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ABSTRACT

In this paper we propose an approach to inpaint holes in

depth maps that appear when synthesizing virtual views from

a RGB-D scenes. Based on a superpixel oversegmentation

of both the original and synthesized views, the proposed ap-

proach efficiently deals with many occlusion situations where

most of previous approaches fail. The use of superpixels

makes the algorithm more robust to inaccurate depth maps,

while giving an efficient way to model the image. Exten-

sive comparisons to relevant state-of-the-art methods show

that our approach outperforms qualitatively and quantitavely

these existing approaches.

Index Terms— View synthesis, Depth map disocclusion,

superpixels.

1. INTRODUCTION

3DTV and the more general Free-Viewpoint Rendering

(FVR) have become promising technologies in 3D research.

To synthesize new virtual views from known ones, Depth Im-

age Based Rendering (DIBR) is a key technic which consists

in rendering a depth map in addition to the classical intensity

image. Given this latter image and its corresponding depth

map, one can synthesize a new virtual view of the scene by

warping these images from a new view point [1].

A critical problem then arises with the apparition of oc-

cluded areas : background (BG) areas that are hidden (and

not known) by a foreground (FG) object in the original view

may have to be rendered in the synthesized view (Fig. 1). Fill-

ing these holes is known as disocclusion and belong to the

more general problem of inpainting. But contrary to the gen-

eral problem of removing an object from the scene, an impor-

tant remark can be made here : holes are almost always sur-

rounded by both FG and BG since their apparition are due to

significant depth difference between FG and BG. Moreover,

an important additional resource to fill holes is the depth map

that can be used to guide the inpainting process [2].

State-of-the-art overview: several works have been pro-

posed in the literature to tackle this disocclusion problem, al-

most all of them are based on inpainting frameworks such as

the algorithm of Criminisi et al. [3] widely used for its ability

to efficiently reconstruct large structure portions.
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Based on the work of [3], [2] adds depth information to

both the priority term and the patch distance computations.

A similar work [4] introduces 3D-tensor for the priority term

computation, but assumes that the depth map is completely

known (which is impossible in practice since it contains

holes). [5] first inpaints the depth map with a line-based

algorithm, then uses a sprite-based algorithm to fill in the

intensity image. Both [4] and [5] manipulate the filling order

such that it starts from the background in priority. While [6]

extrapolates the information of the missing pixels from its

direct surrounding BG neighborhood, [7] simulatenously fills

depth map and intensity image with variants (similar to the

ones of [4]) added to the Criminisi et al. algorithm. Finally

[8] recently proposed a smart algorithm to first inpaint the

depth map, and in a second time inpaints intensity image with

a variant of [3] to ensure inter-view consistency.

Despite these recent works on disocclusion, very few of

them deal properly with the depth map inpainting problem.

This sub-problem is in fact a not-so-easy task, and it is often

tackled with trivial methods that are insufficient.

Problem statement : a major problem arises when an

occlusion hole that has to be filled with background is only

surrounded with foreground. Fig. 1 illustrates such a case:

due to the warping process, the hole pointed by the red arrow

can not be properly inpainted with its surrounding neighbor.

Most of methods of the literature fail on such a case since

they only consider the hole neighborhood for its inpainting.

To the best of our knowledge, [8] is the only work that poses

this problem correctly.

The basic idea of [8] for the depth map inpainting is to

use the original image (before the warping) to infer the cor-

rect missing depth values (FG or BG). Specifically, the line

wise filling method of [8] analyzes the depth distributions of

the local patches around the boundary of the hole in the syn-

thesized view and the corresponding boundary in the original

view. Local maxima of depth distributions for both the syn-

thesized and original views are then used to infer the correct

depth value of the line that is then drawn. Nevertheless, this

algorithm suffers from several flaws:

• since the depth inpainting relies on horizontal lines (con-

stant depth along the line), BG planes that are not parallel to

the camera plane can not be properly inpainted,

• horizontal lines may be sufficient with a horizontal transla-



Fig. 1: Illustration of one of the background recovery prob-

lems : The hole pointed by the arrow is only surrounded

by foreground pixels. Top: synthesized intensity image with

holes, middle: synthesized depth map with holes, and bottom:

our depth map inpainted result.

tion of the point of view, but becomes clearly inadequate for

general warpings.

Contributions : This paper focuses on the inpainting of

occlusions that appeared in depth maps after a warping pro-

cess. To this end, we propose an efficient algorithm to specif-

ically inpaint these holes. Based on the same idea as [8], it

uses the original image (before warping) to infer correctly the

missing depth values. The algorithm is detailed in Sec. 2,

and is compared both qualitatively and quantitatively to [8] in

Sec. 3.

2. PROPOSED DEPTH MAP INPAINTING METHOD

The main idea of our proposed approach is to guess and de-

cide between which FG and BG depth values to use to fill

holes. To tackle the problem, the proposed solution is to find

and extend planes in the original image with the use of super-

pixels.

The proposed algorithm is composed of 3 steps:
1) compute superpixel oversegmentations of the original and

synthesized views, and the correspondence between both their

superpixels,

2) for each pixel to inpaint, find a set of candidates superpixels

candidates in the original view,

3) modelize the remaining superpixels by planes, and infer

the depth value of the pixel by a linear combination of these

planes.

Notations : a depth source image S is warped accord-

ing to an offset map to generate a new depth view D. Pixels

p ∈ D where the depth information is unknown form a set

of holes Ω = {Ω1 . . .Ωn}. Superpixels RS
i and RD

i denote

superpixels with the same label i belonging to S (respectively

D). In the following, we adopt the convention that a pixel that

is far from the camera has a low depth value, and a pixel close

to the camera has a high depth value.

2.1. Superpixel rendering

Our method starts by computing an oversegmentation of the

source image S into superpixels. We have considered the

recent superpixel algorithm Eikonal-based Region Growing

Clustering (ERGC) [9] that formulates the pixel clustering as

the solution of an Eikonal equation. Given a set of initial seed

pixels {si} regularly sampled on the image, ERGC associates

to each pixel p the potential P (p) = ‖S(p)−Ri‖
2+‖p−si‖

2

2
,

where S(p) is the depth of p, Ri is the mean depth of the

superpixel Ri being formed, and ‖p − si‖2 is the euclidean

distance (a spatial constraint) of p to the seed pixel si of the

superpixel Ri. The resulting label map produced by ERGC

(left column of Figure 2) is then warped to the new view

[1], and the superpixels of D are eroded by a circular struc-

turing element of 1 pixel radius. This step prevents the po-

tential bad labeling of pixels belonging to object boundaries.

ERGC is then applied on D with the warped eroded labels

taken as seeds, without diffusing into the holes (right column

of Figure 2) Figure 2 (bottom) shows some correspondences

between superpixels of S and D.

Fig. 2: Illustration of the Superpixels matching. Arrows indi-

cate superpixels in the original image (left) and in the synthe-

sized image (right) that share the same label.

2.2. Source planes search

Given a pixel p to inpaint, the source plane search consists in

finding a subset of superpixels that will be used to infer the

depth value of p. It consists in 3 steps:



1) The closest pixel q1 ∈ D \ Ω is found with a gradient de-

scent performed on the distance function of pixels pi ∈ Ω to

pixels pj ∈ D \ Ω. The adjoining superpixel is noted RD
1
.

A second pixel q2 ∈ D \ Ω is found on the opposite side of

the hole by simply following the line defined by (q1, p). The
adjoining superpixel of q2 is noted RD

2
. Pixels q1 and q2 are

then used to define offsets∆p
1
= ‖p−q1‖ and∆

p
2
= ‖p−q2‖.

2) q1 and q2 are then reported onto S with the inverse warping

map, with the constraint that they belong toRS
1
andRS

2
. From

these two new points q3 ∈ S and q4 ∈ S, the offsets−∆p
1
and

−∆p
2
point to two new superpixels RS

3
and RS

4
. Note that RS

3

and RS
4
may be se same superpixel.

3) From the set of superpixels {RD
1
, RD

2
, RS

3
, RS

4
}, only those

with the smallest mean depth value (BG superpixels) are re-

tained to form the set of candidate superpixels.

Fig. 3 illustrates this process: RD
1
RD

2
are depicted in blue

and red respectively (second and third rows). RS
3
andRS

4
may

be two different superpixels (dark blue and dark red, third

row) or may be the same superpixel (green superpixel, second

row).

Fig. 3: Illustration of the search for the candidate superpixel.

Given a pixel p to inpaint (white dot), red and blue superpix-

els are found (see Section 2.2) in the synthesized image (left

column). The offsets ∆p
1
and ∆p

2
are then reported onto the

original image (right column) from previously blue and red

found superpixels. These offsets −∆p
1
and −∆p

2
can point to

the same superpixel (green superpixel, second row), or they

can point to different ones (dark blue and dark red, third row).

Finally, the superpixels retained to infer the depth value of p

are those with the smallest mean depth value : the green one

in the first case (second row), and the blue one in the second

case (third row).

2.3. Infering depth values

Each superpixel of the candidate set is represented by a

unique plane via a least square regression. The depth value of

p is then computed as a linear combination of these extended

planes. The weights of this combination are computed ac-

cording to the distance between the pixel p and the retained

superpixels.

2.4. Discussion

The advantages of using superpixels in our method are

twofold:

• Since the warping map may be not accurate enough, warp-

ing a single pixel may lead to errors. Using superpixels

instead leads to a more robust algorithm, especially when

looking for q3 and q4 in the source planes search step.

• ERGC superpixels adhere well to boundaries and then natu-

rally define homogeneous parts of the depth map. The planes

obtained by the least square regression for each superpixel are

then sufficient to infer a good depth value of missing pixels.

Complexity: the main complexity burden of the pro-

posed approach is the oversegmentation into superpixels of S.

ERGC is based on the Fast-Marching algorithm that requires

the sorting of pixels according to their geodesic distances to

seed pixels. With an appropriate heap structure, the complex-

ity is roughlyO(n log n). Despite this theoretical complexity,

the proposed algorithm is very fast in practice, and is nearly

linear in time. Moreover, note that O(n) implementation has

been proposed in the literature [11].

The oversegmentation into superpixels of D is much

more faster since the diffusion is processed on far fewer

pixels (eroded parts of superpixels of S). The rest of the

algorithm is linear in time and can easily be parallelized since

each pixel is inpainted independently.

3. RESULTS

3.1. Comparisons on a synthetic image

In this section, we show inpainting results on a synthetic im-

age composed of two objects : a disc perforated with two cir-

cular holes in front of a plane that is not parallel to the camera

plane (see Fig. 4a). Changing the point of view reveals holes

to inpaint in the synthesized view, and in particular one ini-

tial circular hole that is only surrounded by depth values of

the foreground object (see Fig. 4b and 4c). While [5] fails

at filling the circular hole with background values (Fig. 4d),

[8] fails to correctly reconstruct the depth values of the back-

ground plane (Fig. 4e). Missing depth values are well recov-

ered with our method (Fig. 4f).

3.2. Comparisons on real data

In this section we compare our method with the one of [8]

on the recent Middlebury-2014 stereo dataset [12]. It is com-



Fig. 6: First column: Inpainted depth map with our method. Second to last row: inpainting result magnifications with [5], [8],

and our method respectively.

(a) Original depth map. (b) Synthesized depth map.

(c) Synthesized depth map in

false color.

(d) Result with [5].

(e) Result with [8]. (f) Our result.

Fig. 4: Depth map inpainting comparison on a synthetic im-

age rendered in false color for visualization purposes.

posed of 23 pair of 2880×1988 images for whose depth maps

are known, and synthesis is performed from view0 to view1.

Figure 6 compares quality of inpainting results of [5] and

[8] with our proposed method. Figure 5 plots and compares

for each image the mean errors of the reconstruction of the

method of [8] and ours. We also plot the median errors of

each algorithm to better appreciate these results, and to better

reflect the overall performances of the inpainting. These ex-

perimental results show a clear improvement of our proposed

method over [8].
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Fig. 5: Mean and median error for each image of the

Middlebury-2014 dataset.

4. CONCLUSION

This paper proposes a novel method that specifically deals

with depth map inpainting for view synthesis. Based on su-

perpixels, the proposed approach outperforms qualitatively

and quantitatively existing dedicated approaches of the state-

of-the-art. Based on these robust inpainted depth map, further

work consists in inpainting synthesized intensity images.
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[2] Ismaël Daribo and Béatrice Pesquet-Popescu, “Depth-

aided image inpainting for novel view synthesis,” in

Multimedia Signal Processing (MMSP), 2010 IEEE In-

ternational Workshop on. IEEE, 2010, pp. 167–170.

[3] Antonio Criminisi, Patrick Pérez, and Kentaro Toyama,
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