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Diffusion methods have proven their efficiency for tasks such as semi-supervised segmentation. The introduction of patches as a part of their speed function allows to deal with textured images. However, the computational burden with such variants stays too important for low-level tasks. In this paper, we propose a multivalued color-based potential function that partly alleviates this flaw. It allows to efficiently perform semi-supervised segmentation of natural and textured images.

INTRODUCTION

Diffusion based approaches have been widely used for image segmentation purposes [START_REF] Rousson | Active unsupervised texture segmentation on a diffusion based feature space[END_REF][START_REF] Grady | Random walks for image segmentation[END_REF][START_REF] Alvino | Efficient segmentation based on eikonal and diffusion equations[END_REF][START_REF] Couprie | Power watershed: A unifying graphbased optimization framework[END_REF][START_REF] Bai | A geodesic framework for fast interactive image and video segmentation and matting[END_REF] (to cite a few). Allowing a user to label parts of an image leads to a semi-supervised segmentation problem, for which most of label diffusion techniques can be used. Apart from their different formulations, their results strongly differ with the amount of manual interactions needed to get a good segmentation result.

The zebra teaser images show that sparsely distributed seeds (first image) are clearly insufficient even with a stateof-the-art method such as [START_REF] Couprie | Power watershed: A unifying graphbased optimization framework[END_REF] (second image). Indeed [START_REF] Couprie | Power watershed: A unifying graphbased optimization framework[END_REF] requires far more seeds to correctly segment the zebra, and that is the case for most of diffusion-based segmentation approaches: the quality of the result heavily depends on the nature of the image and on the amount of user's interactions.

In this paper we propose a multivalued diffusion framework whose goal is to reduce the amount of user interactions to get a satisfactory result while keeping its complexity low.

The proposed method 1 relies on the resolution of an Eikonal equation that computes for each pixel p of an image I the distance U (x) to its closest seed pixel. It then defines a partition of the image leading to the segmentation result.

The proposed method extends our previous work [START_REF] Buyssens | Eikonal-based region growing for efficient clustering[END_REF] to handle a multivalued diffusion behavior. The considered equation is:

|∇U (x)| = P (u, L t ) ∀p ∈ I U (x) = φ(x) ∀x ∈ L 0 ( 1 
)
where P is the positive potential function, φ an initialization function, L t the set of labeled pixels at the t th iteration, and L 0 the set of initial labeled pixels. Contrary to classical gradient-based potential function, where P is fully known at the beginning of the diffusion, we propose the use of a dynamic potential computed according to statistics of the regions while they grow.

To efficiently deal with multivalued objects, a region is no more modeled with its mean as in [START_REF] Buyssens | Eikonal-based region growing for efficient clustering[END_REF], but with Gaussian Mixture Models (GMM) such that it may be composed of very different features. On the zebra teaser image for instance, the initial seed depicted in red is roughly composed of white and black components. The region (front) can then grow freely along these two colors and this results in a correct segmentation (right image). Note that such GMMs have previously been used within the Graph cut optimization framework [START_REF] Rother | Grabcut: Interactive foreground extraction using iterated graph cuts[END_REF]. However our proposed approach has a much lower complexity.

PROPOSED MULTIVALUED DIFFUSION

Notations

In the following, a pixel p consists in a couple of coordinates (x p , y p ) and an associated dimensional feature vector X p ∈ R d (d = 3 for color images). A region R i is a set of pixels enclosed within a front Γ i = {q ∈ R i |∃p / ∈ R i and p neighbor of q}. The Gaussian Mixture Model associated to R i is composed of K Gaussians and is noted

Π i = K k=1 π k G i
k where G i k is the k th Gaussian component of the mixture and π k its mixture coefficient. We assume that the mixture coefficients for a given GMM sum to 1 (i.e., K k=1 π k = 1). In the following, we detail the algorithm considering only one particular GMM. So, for clarity purposes we drop the index i. A given Gaussian G k consists in a mean vector µ k , a full d × d covariance matrix Σ k , and the number of samples n k associated to it.

Gaussian Mixture-based potential function

In this paper, we propose a dynamic potential function that depends on statistics of the region begin formed. Assuming that a Gaussian Mixture Model Π composed of K Gaussians is associated to a given region R

Π = K k=1 π k G k (2) with G k (X) = 1 (2π) d 2 |Σ k | 1 2 e (-1 2 (X-µ k ) T Σ -1 (X-µ k )) . (3) 
Then the potential P (p|R) of a pixel p ∈ Γ is computed as

P (p|R) = 1 γ(p|R) (4) 
where

γ(p|R) = argmax k (π k G k (X p )). (5) 
Here, the γ function can be seen as a speed function of the front Γ for a given pixel p. Equation [START_REF] Alvino | Efficient segmentation based on eikonal and diffusion equations[END_REF] states that only the Gaussian that best fits X p is associated to p (hard assignment 2 ). At this step, one can note that a Gaussian component G k that is under represented within the mixture (i.e., π k ≪ 1) would produce low speed values π k G k (•). The front diffusion through such a Gaussian is then not fostered.

Algorithm detail

Initialization : Given a set of initial labeled pixels, the algorithm starts by modeling each set of pixels that share the same label by a Gaussian Mixture Model. Each GMM is initially composed of K components (K = 10 in all our experiments). For a given GMM, each mean µ k is estimated via k-means and a sole Gaussian is assigned to each initial labeled pixel. Covariance matrices Σ k are then computed with respect to this assignment. Finally, the mixture coefficients are simply computed as the probability for a pixel to belong to a given Gaussian :

π k = n k / K t=1 n t .
2 Soft assignment of probabilities would be preferable to be used. However the practical benefits of such assignments turn out to be neglectible regarding the additional computational cost.

Note that irrelevant Gaussians (those that contain no pixels, n = 0) are automatically discarded. An initial GMM can then be composed of less than K components. Diffusion : diffusion process is carried out via the Fast Marching algorithm due to its efficiency [START_REF] Sethian | A fast marching level set method for monotonically advancing fronts[END_REF]. The potential of each pixel p ∈ Γ i , i ∈ {1, . . . , N } computed (Eq. ( 4)). Within the diffusion process, each time a pixel p is labeled, the adjoining Gaussian G (the one that has maximized π k G k , see Eq. ( 5)) is updated with X p . To avoid recomputing from scratch the mean vector µ and the covariance matrix Σ of G, which can be very time consuming, we perform an online update of G. This non-trivial update procedure of a given Gaussian G with a feature vector X is detailed in the algorithm 1. Note that the mixture coefficients of all the Gaussians of the GMM are updated too, since we have

K k=1 π k = 1.
The algorithm terminates when all the pixels have been labeled.

Algorithm 1 Online update of a Gaussian G by a vector X

Input: X, G Output: updated G Σ ← Σ × (n -1) n ← n + 1 ∆ ← X -µ {Update mean µ} µ ← µ + ∆/n {Update covariance matrix Σ} Λ ← X -µ Σ i,i ← Σ i,i + ∆ i × Λ i Σ i,j ← Σ i,j + Λ i × Λ j if i = j Σ ← Σ/(n -1) {Update mixture coefficients π k , ∀ G k } π k ← n k / K t=1 n t

Complexity analysis

Complexity of the diffusion relies essentially on the complexity of the Fast Marching algorithm and on the number of Gaussians. With an appropriate heap for sorting the pixels according to their potential, the complexity of the Fast Marching algorithm depends on the number of pixels D and is roughly O(D log(D)). Also, computing the potential of a pixel p involves K estimations of π k G k (X p ) (Eq. ( 5)). The overall complexity of the proposed algorithm is then roughly O(KD log(D)). Despite this theoretical complexity, the proposed algorithm may be very fast in practice, since the computation of γ(p|R) (Eq. ( 5)) can easily be parallelized. Moreover, using different data structures (and additional storage), some O(D) implementations of the Fast Marching algorithm have been proposed [START_REF] Kim | An O(n) level set method for eikonal equations[END_REF][START_REF] Yatziv | O(n) implementation of the fast marching algorithm[END_REF]. With a smart implementation, the complexity of the proposed algorithm can then be reduced to O(D). This linear complexity is a strong advantage towards the use of our approach.

RESULTS

Multi label semi-supervised segmentation

In this section, we compare segmentation results of our approach with state-of-the-art methods: a gradient-based diffusion framework [START_REF] Desquesnes | Eikonal equation adaptation on weighted graphs: fast geometric diffusion process for local and non-local image and data processing[END_REF], the Eikonal Region Growing Clustering algorithm3 [START_REF] Buyssens | Eikonal-based region growing for efficient clustering[END_REF], and the Power Watershed algorithm4 [START_REF] Couprie | Power watershed: A unifying graphbased optimization framework[END_REF]. While the gradient-based diffusion framework [START_REF] Desquesnes | Eikonal equation adaptation on weighted graphs: fast geometric diffusion process for local and non-local image and data processing[END_REF] solves an Eikonal equation with a gradient-based potential function, the power watershed [START_REF] Couprie | Power watershed: A unifying graphbased optimization framework[END_REF] uses a variant of the watershed algorithm on graph. Finally, our previous work [START_REF] Buyssens | Eikonal-based region growing for efficient clustering[END_REF] solves an Eikonal equation with a potential function that depends solely on the mean color of the regions.

The comparative results on the church image (left column of Fig. 1) show many bad labeling for state-of-the-art methods, especially on the front of the building or on the roof. On the landscape image (middle column), similar failures can be observed, especially on stones and grass. Finally, the segmentation results on the Oscar image (right column) exhibits bad labeling with methods of [START_REF] Desquesnes | Eikonal equation adaptation on weighted graphs: fast geometric diffusion process for local and non-local image and data processing[END_REF] and [START_REF] Buyssens | Eikonal-based region growing for efficient clustering[END_REF]. The power watershed performs well on this image.

Despite sparsely and coarsely distributed initial labels, our GMM based diffusion approach provides equal or better quality visual results than state-of-the-art methods.

Adding texture informations

The proposed formulation (see Sec. 2) is not restricted to color feature vectors. In this section, we provide additional segmentation results on texture images by adding simple texture information to the model. Introduced in [START_REF] Di | A note on the gradient of a multiimage[END_REF], structure tensors are a natural extension of gradient motion for multivalued images. They efficiently encode both the local image color variation and their directions. Traditionnally, for twodimensional RGB images, structure tensors reduce to 2 × 2 matrices defined as follows:

S = c∈{R,G,B} --→ ∇I c . --→ ∇I c T = λ 1 .u.u T + λ 2 .v.v T with λ 1 > λ 2
with λ {1,2} the eigenvalues of S and u, v the eigenvectors associated to λ 1 and λ 2 respectively. The eigenvector associated to the largest eigenvalue is oriented along the major image change direction while the one associated to the smaller eigenvalue is oriented along its orthogonal.

In the following, we use the largest eigenvalue and its associated eigenvector as additional components in our model. The feature vector associated to each pixel consists then in a 6-dimensional vector encoding both color and local texture informations.

Except for these augmented inputs, the rest of the algorithm is kept unchanged. Figure 2 provides comparisons of state-of-the-art algorithms with ours on synthetic textured images. Despite sparsely and coarsely distributed initial seeds, the proposed approach efficiently discriminates different orientations of the same texture (first column), similar patterns with different luminance (second column), and more complex texture patterns (third column). All other methods are not suited for such complex images. From top to bottom: initial seeds, segmentation results with [START_REF] Buyssens | Eikonal-based region growing for efficient clustering[END_REF], [START_REF] Couprie | Power watershed: A unifying graphbased optimization framework[END_REF], and our approach.

CONCLUSION AND FUTURE WORK

This paper presents a multivariate diffusion framework for semi-supervised segmentation. Based on a diffusion from on a set of initial seeds, the proposed approach allows to segment complex objects that are modeled with Gaussian Mixture Models. We also demonstrate the flexibility of our approach by adding simple structure features to the color ones to efficiently deals with texture images. Further work will investigate the extension to image matting such as [START_REF] Bai | A geodesic framework for fast interactive image and video segmentation and matting[END_REF], and its adaptation on graphs for data clustering such as the recent methods [START_REF] Merkurjev | An mbo scheme on graphs for segmentation and image processing[END_REF][START_REF] Bresson | Multiclass total variation clustering[END_REF][START_REF] Garcia-Cardona | Fast multiclass segmentation using diffuse interface methods on graphs[END_REF]. From top to bottom: initial labels, segmentation results with a gradient-based potential function [START_REF] Desquesnes | Eikonal equation adaptation on weighted graphs: fast geometric diffusion process for local and non-local image and data processing[END_REF], segmentation results with a color and region-based potential function [START_REF] Buyssens | Eikonal-based region growing for efficient clustering[END_REF], segmentation results with power watersheds [START_REF] Couprie | Power watershed: A unifying graphbased optimization framework[END_REF], and segmentation results with the proposed Gaussian Mixture Model potential function.
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 2 Fig. 2: Semi-supervised segmentation of textured images.From top to bottom: initial seeds, segmentation results with[START_REF] Buyssens | Eikonal-based region growing for efficient clustering[END_REF],[START_REF] Couprie | Power watershed: A unifying graphbased optimization framework[END_REF], and our approach.
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 1 Fig.1: Semi-supervised segmentation comparisons on the church image (left), on the landscape image (middle), and on the Oscar image (right). From top to bottom: initial labels, segmentation results with a gradient-based potential function[START_REF] Desquesnes | Eikonal equation adaptation on weighted graphs: fast geometric diffusion process for local and non-local image and data processing[END_REF], segmentation results with a color and region-based potential function[START_REF] Buyssens | Eikonal-based region growing for efficient clustering[END_REF], segmentation results with power watersheds[START_REF] Couprie | Power watershed: A unifying graphbased optimization framework[END_REF], and segmentation results with the proposed Gaussian Mixture Model potential function.
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