, random intervals, they are independent if and only if the

random vectors determined by their extremes are stochastically independent, as we illustrate in the following example.

Example 6. Let the random intervals X = [x1, x2] and Y = [y1, y2] respectively represent the interval of min–max tempera-

tures and min–max humidity on a day selected at random in some location. X and Y would be independent if and only if

the random vectors (x1, x2) and (y1, y2) were stochastically independent, i.e., if and only if they would satisfy:

P (x1 6 a, x2 6 b, y1 6 c, y2 6 d) = P (x1 6 a, x2 6 b) · P (y1 6 c, y2 6 d), ∀a,b, c,d ∈R. (17)

Independence between ill-known variables Suppose that we observe a pair of random variables x and y with imprecision, and

our information about each realization (x(ω), y(ω)) is represented by a pair of sets, (X(ω), Y (ω)), containing the actual pair

of values. Given an arbitrary pair of events A ⊆ S1 and B ⊆ S2 , the probability values pX (A) and pY (B) are known to belong

to the respective intervals of values: [P X (A), P X (A)] and [P Y (B), P Y (B)], where X and Y denote the multivalued mappings

that represent our incomplete information about x and y, respectively, and P X , P Y , P Y , P Y denote their respective lower

and upper probabilities, in the sense of Dempster. If we know, in addition, that both random variables are independent,

then we can represent our knowledge about the joint probability p(x,y)(A × B) by means of the set of values:
{

p · q: p ∈
[

P X (A), P X (A)
]

and q ∈
[

P Y (B), P Y (B)
]}

.

According to [13], the family of joint probability measures:

P =
{

P : P (A × B) = p · q s.t. p ∈
[

P X (A), P X (A)
]

,q ∈
[

P Y (B), P Y (B)
]

, ∀A, B
}

is included in the family of probabilities dominated by the joint plausibility Pl considered in Eq. (16). Furthermore, according

to [11] it is, in general, a proper subset of it. This fact does not influence the calculation of the lower and upper bounds for

P (x,y)(A × B), but it impacts further calculations about bounds of other parameters associated to the probability measure

P (x,y) such as the variance or the entropy of some functions of the random vector (x, y), as it is checked in [14].

As illustrated above, random set independence is the usual probabilistic notion in the conjunctive setting. But it has also

a meaningful interpretation within the disjunctive framework: in this case, the pair of set-valued mappings (X, Y ) indicates

incomplete information about an ill-observed random vector (x, y). Independence between X and Y indicates independence

between incomplete pieces of information pertaining to the attributes (the sources providing them are independent), some-

thing that has nothing to do, in general, with the stochastic relation between the actual attributes x and y themselves. We

will illustrate this issue with some examples.

Example 7. Let us suppose that the set-valued mapping X expresses vacuous information about an attribute x. In such a

case, X will be the constant set-valued mapping that assigns the whole universe, to any element ω in the initial space,

and therefore, it is independent from any other set-valued mapping. But this fact does not mean at all that the attribute

x is independent from every other attribute y. Let us consider for instance the users of a crowded airport, and let x and

y respectively denote their height, in cm, and their nationality. Let us suppose that, on the one hand, we have precise

information about their nationality, but on the other hand, we have no information at all about their height. We can

represent our information about their height by means of the constant set-valued mapping X that assigns the interval

[90,250] to any passenger. On the other hand, our information about the nationality can be represented by means of a

function whose images are singletons (Y (ω) = {y(ω)}, ∀ω ∈ Ω). Both set-valued mappings satisfy the condition of random

set independence but this does not mean that height and nationality are two independent attributes in the considered

population.



The next example shows the converse situation: now, the ill-known information about a pair of independent random

variables is represented by means of a pair of stochastically dependent random sets.

Example 8. Let us consider again the situation described in Example 3. We can easily check that the random sets X1 and

X2 are stochastically dependent, according to their joint probability distribution provided in Table 1. Let us now suppose

that somebody else considers the following procedure in order to paint the unpainted balls: once both balls have been

selected, we drop two coins to decide their color (if they are unpainted), one coin for each ball. If we respectively denote

by x1 and x2 the final colors of both ball, we can easily check that p(x1,x2)({(r, r)}) = p(x1,x2)({(r, w)}) = p(x1,x2)({(w, r)}) =
p(x1,x2)({(w, w)}) = 0.25, so the joint probability induced by (x1, x2) can be factorized as the product of its marginals.

In the above example, both attributes (the actual colors of both randomly selected balls) are independent random vari-

ables, while the initial information about them is represented by means of two stochastically dependent random sets. As

we deduce from Examples 7 and 8, neither independence between pieces of (incomplete) information about two attributes

implies independence between them, nor the converse is true.

The next example goes along the same line as the last one, and it illustrates a situation a little bit closer to reality.

Example 9. Suppose that we have a light sensor that displays numbers between 0 and 255. We take 10 measurements

per second. When the brightness is higher than a threshold (255), the sensor displays the value 255 during 3/10 seconds,

regardless the actual brightness value. Below we provide data for six measurements:

Actual values 215 150 200 300 210 280

Displayed quantities 215 150 200 255 255 255

Set-valued information {215} {150} {200} [255,∞) [0,∞) [0,∞)

The actual values of brightness represent a realization of a simple random sample of size n = 6, i.e., of a vector of six

independent identically distributed random variables. Notwithstanding, our incomplete information about them does not

satisfy the condition of random set independence. In fact, we have:

P
(

Xi ⊇ [255,∞)|Xi−1 ⊇ [255,∞), Xi−2 + [255,∞)
)

= 1, ∀i > 3.

In summary, when several random set-valued mappings indicate incomplete information about a sequence of ran-

dom (point-valued) measurements of an attribute, independence between them would indicate independence between the

sources of information, that we should distinguish from the actual independence between the actual outcomes. The differ-

ence between the idea of independence of several random variables and independence of the random sets used to represent

incomplete information about them impacts the studies of Statistical Inference with imprecise data: according to the above

examples, a sequence of random sets indicating imprecise information about a sequence of i.i.d. random variables does

not necessarily satisfy the property of random set independence between its components. In fact, the family of product

probabilities, each of which is dominated by an upper probability is strictly contained [11] in the family of probabilities

dominated by the product of these upper probabilities (plausibilities, when the universe is finite). In other words, consid-

ering a sequence of i.i.d. random sets would not be appropriate when we aim to represent incomplete information about a

sequence of i.i.d. random variables.

Source independence in evidence theory A similar epistemic independence notion is commonly assumed in the theory of

belief functions, when the focal sets of a joint mass assignment m (the mass assignment associated to the pair of ill-known

quantities x and y ranging on S1 and S2 , respectively) are Cartesian products of subsets of S1 and S2 and that, furthermore,

m can be factorized as the products of its marginals:

m(C × D) =m1(C) ·m2(D), ∀C ⊆ S1, D ⊆ S2, (18)

which is formally the same as Eq. (15). Under the above condition, both the plausibility and the belief function associated

to m can be also factorized as the product of their marginals, just rewriting equalities (15)–(16)

Bel(A × B) = Bel1(A) · Bel2(B), (19)

Pl(A × B) = Pl1(A) · Pl2(B). (20)

In fact this notion of independence is used to justify the conjunctive rule of combination of Smets, in the case where x = y,

which is an extreme dependence situation between variables, and masses m1 and m2 are pieces of information about the

same quantity x coming from epistemically independent sources. Then m(C × D) is assigned to C ∩ D , thus building the

mass function m∩(E) =
∑

C∩D=E m(C × D). Conditioning the result on the assumption that the mass assigned to empty



set should be zero yields Dempster rule of combination. In the language of random sets, if X1 and X2 are random sets

describing the pieces of information forwarded by sources 1 and 2 about x, it would read

P (X1 ∩ X2 = E | X1 ∩ X2 6= ∅) =
P (X1 ∩ X2 = E)

P (X1 ∩ X2 6= ∅)
=

∑

C∩D=E pX1(C)pX2(D)
∑

C∩D 6=∅ pX1(C)pX2(D)
.

5. When the meaning of the model affects the result: interval data processing

Interval data sets provide a more concrete view of a random set. Again the distinction between the case where such

intervals represent precise actual objects and when they express incomplete knowledge of precise ill-observed point values

is crucial in computing a statistical parameter such as variance [10] or stating a regression problem.

5.1. Empirical variance for random interval data

Consider a data set consisting of a bunch of intervals D = {I i = [ai,ai], i = 1, . . . ,n}. When computing an empirical

variance, the main question is: are we interested by the joint variation of the size and location of the intervals? or are we

interested in the variation of the underlying precise quantity as imperfectly accounted for by the variation of the interval

data?

Ontic interval data In this case we consider intervals are precise lumped entities. For instance, one may imagine the interval

data set to contain sections of a piece of land according to coordinate x in the plane: I i = Y (xi) for a multimapping Y ,

where Y (xi) is the extent of the piece of land at abscissa xi , along coordinate y. The ontic view suggests the use of a scalar

variance:

ScalVar(D) =

∑

i=1,...,n d
2(M, I i)

n
, (21)

where M = [
∑n

i=1 ai/n,
∑n

i=1 ai/n] is the interval mean value, and d is a scalar distance between intervals (e.g. distance

between pairs of values representing the endpoints of the intervals, but more refined distances have been proposed [2]).

ScalVar(D) measures the variability of the intervals in D, both in terms of location and width and evaluates the spatial

regularity of the piece of land, varying coordinate x. This variance is 0 for a rectangular piece of land parallel to the

coordinate axes. This is the variance suggested by Fréchet for random elements defined on a complete metric space. In fact,

it can be extended to random (fuzzy) sets of any dimension by considering, for instance, the families of distances introduced

in [41] or [71].

Epistemic interval data Under the epistemic view, each interval I i stands for an ill-known precise value yi . It can be the

result of a repeated measurement process subject to randomness and imprecision (each measurement is imprecise). Then

we may be more interested by sensitivity analysis describing what we know about the variance we would have computed,

had the data been precise. Then, we should compute the interval

EVar1(D) =
{

var
(

{yi, i = 1, . . . ,n}
)

: yi ∈ I i, ∀i
}

. (22)

Computing this interval is a non-trivial task [36,46,64].

Epistemic interval random data Alternatively one may consider that the quantity y that we wish to describe is intrinsically

random. Each measurement process is an information source providing incomplete information on the variability of y. Then

each interval I i can be viewed as containing the support SUPP(P i) of an ill-known probability distribution P i : then we get

a wider variance interval than previously. It is defined by

EVar2(D) =

{

var

(

n
∑

i=1

P i/n

)

: SUPP(P i) ⊆ I i, ∀i = 1, . . . ,n

}

(23)

and it is easy to see that EVar1(D) ⊂ EVar2(D). In the extreme case of observing a single epistemic interval (y, [a,b]), if y

is a deterministic ill-known quantity, it has a unique true value. Then EVar1([a,b]) = var(y) = 0 (since even if ill-known,

y is not supposed to vary: the set of variances of a bunch of Dirac functions is {0}). In the second case, y is tainted with

variability, var(y) is ill-known and lies in the interval EVar2([a,b]) = [0, v∗] where v∗ = sup{var(y), SUPP(P y) ⊆ [a,b]} =
(b − a)2 . The distinction between deterministic and stochastic variables known via intervals thus has important impact on

the computation of dispersion indices, like variance.

Note that in the epistemic view, the scalar distance between intervals can nevertheless be useful. It is then a kind of

informational distance between pieces of knowledge, whose role can be similar to relative entropy for probability distri-

butions. Namely one may use it in revision processes, for instance. Moreover one may be interested by the scalar variance

of the imprecision of the intervals (as measured by their respective lengths), or by an estimate of the actual variance of



the underlying quantity, by computing the variance of say the mid-points of the intervals. But note that as shown in [10],

the variance of the mid-points is not necessarily a lower bound, nor an upper bound for the actual value of the variance.

Recently suggested scalar variances [60] between intervals come down a linear combination of such a scalar variability

estimation and the variance of imprecision.

5.2. Regression for interval data

The recent literature contains different generalizations of classical statistical techniques such as point and interval es-

timation, hypothesis testing, regression, classification, etc., where point-valued attributes are replaced by set-valued ones.

Depending on the interpretation of those intervals, some proposals are more appropriate than others. Bearing in mind the

difference between the disjunctive and conjunctive reading of sets, two completely different approaches that generalize hy-

pothesis testing techniques have been already reviewed in [16]. Regarding other techniques such as parameter estimation

or classification, the disjunctive-approach literature is much wider than the conjunctive one. However, the literature on the

regression problem is probably more balanced, and we can find many contributions from both sides. We will therefore use

this particular problem as representative of the different statistical techniques in order to illustrate the difference between

the disjunctive and the conjunctive approaches.

In the classical least squares method, we consider a collection of vectors of the form (xi, yi) and we try to find the

function f :R →R that minimizes the sum of the squares of the errors
∑n

i=1(yi − f (xi))
2 . Here, the explained variable will

be assumed to be interval-valued, while the explanatory variable will take values in the real line. Let us therefore consider a

set of bidimensional numerical interval data D= {(xi, Y i = [y
i
, yi]), i = 1, . . . ,n} or its fuzzy counterpart (if the Y i ’s become

fuzzy intervals). The issue of devising an extension of data processing methods to such a situation has been studied in many

papers in the last 20 years or so. But it seems that the question how the reading of the set-valued data has impact on the

chosen method is seldom discussed. Here we provide some hints on this issue, restricting ourselves to linear regression and

some of its fuzzy extensions.

Fuzzy least squares A first approach that is widely known is Diamond’s fuzzy least squares method [22]. It is based on

a scalar distance between set-valued data. The problem is to find a best fit interval model of the form y = A∗x + B∗ ,

where intervals A∗, B∗ minimize
∑n

i=1 d
2(Axi + B, Y i), typically a sum of squares of differences between upper and lower

bounds of intervals. The fuzzy least squares regression is similar but it presupposes the Ỹ i ’s are triangular fuzzy intervals

(ymi ; y−
i , y+

i ), with modal value ymi and support [y−
i , y+

i ]. Diamond proposes to work with a scalar distance of the form

d2( Ã, B̃) = (am − bm)2 + (a− − b−)2 + (a+ − b+)2 making the space of triangular fuzzy intervals a complete metric space.

The problem is then to find a best fit fuzzy interval model Ỹ = Ã∗x + B̃∗ , where fuzzy triangular intervals Ã∗, B̃∗ minimize

a squared error
∑n

i=1 d
2( Ãxi + B̃, Ỹ i). Some comments are in order:

• This approach treats (fuzzy) interval data as ontic entities.

• If the (fuzzy) interval data set is epistemic, the use of Ỹ = Ã∗x + B̃∗ presupposes that not only the relation between x

and y is linear, but also the evolution of the informativeness of knowledge is linear with x.

• This approach does not correspond to studying the impact of data uncertainty on the result of regression.

Many variants of this method, based on conjunctive fuzzy random sets and various scalar distances exist (see [35] for a

recent one) including extensions to fuzzy-valued inputs [38]. These approaches all adopt the ontic view.

Possibilistic regression Another classical approach was proposed by Tanaka et al. in the early 1980’s (see [70] for an

overview). One way of posing the interval regression problem is to find a set-valued function Y (x) (generally again of

the form of an interval-valued linear function Y (x) = Ax + B) with maximal informative content such that Y i ⊂ Y (xi), i =
1, . . . ,n. Some comments help situate this method:

• It does not presuppose a specific (ontic or epistemic) reading of the data. If data are ontic, the result models an

interval-valued phenomenon. If epistemic, it tries to cover both the evolution of the variable y and the evolution of the

amount of knowledge of this phenomenon.

• It does not clearly extend the basic concepts of linear regression.

Both approaches rely on the interval extension of a linear model y(x) = ax + b. But, in the epistemic reading, this

choice imposes unnatural constraints on the relation between the epistemic output Y (x) and the objective input x (e.g.,

Y (x) becomes wider as x increases). The fact that the real phenomenon has an affine behavior does not imply that the

knowledge about it in each point should be also of the form Y (x) = Ax + B . This is similar with the difference between

the independence between variables and the independence between sources of information. In an ontic reading, one may

wish to interpolate the interval data in a more sophisticated way than assuming linearity of the boundaries of the evolving

interval (see Boukezzoula et al. [4] for improvements of Tanaka’s methods that cope with such defects).



Quantile regression Another view of interval regression, that has a clear epistemic flavor uses possibility theory to define a

kind of quantile regression. Even when applied to precise data sets, it gives an epistemic interval-valued representation of

objective data, likely to contain the actual model [58,67]. The idea is to find, for each input value x, a confidence interval

containing y(x) with confidence level 1 − α. This is done via probability–possibility transformations [27]. Varying α leads

to a bunch of nested intervals that can be modelled by fuzzy intervals faithful to the dispersion of the yi ’s in the vicinity of

each input data xi .

Sensitivity analysis A very different approach consists in performing a sensitivity analysis yielding all regression results one

would obtain from all precise datasets Ed consistent with D. The aim is to find the range of results one would have obtained

with linear regression, had the data been precise. Strangely enough, this technique is seldom considered. Formally it can be

posed as follows: Find

Y (x) =
{

â(Ed)x+ b̂(Ed): Ed ∈D
}

=

{

âx+ b̂, ∀â, b̂ that minimize

n
∑

i=1

(axi + b − yi)
2, ∀yi ∈ [y

i
, yi], i = 1, . . . ,n

}

.

It is clear that the envelope of the results is a set-valued function Y (x) that has little chance of being defined by affine

upper and lower bounds. This approach, which can genuinely be called epistemic regression has been recently applied to

kriging in geostatistics [51,52].

Yet another approach that can be also framed into the epistemic view has been considered in [65,66,68]. There, an

interval-valued mean quadratic error (the set of all possible values for the mean quadratic error) is considered, and different

algorithms in order to “minimize” it are built under different conditions, according to some criterion of preference between

intervals. The numerical computations seem to be more feasible than those in the original problem (ranging all the possible

sample datasets, computing all the regression lines compatible with them, and finally computing the bounds of the response

variable according to them).

6. Different interpretations of a fuzzy set

A fuzzy set on a universe S is mathematically modelled by a mapping from S to a totally ordered set L that is usually

the unit interval. As highlighted by Dubois and Prade [31], a membership function is an abstract object that needs to be

interpreted in practical settings in order to be used appropriately. They proposed three interpretations of membership grades

in terms of degrees of similarity, of plausibility and preference. An early and important use of fuzzy sets, proposed by Zadeh

[76] is the representation of symbolic categories on numerical universes. A linguistic variable is a variable that takes values

on a set of linguistic terms modelled by fuzzy sets of the real line. In this case, degrees of membership express similarity or

distance to prototypical values covered by a term. In this section we focus on the difference between ontic and epistemic

fuzzy sets. In the latter case, membership grades evaluate degrees of plausibility and the underlying quantity can again be

a constant or a variable.

6.1. Ontic vs. epistemic fuzzy sets

As already acknowledged a long time ago, fuzzy sets, like sets, may have a conjunctive or a disjunctive reading [29,

78,74]. In the conjunctive reading, ontic fuzzy sets represent objects originally construed as sets but for which a fuzzy

representation is more expressive due to gradual boundaries. Degrees of membership evaluate to what extent components

participate to the global entity. For instance, this is the case when modeling linguistic labels by convex fuzzy sets on

a measurement scale, like tall, medium-sized, short achieving a fuzzy partition of the human height scale. In this case, the

fuzzy sets have a conjunctive reading because they are understood as the set of heights compatible with a given label. Other

examples of ontic fuzzy sets are non-Boolean classes stemming from a clustering process, fuzzy constraints representing

preference, fuzzy regions in an image, fuzzy rating profiles according to various attributes. As a concrete example, consider

the fuzzy set of languages more or less well spoken by a person; then degrees of membership can be interpreted as degrees

of proficiency in languages.

In contrast, Zadeh [77] also proposed to interpret membership functions as possibility distributions, paving the way to a

representation of incomplete information along a line pioneered thirty years earlier by Shackle [61]. In that case, a degree

of membership refers to the idea of plausibility in the sense of Shafer. A possibility distribution, denoted by π , is the

membership function of a fuzzy set of mutually exclusive values in S . A possibility distribution is supposedly attached

to an ill-known quantity x. Namely π(s) > 0 expresses that s is a possible value of x, all the more plausible as π(s) is

greater. In particular it is assumed that π(s) = 1 for some value s, which is then considered as normal, totally unsurprizing.

A possibility distribution thus extends the set-valued representation of incomplete information to account for degrees of

plausibility. It is well-known that a possibility distribution π induces a possibility measure Π on 2S such that Π(A) =
sups∈A π(s) for all events A and a necessity measure N(A) = 1 − Π(Ac) [28]. Function N is also a special (consonant) case

of belief function for which all focal sets are nested and the useful information to reconstruct it is contained in the contour

function π(s) = Pl({s}).



6.2. What epistemic fuzzy sets can express

Now, if the information about a quantity x is expressed by means of a fuzzy set, the distinction between the deterministic

and the stochastic case, discussed for set-representations, is again at work. If x is deterministic, then fuzzy sets must be

interpreted in terms of “confidence sets” [12,27] as follows. Let Eα = {s,π(x) > α} be the α-cut of π :

For each α ∈ [0,1], x ∈ Eα with probability greater than or equal to 1− α.

If an expert provides this kind information, the word “probability” refers to subjective probability. Following Walley [73],

1 − α is the maximal price at which this expert would buy the gamble that wins $1 if the real value of x actually lies in

Eα (the minimal selling price for this gamble is $1). Note that there is no “real probability distribution” underlying π , but

Dirac functions as x is deterministic. The consonance of the family of sets Eα makes sense if this is the opinion of a single

expert who tends to be imprecise but self-consistent.

If x is stochastic then there are two possible ways of interpreting the possibility distribution π .

• Mathematically speaking, a possibility measure is a coherent upper probability [73], namely Π(A) = supP∈Pπ
P (A)

where Pπ = {P ,∀A, P (A) 6 Π(A)}. So, π encodes the set of probabilities Pπ [30,24]. This set is supposed to contain

the real probability measure Px that governs the variability of x. It is a set-based representation of a stochastic variable

representing incomplete information about a frequentist probability. An expert providing distribution π understood as

Pπ claims that

For each α ∈ [0,1], the event x ∈ Eα has objective probability greater than or equal to 1− α.

• Another option is to consider π as encoding a higher-order (subjective) possibility distribution restricting a family of

higher-order subjective probabilities P s over a set of objective probabilities Px describing the behavior of a random

variable x. Namely, π is induced by all constraints of the form P s(Px(Eα) = 1) > 1− α,∀α > 0, in other words:

For each α ∈ [0,1], P x has support in Eα with subjective probability greater than or equal to 1− α.

So the domain of π can be canonically extended to the set of probability measures on S as follows: π(P x) =
sup{α, Px has support in Eα}. The possibility measure Π is a “second-order possibility” formally equivalent to those

considered in [18]. This terminology is used because it is a possibility distribution defined over a set of probability

measures. It would be interesting to investigate the relationship between the set of probabilities Pπ and the higher-

order possibility model. Such a set of probabilities can be equivalently represented by means of a second-order Boolean

possibility measure (a 0–1-valued possibility measure defined over the set of probability measures).

6.3. Examples of epistemic fuzzy sets

In summary we can consider crisp or fuzzy epistemic sets describing our knowledge of a quantity that can be determin-

istic or random. According to this rationale, we can distinguish four different situations, and we can use several equivalent

representations in each of them. Below, we provide a short formal account of each situation, illustrated with simple exam-

ples.

1A A crisp set E models our incomplete knowledge of an otherwise fixed quantity x. All we know about x is that it belongs

to E .5

Representation Deterministic Random

Set E δE = {δx: x ∈ E}

Possib. distrib. π(x) =

{

1, if x ∈ E

0, if x /∈ E
π(P ) =

{

1, if P ∈ δE

0, if P /∈ δE

Example 10. We measure the weight of an object on a scale, whose precision is within a 10 g error margin. If we

observe the displayed quantity d0 , our information about the actual weight, x, can be described by means of the interval

E = [d0 − 10,d0 + 10].

1B A crisp set E models our incomplete knowledge about a random variable x. All we know about the probability induced

by x is that the support is included in E .

5 The simplest representation here and in the next three cases will be indicated in bold text.



Representation Random only

Set P E = {P : P (E) = 1}

Possib. distrib. π(P ) =

{

1, if P ∈ PE

0, if P /∈ PE

Example 11. Let us consider the scale of Example 10. We assume that the observed value on the scale, say d, is noisy

for a fixed object. If we choose the same object again, our measurement could change. These differences are attached to

the randomness of the measurement process. Here, we are interested in describing our knowledge about the probability

distribution of the random quantity d, based on a single measurement resulting in the outcome d0 . This is different from

the previous example where the measured value (the estimated weight of an object) is not random, but not totally

observable due to the lack of precision of the measurement device. Here our knowledge about the true weight x is

affected by both noise and lack of precision. Our information about the probability distribution of d is only given by the

set of probability measures whose support is included in E = [d0 − 10,d0 + 10], so PE = {P : P ([d0 + 10,d0 + 10]) = 1}.
But since each of the observations of x is also imprecise with precision like in Example 10, when we observe x = d0 ,

we end up only knowing that x ∈ [d0 − 20,d0 + 20],

2A A fuzzy set Ẽ models our incomplete knowledge of an otherwise fixed quantity x. The membership degree of each

element in the universe reflects the degree of possibility that x coincides with it.

Representation Deterministic Random

Set Ẽ Ẽ over Dirac measures

Possib. distrib. π(x) = sup{α: x ∈ Ẽα} π(δx) = sup{α: x ∈ Ẽα}

Example 12. The accuracy expected to be obtained using a GPS receiver will vary according to the overall system used.

According to the usual GPS specifications, the information about the current position, x = (x1, x2) can be described by

means of a family of nested circles (α-cuts), all of them centered at the displayed position d and each one of them

attached to a confidence degree:

– The confidence degree of E0.5 is 0.5, E0.5 being called the “circular error probability (CEP)”.

– The circle E0.32 is associated to the confidence degree 0.68 and it is “root mean square (RMS)”.

– The confidence degree of E0.05 is 0.95. It is the so-called “95% radius (R95)”.

– The circle E0.02 is associated to a confidence degree 0.98, and it is named “twice the distance root mean square

(2RMS)”.

According to [12,27], the above family of confidence restrictions can be alternatively represented by means of a fuzzy

set π . Each value π(y) denotes the possibility that the actual (fixed) position x coincides with y.

2B A fuzzy set Ẽ models our incomplete knowledge of a random variable x. The fuzzy set represents a possibility distri-

bution encoding a family of subjective probabilities. Alternatively, each α-cut of the fuzzy interval may be viewed as

containing the support of the distribution with (subjective) probability at least 1− α.

Representation Random only

Set Pπ = {P x: P x(A)666 supa∈A π(a), ∀A}

Crisp possib. distrib. π(Px) =

{

1, if Px ∈ Pπ

0, if Px /∈ Pπ
Gradual possib. distrib. π(Px) = sup{α: Px(Eα) = 1}

Example 13. Let us consider the information provided in Example 12 and assume that the displayed point d may vary

for a fixed location x. These differences are attached to the randomness of the measurement process, that depend on

the current position of satellites. Here, we are interested in describing our knowledge about the probability distribution

of the displayed location d in a forthcoming measurement, based on a single measurement resulting in the outcome d0 .

Our information about the probability distribution of d is given by the set of probability measures dominated by the

possibility measure Π determined by the following equation:

Π(A) = sup
x∈A

π(x), ∀A ⊆R2,

where π is a fuzzy set very closely related to the one considered in Example 12: its α-cuts are also centered on the

displayed position d and their diameters are twice the diameters of the cuts of the fuzzy set E .

The simple use of a fuzzy set interpreted as a possibility distribution dominating an objective probability distribution

does not make it clear where the objective probability distribution comes from, i.e. the underlying sample space. Moreover,

it does not account for a possible underlying measurement process of x. Namely, regardless of whether x is deterministic



or stochastic, there may be a stochastic measurement process yielding more or less accurate information on the possible

values of x. The setting of fuzzy random variables extends the above distinctions by taking the measurement process into

account explicitly.

6.4. Various notions of random fuzzy sets

The history of fuzzy random variables is not simple as it was started by two separate groups with respectively epistemic

and ontic views in mind. The first papers are those of Kwakernaak [48,49] in the late seventies, clearly underlying an epis-

temic view of fuzzy sets, a line followed up by Kruse and Meyer [47]. They view a fuzzy random variable as a (disjunctive)

fuzzy set of classical random variables (those induced by selection functions compatible with the random fuzzy set). It rep-

resents what is known about the variability of the underlying ill-known random variable. These works can thus be viewed

as extending the framework of Dempster’s upper and lower probabilities based on the triple (Ω, P , X) to fuzzy set-valued

mappings X̃ , where X̃(ω) defines a possibility distribution restricting the possible values of x(ω). The degree of possibility

that x is the random variable underlain by (Ω, P , X̃) is

π(x) = inf
ω∈Ω

µ X̃(ω)

(

x(ω)
)

. (24)

For each level α ∈ (0,1], X̃α(ω) = {s ∈ S: µ X̃(ω)
(s) > α} is a multiple-valued mapping such that (Ω, P , X̃α ) is an epistemic

random set according to Dempster framework. Kruse and Meyer [47] clearly define the variance of a fuzzy random variable

as a fuzzy set of positive reals induced by applying the extension principle to the variance formula. Likewise, the probability

of an event becomes restricted by a fuzzy interval in the real line [1,14]. The evidence theory counterpart of this view deals

with belief functions having fuzzy focal elements [75]. An alternative epistemic view of fuzzy random variables was more

recently proposed in the spirit of Walley [73], in terms of a convex set of probabilities induced on S [15].

In contrast, the line initiated in the mid-1980’s by Puri and Ralescu [59] is in agreement with conjunctive random set

theory. A fuzzy random variable is then viewed as a random conjunctive fuzzy set, i.e. a classical random variable ranging

in a set of (membership) functions. This line of research has been considerably extended so as to adapt classical statistical

methods to functional data [7,39]. The main issue is to define a space of functions equipped with a suitable metric structure

[23,71]. In this theory of random fuzzy sets, a scalar distance between fuzzy sets is instrumental when defining variance

viewed as a mean squared deviation from the fuzzy mean value [41], in the spirit of Fréchet. A scalar variance can be

established on this basis and it reflects the variability of membership functions. It makes sense if for instance, membership

functions are models of linguistic terms and some “term variability” must be evaluated given a set of responses provided by

a set of people in natural language. The existence of two views of fuzzy random variables, the one initiated by Kwakernaak

and the one proposed by Puri and Ralescu, is acknowledged, surveyed and discussed in [37]. See [10] for an extensive

comparison of the three views of fuzzy random variables, including the one based on imprecise probabilities.

The ontic view is advocated by Colubi et al. [8] in the statistical analysis of linguistic data. The authors argue that they

are interested in the statistics of perceptions (see [3] for a general presentation and defense of this paradigm). One of their

experiments deals with the visual perception of the length of a line segment expressed on fuzzy scale using a linguistic

label among very small, small, medium, large, very large. The considered experiment involves a simultaneous double rating: a

free-response fuzzy rating along with a linguistic one. The alleged goal is to predict the category that a person considers

correct for the segment. The linguistic evaluation is performed to validate the classification process introduced in the paper.

The precise length of the segment exists but it is considered by these authors to be irrelevant for the classification goal.

These authors concede that to predict the real length from the fuzzy perceptions requires a different approach. While the

linguistic labels can arguably be considered as ontic entities, the fuzzy rating with free format can hardly be so, as it really

is a numerical rendering of the imprecision pervading the perception of an actual length.

The case of Likert scaling is more problematic. This is a method of ascribing quantitative values to qualitative data, thus

making them amenable to statistical analysis. For instance, an ordered set of linguistic labels referring to some abstract

concept (like beauty) is encoded by successive integers. A typical scale might be strongly agree, agree, not sure/undecided,

disagree, strongly disagree. Opinions are collected on such a scale and a mean figure for all the responses is computed at

the end of the evaluation or survey. A number of authors have proposed to model such linguistic terms by means of a

predefined fuzzy partition made of fuzzy intervals (trapezoids) on a real interval. In some other approaches the format of

the fuzzy response can be any fuzzy interval. The idea is to cope with the arbitrariness of encoding qualitative values by

precise numbers. In that case, the result of an opinion poll is clearly a random fuzzy set.

However this kind of approach is not convincing from a measurement point of view [25]. First, it is not clear why

the underlying real interval can be equipped with addition at all. It is rather an ordinal scale, and trapezoidal fuzzy sets

then make no sense. Next, this continuous scale is totally fictitious and it is patent that the real data are the linguistic

terms provided by people: there is no underlying real value behind such linguistic terms. If the response has a free format

(whereby any fuzzy interval can do), one may again see this fuzzy response as being the evaluation in itself. The latter point

would plea for an ontic view of the random fuzzy sets. However the arbitrariness of the numerical encoding casts doubts

on the cogency of the sophisticated functional analysis framework needed to formalize fuzzy random set methods, even if

there exist programs in the language R which make them easier to apply [72]. It may be that ordinal statistical methods

devoted to finite qualitative scales would be more appropriate in this case.



A major application of fuzzy random variables is regression analysis. This topic would deserve an extensive discussion

but this is beyond the scope of this paper. In any case such a discussion would follow the same lines as the one above

concerning interval regression. In fact, most current fuzzy set approaches are of the ontic style, following the pioneering

work of Diamond [22], or adopt the possibilistic view of Tanaka [70]. Recently, Denoeux’s [20] generalized EM algorithm

explicitly adopts an epistemic view of fuzzy data. But his approach, based on Zadeh’s probability of a fuzzy event, yields a

precise regression line, based on averaging. This is in agreement with the philosophy of the EM algorithm and it contrasts

with the idea of propagating the imprecision modelled by fuzzy data on the results, as done in [52] as well as with the idea

of representing the imprecision of precise noisy data as done in [58].

7. Conclusion

This position paper has argued that the use of set-valued and fuzzy mathematics in information processing tasks gives

the opportunity to reason about knowledge, an issue not so popular in data-driven studies. However, one should distinguish

between genuine set-valued problems where sets stand for existing entities and epistemic data analysis problems where

sets represent incomplete information. This distinction impacts the very way new versions of old problems can be posed so

as to be meaningful in practice. Adding knowledge representation and reasoning to the modeling paradigm seems to be a

good way to reconcile Artificial Intelligence and numerical engineering methods.

Strangely enough, fuzzy set-based information processing techniques gathered under the Soft Computing flag are not

set-valued methods, as they aim most of the time at computing standard numerical functions using fuzzy rules and neural

networks, exploiting stochastic metaheuristics to optimize the fit. A fuzzy system is then seldom viewed as an epistemic

fuzzy set of systems. Adopting the latter view could lead to fruitful developments of fuzzy sets methods in a direction not

yet much considered in the engineering sciences, beyond rehashing good old fuzzy rule-based systems further. For instance,

the study of fuzzy differential inclusions in the style initiated by Huellermeier [44] goes in this direction (see [6]).
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