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Abstract

The parallelization on a supercomputer of a one list dynamic programming algo-
rithm using dominance technique and processor cooperation for the 0-1 knapsack
problem is presented. Such a technique generates irregular data structure, more-
over the number of undominated states is unforeseeable. Original and efficient load
balancing strategies are proposed. Finally, computational results obtained with an
Origin 3800 supercomputer are displayed and analyzed. To the best of our knowl-
edge, this is the first time for which computational experiments on a supercomputer
are presented for a parallel dynamic programming algorithm using dominance tech-
nique.

Key words: parallel computing, load balancing, 0-1 knapsack problem, dynamic
programming, dominance technique,

1 Introduction

The 0-1 knapsack problem has been intensively studied in the literature (see for
example [14], [3], [12], [19], [26], [24], [25], [21] and [23]). The objective of this paper
is to concentrate on the parallelization on a supercomputer of a one list dynamic
programming method using dominance technique and processor cooperation and to
propose efficient load balancing strategies in order to achieve good performance.

Many authors have considered dense dynamic programming, i.e. an approach for
which one takes into account all possible states ( see [1], [2], [4], [5], [7] and [15]).
In this case, the number of states is equal to the capacity of the knapsack. In this
paper, we study a different approach proposed by Ahrens and Finke (see [3]) which
permits one to limit the number of states by using dominance technique. In this
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case, the number of states or undominated pairs generated is unforeseeable. If we
compare the two approaches, then we note that the former will generate a regular
data stucture, from which one can easily deduce the total amount of work needed
in order to treat the list. This approach leads generally to an easy parallelization;
its main drawback is that it produces large lists in the case of problems with large
capacity. The later approach presents the advantage to generate lists which are
smaller; its main drawback is the creation of an irregular data structure. As a con-
sequence, the parallelization of the later approach is not easy and the design of an
efficient load balancing strategy is very important.

In [11] we have presented an original parallelization of the one list dynamic pro-
gramming method using dominance technique. The cooperation via data exchange
of processors of the architecture is the the main feature of the proposed parallel al-
gorithm. A first load balancing strategy was also proposed in [11]. In this paper, we
develop the parallel algorithm, specially on a theoretical point of view and propose
several original load balancing strategies.

Our contribution is different from the other works in the literature devoted to par-
allel dynamic programming for 0-1 knapsack problems. In particular, it is different
from [6] and [18], where the authors have considered approaches based on massive
parallelism. More precisely, in the above quoted papers, the authors have proposed
solution for arrays with up to 0(2%) processors, where n is the number of variables
in the knapsack problem. Our work is also different from [8], where the authors have
studied the parallel implementation of a two lists algorithm on a MIMD architecture
for the solution of a particular class of 0-1 knapsack problems: the exact subset sum
problem where profits are equal to weights. In this later approach, total work is
decomposed initially and processors do not cooperate. Note that our parallel algo-
rithm is designed for a broad class of 0-1 knapsack problems including subset sum
problems. Moreover, our parallel algorithm presents better time complexity than
the parallel algorithm studied in [8], as we shall see in the sequel. Reference is also
made to [7] and [13] for different approaches concerning the parallelisation of the
dynamic programming method.

Section 2 deals with the 0-1 knapsack problem and its solution via dynamic program-
ming. Parallel algorithm is studied in Section 3. Original load balancing strategies
are proposed in Section 4. Finally, computational results obtained with an Origin
3800 supercomputer are displayed and analyzed in Section 5.

2 The 0-1 Knapsack Problem

The 0-1 unidimensional knapsack problem is defined as follows:

n n
maX{ZpﬂxﬂZwa] < C ] € {071}7] = 1,2,...,77,}, (1)

where C' denotes the capacity of the knapsack, n the number of items considered,
pj and wj, respectively, the profit and weight, respectively, associated with the j-th



item. Without loss of generality, we assume that all the data are positive integers.
In order to avoid trivial solutions, we assume that we have: 3°7_; w; > C' and w; <
C for all j € {1,...,n}. Several methods have been proposed in order to solve prob-
lem (1). We can quote for example: branch and bound methods proposed by Fayard
and Plateau (see [12]), Lauriere (see [17]) and Martello and Toth (see [19]), methods
based on dynamic programming studied by Horowitz and Sahni (see [14]), Ahrens
and Finke (see [3]) and Toth (see [27]) and finally mixed algorithms combining
dynamic programming and branch and bound methods presented by Martello and
Toth (see [20]) and Plateau and Elkihel (see [26]).

In this paper, we concentrate on a dynamic programming method proposed by
Ahrens and Finke whose time and space complexity are O(min{2",nC'}) (see [3])
and which is based on the concepts of list and dominance. We shall generate recur-
sively as follows lists Ly of pairs (w,p), k = 1,2,...,n; where w is a weight and p
a profit. Initially, we have Ly = {(0,0)}.

Let us define the set Ni of new pairs generated at stage k; where new pairs results
from the fact that a new item, i.e. the k-th item, is taken into account.

Ny = {(w+ wi,p +pi) | (w,p) € Liy—1, w+w, <C}. (2)

According to the dominance principle, which is a consequence of Bellman’s opti-
mality principle, all pairs (w,p) € L1 U Nj obtained by construction such that
there exists a pair (w',p’) € Li_1 U N, (w',p’) # (w,p), which satisfies: v’ < w
and p < p/, must not belong to a list L. In this case, we usually say that the pair
(w',p’) dominates the pair (w,p). As a consequence, any two pairs (w',p'), (w”,p")
of the list L; must satisfy: p’ < p” if w' < w”. Thus, we can define the set Dj, of
dominated pairs at stage k as follows.

Dy = {(w,p) | (w,p) € Lg—1 UNg,3I(w',p") € Lg—1 U Ny, with
w' <w,p <p, W, p) # (w,p)}. (3)

As a consequence, for all positive integers k, the dynamic programming recursive
list Lj. is defined as follows

Ly =Ly 1 UN, — Dy. (4)

Note that the lists L are organized as sets of monotonically increasing ordered pairs
in both weight and profit. As a consequence, the largest pair of the list L, corre-
sponds to the optimal value of the knapsack problem. We illustrate the dynamic
programming procedure presented in this Section on a simple example displayed as
follows.

n =6 and C = 16, (5)
(w17"'7wn) = (57 37 27 1757 9)7 (6)
(p1, .y pn) = (20,8,5,4,14,27). (7)



Table 1 shows the contents of the lists N, Dy and L, for k=1 to 6.

We note that the optimal pair is (16,52) € Ng, the optimal solution corresponds to
(21, .y xp) = (1,0,1,0,0,1). We see that infeasible pairs with total weight greater
than C' = 16, such as for example (8 + 9,29 + 27) = (17,56) and (949,32 + 27) =
(18,59) do not belong to the list Ng. Finally, we note that the cardinality of Dy can
become relatively large when k increases.

0 LO (07 0)
1| Ny | (5,20)
D,

2, 5), (3, 8), (5, 20), (7, 25), (8, 28), (10, 33)

3,9), (4, 12), (6, 24), (8, 29), (9, 32), (11, 37)

~ | | |

17 4)7 (27 5)7 (37 9)7 (47 12)7 (57 20)7 (67 24)7 (77 25)7 (87 29)7
10, 33), (11, 37)

6, 18), (7, 19), (8, 23), (9, 26), (10, 34), (11, 38), (12, 39),
13, 43), (14, 46), (15, 47), (16, 51)

5, 14), (6, 18), (7, 19), (8, 23), (9, 26), (10, 33), (11, 37)

07 0)7 (17 4)7 (27 5)7 (37 9)7 (47 12)7 (57 20)7 (67 24)7 (77 25)7 (87 29)7
9, 32), (10, 34), (11, 38), (12, 39), (13, 43), (14, 46), (15, 47), (16, 51)

9, 27), (10, 31), (11, 32), (12,36 , (13, 39), (14, 47), (15, 51), (16, 52)

0, 0), (1, 4), (2,5), (3,9), (4, 12), (5, 20), (6, 24), (7, 25), (8, 29),
9, 32), (10, 34), (11, 38), (12, 39), (13, 43), (14, 47), (15, 51), (16, 52)

39), ( )
) ( )
9, 27), (10, 31), (11, 32), (12, 36), (13, 39), (14, 46), (15, 47), (16, 51)
) ( (
) ( )

Table 1. Example in the sequential case



3 Parallel Algorithm

In this Section, we detail the parallelization of the one list dynamic programming
method using dominance technique. The parallel algorithm which was briefly pre-
sented in [11] is designed according to the SPMD model for a parallel architecture
that can be viewed as a shared memory machine on a logical point of view. As
we shall see in detail in Section 5 experiments have been carried out on a NUMA
(non uniform memory access) supercomputer Origin 3800 by using the Open MP
environment.

The main feature of this parallel algorithm is that all processors cooperate via data
exchange to the construction of the global list. The global list is partitioned into
sublists. Sublists are organized as sets of monotonically increasing ordered pairs in
both weight and profit. Each sublist is generated by one processor of the parallel
architecture. In particular, all dominated pairs are removed at each stage of the
parallel dynamic programming method. More precisely, at stage k, each processor
FE' generates a sublist of the global list Ly, which is denoted by L}'C. The total work
is shared by the different processors and data exchange permits each processor to
remove all dominated pairs from its sublist based on global information. It is im-
portant to keep in mind that parallel algorithms whereby dominated pairs are not
removed at each stage do not correspond to a parallel implementation of the dy-
namic programming using dominance technique algorithm, except in the special
case of the subset sum problem where profits are equal to weight. Moreover, in the
general case, the approach whereby all dominated pairs are not removed from the
sublists may not be efficient, since the number of dominated pairs may be huge.
The benefit of parallelism can then be lost since parallel algorithms will have to
deal with a greater number of pairs than the sequential dynamic programming al-
gorithm using dominance technique.

Several issues must be addressed when considering the design of a parallel algorithm:
initialization of the parallel algorithm, work decomposition, tasks assignation, data
exchange and load balancing strategy.

3.1 Initialization, Work Decomposition and Task Assignment

The initialization of the parallel algorithm is performed by a sequential dynamic
programming algorithm using dominance technique. First of all, a sequential pro-
cess performs k(0) stages of the dynamic programming algorithm. This process
generates a list which contains at least [g pairs, where ¢ denotes the total number of
processors and [ the minimal number of pairs per processor. Let Ly (o) be the ordered
list which results from the sequential initialization. The list Ly is partitioned as
follows: Ly(o) = UiZg L q)» with | Lig |= 1, for i = 1,...,¢ = 1 and | LY [> 1,
where | Li0) | denotes the number of pairs of the sublist Li0)-

If all processors E’ generate independently their sublist L}:C without sharing data



with any other processor, then, on a global point of view, some dominated pairs
may belong to the sublists }:C, which induces finally an overhead. Thus, in the be-
ginning of each stage, it is necessary to synchronize all the processors which must
then share part of the data produced at the previous stage in order to discard all
dominated pairs in a global way. The use of global dominance technique can reduce
the cardinality of the sublists L};. At each stage, the contents of the union of the
generated sublists is the same as the contents of the list generated by a sequential
dynamic programming algorithm using dominance technique as we shal see in detail
in the next subsection.

3.2 Parallel processes

We detail now the parallel algorithm. We present first the process of construction
of the sublists L}:C generated at each stage. We introduce the various sublists that
are created by the different processors E¢, i = 0,...,q — 1, at each stage k in order
to generate the sublists Li. For all i € {0, ..., ¢ — 1}, the smallest pair of L} in both
weight and profit will be denoted by (wfc’o, pfc’o). The various sublists are defined as
follows. For all i =0, ...,q — 2,

j » » » . 1,0
N = {(wyy +wi oy +pr) | (wy,ppy) € Loy wiy + wg < wity), (8)

and

1 1, , -
Nq {(wg N —i—wk,pk 1 +pk>|(wk n 7pk 1)€Lk l,wg Ut wg < CH(9)

The sublist V ,@ corresponds to the new list of pairs created at stage k by processor
E" from its sublist L;C_l and the k-th item and which are assigned to processor E’.
Some pairs clearly do not belong to the sublist Ny, i.e. the pairs for which the weight

ZH O of the smallest pair of the

wy | + wy, is greater than or equal to the weight w),
list L?:l generated by processor Et!. Those d1scarded pairs which are stored as
shared variables are used by processors FJ with i < j, in order to generate their
sublists L7, as we shall see in the sequel. It is important to note at this point that
for all i € {0,...,¢ — 1}, data exchange can then occur only between processor E
and processors E7 with ¢ < j. For this purpose, consider now the series of sets C,i

defined as follows. For all i € {1,...,q — 2},

Ch = {(w}y +wppyy +pe) | (wiy,pi)) € Ly_y,j < i,

+1 0 i,0 g, i,0
wk 1 < wk 1 twg < wl or wi_l + wg < w]i_lapi_l + i 2 p;c—l}a (10)



and

0271 = {(wp +wr,py Fpe) [ (wp o) € Ly, <g— 1,

wi sy’ <wlly +we < Corwly +we <wi Y0k +pe > pi "t (12)
The sublist C,i is in fact the set of pairs that are exchanged between all processors
E™, with m < i and processor E’, either in order to complete the sublist L}:C that
will be produced by processor E' at stage k or to permit processor £ to discard
from its sublist some dominated pairs, at stage k. This last decision being made on
a global point of view. In particular, it is important to note that all processors E7,
with j > i, must share with processor E all the pairs created by E’ that will permit
FJ to eliminate dominated pairs. In order to discard all the pairs which must not
belong to the sublist L}:C and particularly dominated pairs, we introduce the series
of sets D,ic. For all i =0,....,q — 2,

. ~ . i+1.0 i+1,0
D= Di U {(w,p) | w < wi? and p > pit’ 0}, (13)

with
Dj, = {(w,p) | (w,p) € L, ; UNLUC} and I(w',p') € L}, ; UNLUCY,
(w',p") # (w,p) and w' < w,p < p'}, (14)

and

DI = {(w,p) | (w,p) € LIV UNIT U (!, p') e LITV UNST U R
(w',p") # (w,p),w" <w,p <p'}, (15)

We note that ch is the subset of ch which contains all dominated pairs in processor
FE' at stage k. A similar remark can be made for the set Dg_l. We note also that
copies of the same pair may be present in in different processors. These copies permit
processors to check dominance relation. All copies must be removed at each stage
but one, i.e. the last one. As a consequence, the dynamic programming recursive
sublists L}'C are defined as the following sets of monotonically increasing ordered
pairs in both weight and profit. For all positive integer k and all i =0, ...,q — 1,

=L, _JUN.UC! - Dj. (16)

Initially, note that we have Ly ) = U?;&L};(O), as it was stated in the beginning of
subsection 3.1. Assume now that for a given k, we have L, | = Ug;[} 2_1, then it
follows clearly from the definition of Ny, Ni and C} that U?;&(N,i UC) = Ny, i.e.



no pair is lost in the construction and data exchange processes. Moreover it follows
from the definitions of D} and Dg_l that Ulq:_gf),iC U Dg_l = Dy, i.e. no dominated
pair remains in the sublists L};. We note that the elimination of all dominated pairs
in each processor is not local. The elimination is rather based on global information.
Thus, it follows from (4) and (16) that U'") L% = Lj.

We present now the parallel dynamic programming algorithm designed according
to the Single Program Multiple Data (SPMD) model. The parallel algorithm was
carried out on a nonuniform memory access (NUMA) shared memory Origin 3800
supercomputer by using the Open MP environment. More details about the machine
can be found in Section 5. All the variables are local, otherwise it is said in the
algorithm.

Parallel Algorithm

FOR k=Ek(0)+1TOn
DO
FORi=0TO¢—-1
DO IN PARALLEL
BEGIN
IFi#tq—1
THEN -
IF the pair (w,itll’o, pztll’o), is available
THEN
BEGIN
E' generates N,i;
E' stores as shared variables all pairs (wi"_1 + wy,, pi"_l + i) |
(wp 10 y) € Ly, w;:jo <wp + wy, < C5 ,
E' stores as shared variables all pairs (wy—y + Wi Py + Pi) |
(wpy,ppy) € Li_y, wity +wi < wity® piy + e > 0ty
END
ELSE
E9~! generates N,g_l;
BARRIER OF SYNCHRONIZATION;
E' generates C’,i;
E' generates D,i;
E' generates L;&
IF i # 0
THEN o
E' stores (w;c’o, pZ’O) as a shared variable;
END

We note that all processors E7, j =1, ...,¢— 1, store the smallest pair (w;’ﬂl,pﬁl)
of their sublist Li71 as a shared variable since this value is used by processors E’
with ¢ < j to determine what pairs must be stored as a shared variable in order to
be exchanged with £7. We note also that pair exchange between processors occurs
always between a processor E* and a processor 7, with j > i. Thus, processor F4~!



plays a particular part with this type of data exchange since, generally, it tends to
accumulate more pairs than any other processor.

The particular data structure chosen in order to store exchanged pairs as shared
variables is a table with three entries. Typically, processor E’ will read data ex-
changed in 7 lists which are generated, respectively by processors E° to E¢~!.

In order to illustrate the parallel algorithm proposed in this Section, we consider
the same simple example as in Section 2, for which the data are given in equations
(5) to (7) and the number of processors ¢ = 3.

Table 2 displays the content of the sublists L}'C, N,i, C’,i and D}-C, i =0,1,2, in
function of the stage k. In order to maximize the parallel part of the program, we
have chosen a value of £(0) which as small as possible, while permitting processors
to get non void sublists L%, i.e. k(0) = 2. Thus, | Li(o) |=1=1, fori =1,2 and
| Lg(o) |= 2. We note that processor EY stores the pair (3 + 2,8 +5) = (5,13) as a

shared variable in order to be used by processor E', at stage 3, since w%’o =5 and
5 < wg’o = 8. As a result, the pair (5,13) will belong to the set Ci. However, the
pair (5,13) is dominated by the pair (5,20). Thus, the pair (5,13) will not belong
to the sublist L1. Similarly, processor E? stores the pair (049,0+27) = (9,27) as a
shared variable in order to be used by processor E?, at stage 6, since 9 > wg’o = 8.
The pair (9,27) will belong to the set C?. However, once again the pair (9,27) is
dominated by the pair (8,29). Thus, the pair (9,27) will not belong to the sublist
L2. We note also that some load unbalancing can appear, such as for example at
stage 5 and can increase during the following stages.

4 Load Balancing Strategies

In order to obtain good performance, it is necessary to design an efficient load bal-
ancing strategy. As a matter of fact, if no load balancing technique is implemented,
then it results in particular from the data exchange process described in the previ-
ous Section that processor E, can become overloaded.

In this Section, we propose and compare several load balancing strategies which
are designed in order to obtain a good efficiency while presenting a small overhead.
With these load balancing strategies the time complexity of the parallel algorithm
presented in Section 3 is O(min{%, %}), since the number of pairs will be fairly
distributed on the different processors. These strategies are different from the one
considered in [11], which is an adaptive strategy whereby a load balancing is made
if any processor which is overloaded can take benefit of it and a decision is taken
every two stages according to measures and estimations of the load. For more details
concerning this strategy, the reader is referred to [11].



ilo0 1 2
lists
Ly | (0,0), (3, 8) (5, 20) (8, 28)
N | (2,5) (7, 25) (10, 33)
Ci (5, 13)
D} (5, 13)
Ly | (0,0), (2,5), (3,8) | (5,20), (7, 25) (8, 28), (10, 33)
Ni | (1,4),(3,9), (4, 12) | (6, 24) (9, 32), (11, 37)
C} (8, 29)
Di | (3,8) (8, 28)
Ly | (0,0), (1, 4), (2, 5), | (5,20), (6,24), (7,25) | (8,29), (9, 32), (10, 33),
(3,9), (4, 12) (11, 37)
Ni (13, 43), (14, 46), (15, 47),
(16, 51)
Ci (5, 14), (6, 18), (7, 19) | (8, 23), (9, 26), (10, 34),
(11, 38), (12, 39)
Di (5, 14), (6, 18), (7, 19) | (8, 23), (9, 26), (10, 33),
(11, 37)
LL | (0,0), (1, 4), (2,5), | (5,20), (6,24), (7, 25) | (8, 29), (9, 32), (10, 34),
(3,9), (4, 12) (11, 38), (12, 39), (13, 43),
(14, 46), (15, 47), (16, 51)
N
Ci (9, 27), (10, 31), (11, 32),
(12, 36), (13, 39), (14, 47),
(15, 51), (16, 52)
D, (9, 27), (10, 31), (11, 32),
(12, 36), (13, 39), (14, 46),
(15, 47), (16, 51)
L | (0,0), (1, 4), (2,5), | (5,20), (6, 24), (7, 25) | (8, 29), (9, 32),(10, 34),
(

(3,9), (4, 12)

Table 2. Example in f

he parallel case without.

11, 38), (12, 39), (13, 43),
S ) 85, 5. 016,52
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4.1 A dynamic load balancing strategy

The first strategy considered in this paper does not necessarily balance loads at
each stage; this strategy is based upon a test which is made at each stage. The load
balancing test is based upon a comparison of the work needed for performing the
load balancing on the one hand and the work resulting from the load unbalancing
on the other hand. The later work is related to the difference of number of pairs
between the largest sublist and the other lists. If the load balancing work is more
expensive than the work needed for processing pairs, then the loads are not balanced,
otherwise they are balanced. The load balancing process will assign fairly loads to
processors, i.e. it will give approximatively an equal number of pairs to all processors
as we shall see in what follows.

In the sequel, T),, T\, and T, respectively, denote the processing time, the writing
time and the reading time relative to one pair, respectively. At any given stage k,
the number of pairs of the largest sublist is denoted by NV; and the total number of
pairs assigned to all processors is denoted by N;. The load unbalancing cost which
is denoted by ¢, is given by

cu = Ty (N} — 1), (17)

The load balancing cost which is denoted by ¢ is given by

co = Ni.(Tr + Tw), (18)

since read and write are made in parallel in each processor. Thus, the test will
be basically as follows. If ¢, > ¢, then we balance loads, else the loads are not
balanced. The test can be rewritten as follows

N, — & > NZ.M7 (19)
q Ty
which can also be rewritten
or
1 — (T + Tw) N, (21)

> .
Tp q-Nl

In the next Section, we will present computational experiments carried out on the
Origin 3800 parallel supercomputer. We have obtained the following measurements
on the Origin 3800 for T}, T, and T),.

T, =2.69.10"" s, T, = 4.2.107% s and T}, = 3.6.107% s. (22)

11



Thus, for this machine we have

(Tr + Tw)

=0.29 23
T, ’ (23)

and the practical test is given as follows.

0.71 > —=. (24)

The reader is referred to [22] for dynamic load balancing approaches which present
some similarities with our dynamic strategy and which are applied to adaptive grid-
calculations for unsteady three-dimensional problems. However, we note that our
test (19) is different from the test used in [22] (reference is also made to [9] and
[16]). In order to illustrate the load balancing strategy proposed in this subsection,
we condider the same simple example as in the previous Section, for which the data
are given in equations (5) to (7).

Table 3 displays the content of the sublists 2? N,i, C’fC and B,i, 1 =0,1,2, in
function of k, where B,i denotes the sublist assigned to processor E! after a load
balancing performed at stage k. The sublists D,ic, t=20,1,2, do not appear in Table
3 for simplicity of presentation; however, dominance techniques are applied and as
a consequence, the resulting sublists L}'C do not contain dominated pairs.

We note that the load balancing condition is not satisfied before stage 5. At stages

3 and 4, respectively, % is equal to 0.78 and 0.8, respectively. Thus, there is no
load balancing when k is equal to 3 or 4. At stage 5, we have Ny = 17 and N; = 9.
Thus, 0.71 > % = 0.63. The load balancing phase assigns fairly loads to proces-
sors, i.e. almost the same number of pairs are assigned to the different processors.
We have | B! |=| B2 |= L%J =5and | BY |=| V; | —2.[%] =7, where |y| denotes
the entire part of y.
The new sublists B which are assigned to processors E’, i = 0,1,2, after load
balancing are used at stage 6, by processor E' together with the six-th and last
item, i.e. (9,27), in order to generate the sublists N¢, i = 0,1,2. We note that the
sets N¢, i = 0,1,2, are empty since the generated pairs at stage 6 are such that
their weights wy™ + 9 are greater than or equal to the weight w;—H’O of the smallest
pair of the list Bgﬂ relevant to processor E'T! or greater than the capacity of the
knapsack C. Those discarded pairs which are stored as shared variables are used
by processors B/ with j > i, in order to generate their sublists CJ. Finally, new
pairs resulting from the last object taken into account and data exchange between
processors permit one to build the sublists LY, i = 0,1, 2.

12



ilo0 1 2
k| lists
2| Ly | (0,0), (3, 8) (5, 20) (8, 28)
30 Ni|(2,5) (7, 25) (10, 33)
Ci (5, 13)
L1 (0,0), (2, 5), (3, 8) (5, 20), (7, 25) (8, 28), (10, 33)
4| Ni|(1,4),3,9), 4, 12) | (6,24) (9, 32), (11, 37)
Ci (8, 29)
Ly | (0,0), (1,4), (2,5), | (5,20), (6,24), (7,25) | (8,29), (9, 32), (10, 33)
(3,9), (4, 12) (11, 37)
5| Ni (13, 43), (14, 46), (15, 47)
(16, 51)
Ci (5, 14), (6, 18), (7, 19) | (8, 23), (9, 26), (10, 34),
(11, 38), (12, 39)
LL | (0,0), (1,4), (2,5), | (5, 20), (6, 24), (7,25) | (8, 29), (9, 32), (10, 34),
(3,9), (4, 12) (11, 38), (12, 39), (13, 43),
(14, 46), (15, 47), (16, 51)
B | (0,0), (1,4), (2,5), | (7,25),(8,29),(9,32), | (12, 39), (13, 43), (14, 46),
(3,9), (4, 12), (5, 20), | (10, 34), (11, 38) (15, 47), (16, 51)
(6, 24)
6 | N
Ci (9, 27), (10, 31), (11, 32) | (12, 36), (13, 39), (14, 47),
(15, 51), (16, 52)
Ly | (0,0), (1,4), (2,5), | (7,25),(8,29),(9,32), |(12,39), (13, 43), (14, 47),
(3,9), (4, 12), (5, 20), | (10, 34), (11, 38) (15, 51), (16, 52)
(6, 24)

Table 3. Example in the parallel case with load balancing

In the next subsection, we present a different load balancing strategy which is
simple and performant.
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4.2 Implicit load balancing

Implicit load balancing has been designed in order to decrease overhead while
performing a fair load balancing. The principle of implicit load balancing is very
simple. Since the capacity C of the knapsack is given and the size of the lists L
is at most equal to C, the idea is to assign to processor E? the pairs with weight
between 0 and L%J where ¢ denotes the number of processors, similarly, processor

E' will be assigned the pairs with weight between L%J +1 and 2. L%J and so on.

The main advantage of this strategy is that pairs are directly assigned to a given
processor according to their weight. As a consequence, there is no overhead like in
the case of the previous strategy. On the other hand, the main drawback of this
strategy is its inefficiency at initialization, since idle times of some processors such
as for example F9~!, £972 .. may be nonnegligeable. However, we will see in the
next Section that this load balancing technique is performant even when the number
of processors is large. As a matter of fact, with these technique, the work of the
different processors tends to be well distributed, since according to the strategy, the
number of pairs assigned to all processors tends to be constant in working regime.

In the case of implicit load balancing, it is straightforward to deduce the contents
of the lists; thus, the presentation is skipped. Finally, we conclude this Section by
presenting a last strategy the so-called cascade load balancing.

4.3  Cascade load balancing

We have seen in subsection 4.1 that one of the major drawbacks of dynamic load
balancing was that every processor must write the pairs of its sublist as shared
variables during load balancing phases. This mechanism clearly generates a non-
negligeable overhead. Moreover, the sublists assigned to the different processors
differ only by a limited number of pairs before and after a load balancing. The
cascade load balancing concept tends to suppress this drawback. The principle of
cascade load balancing consists in the transmission of pairs at each stage from a
given overloaded processor say E’ to the processors next to it: say E'~ ' or Bt
This mechanism tends to limit the number of communicated pairs at each stage.

In order to implement this load balancing strategy, one needs to compute and
store in a table the number of pairs per processor and the desired fair distribution
of pairs. By using the data of this table, it is then possible to compute the number
of pairs that must be communicated between each processor E' and processors F* !
or E'! starting from processor E°, data exchange operations being considered in
sequence i.e. one at a time. A positive number m implies that m pairs must be sent
from E' to E*t'. A negative number m implies that | m | pairs must be sent from
E*1 to F'. As an example, if at a given stage k, the number of pairs of processors
E®, E' and E?, respectively, are 18, 8 and 4, repectively, then at the first step of
the cascade load balancing, E° will communicate 8 pairs to E'. Thus, at the end of
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the first step the respective number of pairs assigned to processors E°, E' and E?,
will be 10, 16 and 4, respectively. At the second step of the cascade load balancing,
E' will communicate 6 pairs to E2. So, each processor will have the same number of
pairs, i.e. 10 pairs, at the end of step 2. As we shall see in the sequel, very few pairs
are communicated at each stage. The ratio communicated pairs per total number of
pairs was usually one per one thousand in the numerical experiments we have carried
out. In working regime, there are relatively few data exchanges between processors
and the phenomenom of cascade communication of pairs generally occurs only at
the beginning of computations.

Finally, we note that we have implemented many more approaches for load bal-
ancing then the ones quoted in this Section. In particular, the approach whereby
the processor which tends to be overloaded i.e. the last processor get only few pairs
at each load balancing has not proven to be very efficient, mainly because pair gen-
eration is expensive. We have also tested an approach whereby exchanges occur in
the sense of the augmenting indexes at each odd stage and in the reverse sense at
each even stage. But this last approach (see [11]) is less performant as well.

5 Numerical Results

The numerical experiments presented here correspond to difficult 0-1 knapsack
problems, i.e problems included in a range from weakly correlated problems to very
strongly correlated problems (see [10]). We have avoided treating noncorrelated
problems which induce a large number of dominated pairs and which are thus more
easy to solve.

The various instances considered are relative to problem sizes which are equal to
200, 400, 1000, 5000 and 10000, respectively, with data range defined as follows. The
weights w; are randomly distributed in the segment [1,1000] and the nonnegative
profits p; in [w; — g,w; + g], where the gap, denoted by g, is equal to 10 for the
first set of data and 100 for the second set. We have considered problems such that
C=0.5 E?:l U}j.

The parallel algorithm has been implemented in C on a NUMA (non uniform
memory access) shared memory supercomputer Origin 3800 using the Open MP
environment. The architecture of the machine is hybrid, i.e. there is some shared
and distributed memory. However, total memory can be viewed as shared on a
logical point of view. More precisely, the parallel architecture is an hypercube con-
stituted by 512 processors MIPS R14000 with 500 MHz clock frequency and 500
Mo of memory per processor. The operating system is TRIX 6.5 TP35. The total
bandwith of the communication network is 716 Go/s. We note that generally, all
processors do not have the same read or write time for every variable. With this
architecture, the read or write time in a remote part of the memory may be 2 or 3
times greater than the read or write time in the local memory of a processor. How-
ever, we have made computational tests with 2.10% up to 8.107 pairs; in this range,
the read time, as well as the write time were always the same: 4.10~% seconds.
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Parallel numerical experiments have been carried out with up to 32 processors.
Numerical results are displayed on Tables 4 to 10.

For all tables, except Table 10, we give the running time in seconds of sequential
algorithms, denoted by ¢, and parallel algorithms, denoted by ¢,, which corresponds
to an average time taken over 25 instances; we also give the efficiency of parallel
algorithms which is equal to q’f;p. Table 10 corresponds to a single instance without
load balancing strategy.

In the case of parallel algorithms with load balancing, we note from Tables 4 to 7
that the efficiency of the parallel algorithm is function of several parameters such
as the size of the problem, the number of processors or the type of correlation of
the data.

If the size of the problem is small, i.e. 200, 400 or 1000, then we do not need a
large number of processors, since the running time is of the order of just few seconds.
In that case, the efficiency of the parallel dynamic programming algorithm using
dynamic or implicit load balancing tends generally to decrease when the number
of processors increases. Basically, for these problems the granularity, i.e. the ratio
computation time over communication time, which is initially small, decreases when
q increases since in this case, communications play a prominent part.

If the size of the problem is nonnegligible or great, i.e. 5000 or 10000, then the
efficiency of the parallel dynamic programming algorithm using dynamic or implicit
load balancing increases first because when ¢ is small the last processor tends nat-
urally to accumulate more pairs and the problem is more unbalanced. Thus, the
efficiencies are smaller for small values of ¢ since the effect of load unbalancing is
relatively costly. Finally, the efficiency decreases when ¢ becomes large since the
load balancing overhead in the case of dynamic load balancing and the granularity
effects in both cases become prevalent.

A surprising result is that the performance of implicit load balancing is quite
similar to the performance of dynamic load balancing. However, the sophisticated
dynamic load balancing strategy seems to perform better than the simple implicit
load balancing strategy for large size problems and large number of processors; this
case being of course the most interesting.

We note that cascade load balancing strategy is generally very efficient for a small
number of processors i.e. when ¢ is smaller or equal to 8. We note also that in some
cases, the efficiency may be greater than one. Experiments were carried out on a
non uniform memory architecture. Thus, several processors can use more efficiently
their fast local memory, where local data are stored, then a single processor which
needs to access sometimes remote part of the memory in order to use all the data
of the problem. We recall that the access to remote part of the memory costs more
than the access to local memory on a NUMA architecture. If the number of pro-
cessors is large, then the performance of this strategy is very poor. It seems that
although there are generally few pairs communicated as compared with the total
number of pairs (we have measured an average of 1 per 1000), the sequentiality
of data exchanges, i.e. one processor communicate at a time with another, seems
particularly costly if the number of processors is large; this phenomenon eventualy
induces an important communication overhead.

Finally, we note that load balancing is really important for parallel dynamic pro-
gramming algorithms. Parallel algorithms without load balancing strategy are gen-
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erally totally inefficient as shown in Table 10. Parallel algorithms with dynamic or
implicit load balancing strategy whose performance is displayed in Tables 4 to 7
present in general a good efficiency for a coarse granularity. This shows that the
first two load balancing strategies that we have designed are efficient. The perfor-
mance of these load balancing strategies is also better than the one of the strategy
presented in one of our previous papers (see [11]).

q 1 2 4 8 16 32
size ts iy e iy e iy e iy e ty e
200 0.406 0.326 | 62% | 0.177 | 57% | 0.111 | 46% 0.09 28% | 0.13 10%
400 2.046 1.638 | 62% | 0.828 | 62% | 0.447 | 57% | 0.285 | 45% | 0.277 | 23%
1000 15.099 | 11.571 | 65% | 5.907 | 64% | 3.034 | 62% 1.65 57% | 1.111 | 42%
5000 | 528.195 | 362.882 | 73% | 163.258 | 81% | 80.645 | 82% | 40.163 | 82% | 21.571 | 77 %
10000 | 2125.38 | 1595.35 | 67% | 699.192 | 76% | 324.488 | 82% | 160.465 | 83% | 83.066 | 80%

Table 4. Computing time in seconds and efficiency
for a gap 10 and range 1000 with dynamic load balancing

q 1 2 4 8 16 32
size ts ty e ty e iy e ty e iy e
200 0.116 0.1 58% | 0.063 | 46% | 0.046 | 32% | 0.053 | 14% 0.1 4%
400 0.775 0.606 | 64% | 0.325 | 60% | 0.19 | 51% | 0.148 | 33% | 0.191 | 13%
1000 7.935 6.252 | 63% | 3.137 | 63% | 1.66 | 60% 0.96 52% | 0.768 | 32%
5000 | 463.48 | 299.352 | 77% | 137.928 | 84% | 67.866 | 85% | 34.122 | 85% | 18.014 | 80%
10000 | 2109.3 | 1655.84 | 64% | 644.888 | 82% | 302.5 | 87% | 144.158 | 91% | 76.518 | 86%

Table 5. Computing time in seconds and efficiency
for a gap 100 and range 1000 with dynamic load balancing
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q 1 2 4 8 16 32
size ts iy e ty e iy e iy e iy e
200 0.406 0.30 68% | 0.17 | 58% | 0.11 |48% | 0.07 | 35% | 0.07 | 18%
400 2.046 1.45 70% | 081 |[64% | 045 |57% | 0.26 | 48% | 0.20 | 32%
1000 15.099 10.59 | 71% | 5.77 | 65% | 3.08 | 61% | 1.68 | 56% | 1.02 | 46%
5000 | 528.195 | 349.57 | 76% | 161.62 | 82% | 83.88 | 79% | 43.94 | 75% | 23.33 | 1%
10000 | 2125.38 | 1597.39 | 67% | 749.33 | T1% | 347.56 | 76% | 177.71 | 75% | 92.50 | 72%

Table 6. Computing time in seconds and efficiency
for a gap 10 and range 1000 with implicit load balancing

q 1 2 4 8 16 32
size ts ty e iy e iy e ty e ty e
200 0.116 0.09 62% | 0.06 |49% | 0.04 | 35% | 0.04 | 21% | 0.04 | 9%
400 0.775 0.56 69% | 0.32 | 60% | 0.19 | 52% | 0.12 | 40% | 0.11 | 22%
1000 7.935 5.67 70% | 3.09 |64% | 1.68 | 59% | 0.95 | 52% | 0.64 | 39%
5000 | 463.48 | 273.42 | 85% | 130.27 | 89% | 67.18 | 86% | 34.80 | 83% | 18.78 | TT%
10000 | 2109.3 | 1954.24 | 54% | 773.64 | 68% | 303.8 | 87% | 154.49 | 85% | 80.12 | 82%

Table 7. Computing time in seconds and efficiency
for a gap 100 and range 1000 with implicit load balancing

q 1 2 4 8 16 32
size ts iy e ty e ty e ty e ty e
200 0.406 0.23 88% 0.18 56% 0.3 17% 0.81 3% 2.09 | 0.6%
400 2.046 1.09 94% 0.7 73% 0.88 29% 2.2 6% 5.4 1%
1000 15.099 7.6 99% 4.38 86% 3.63 52% 6.86 | 14% | 16.29 | 3%
5000 | 528.195 | 256.84 | 103% | 109.82 | 120% | 63.24 | 104% | 61.32 | 53% | 106.82 | 15%
10000 | 2125.38 | 1854.95 | 57% | 682.26 | 78% | 254.75 | 104% | 199.14 | 67% | 257.25 | 26%

Table 8. Computing time in seconds and efficiency
for a gap 10 and range 1000 with cascade load balancing
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q 1 2 4 8 16 32
size ts ty e ty e ty e ty e iy e
200 0.116 0.08 73% 0.07 | 41% 0.12 12% 0.35 2% 0.8 5%
400 0.775 0.47 82% 0.32 61% 0.4 24% 1.03 5% 2.53 1%
1000 7.935 4.34 91% 2.52 79% 217 | 46% 425 | 12% | 9.51 3%
5000 | 463.48 | 198.63 | 117% | 90.83 | 128% | 51.79 | 112% | 49.19 | 59% | 81.19 | 18%
10000 | 2109.3 | 1093.25 | 96% | 437.26 | 121% | 211.56 | 125% | 161.84 | 81% | 183.89 | 36%
Table 9. Computing time in seconds and efficiency
for a gap 100 and range 1000 with cascade load balancing
q 1 2 4 8 16 32
size ts tp e tp e tp e tp e tp e
200 0.43 0.45 48% 0.48 22% 0.58 9% 1.27 2% 1.72 1%
1000 15.32 16.46 | 47% | 16.43 | 23% | 16.16 | 12% | 16.88 | 6% | 17.32 | 3%
5000 527.69 | 655.30 | 40% | 672.91 | 20% | 666.82 | 10% | 792.03 | 4% | 844.34 | 2%
10000 | 2163.48 | 2589.30 | 42% | 2716.85 | 20% | 3445.72 | 8% | 2660.50 | 5% | 3698.69 | 2%
Table 10. A case without load balancing,
computing time and efficiency for a gap 10 and range 1000
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