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Abstract – The potential of electric power generation from marine renewable energy is 
enormous. Ocean waves are being recognized as a resource to be exploited for the sustainable 
generation of electrical power. The high load factors resulting from the fluid properties and the 
predictable resource characteristics make ocean waves particularly attractive for power 
generation and advantageous when compared to other renewable energies. Regarding this 
emerging and promising area of research, this paper presents a complete review of wave energy 
technologies describing, analyzing and fixing many of the concepts behind wave energy 
conversion. The proposed review will specifically highlights the main wave energy conversion 
projects around the world at different levels (demonstration stage, in production, and 
commercialized projects). In particular, mooring will be discussed, as it is a key feature behind 
massive deployment of wave energy converters. Finally, a discussion will highlight challenges that 
wave energy converters need to overcome to become commercially competitive in the global 
energy market. Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature 
WEC = Wave Energy Converter; 
PTO = Power Take-Off; 
Pw_f  = Power per meter of wave front; 
Pw_mcl = Power per meter crest length; 
ρ  = Water density 

(approximately 1000 kg/m3); 
g  = Gravity acceleration; 
A  = Wave amplitude; 
T  = Wave period. 

I. Introduction 
One of the very attractive renewable energy sources is 

the ocean. Indeed, it covers around three quarters of the 
earth surface and energy can be extracted from the 
waves, tides, currents, temperature gradients, and salinity 
gradients. Wave energy, in particular, is spatially more 
concentrated than both wind and solar energy; it is also 
more persistent and predictable than wind energy. The 
global wave power resource has been estimated to be at 
least 1 TW, with a potential annual energy production of 
about 2000 TWh; this is comparable to the energy 
production from nuclear or hydropower [1-4]. 

The history of wave power research spans over more 
than two hundred years. The Frenchman Pierre-Simon 
Girard is recognized as the first holder of a wave power 
patent in 1799 [5] (Fig. 1a). Yoshio Masuda may be 
regarded as the father of modern WEC technology, with 
studies in Japan since the 1940s. He developed a 
navigation buoy powered by wave energy, equipped with 
an air turbine, which was in fact what was later named as 
a (floating) oscillating water column (Fig. 1b). 

 
 

(a) Pierre-Simon Girard WEC patent. 
 

 
 

(b) Yoshio Masuda oscillating water column. 
 

Fig. 1. WEC history review. 



 

 

These buoys were commercialized in Japan since 1965 
(and later in USA) [6]. Since then many different other 
concepts have been conceived. Some of these have come 
no further than the drawing table, others have made it into 
small-scale models, and a few have also moved on to 
ocean testing. The technology is still immature and would 
not commercially exist if governments did not subsidize it. 
Therefore, to become a competitive market, it is crucial for 
the industry to reduce the overall cost of electricity 
generated from waves. There are many different WEC 
technologies, and it is not clear which one is superior. 
WECs developers tend to focus on the prime-mover aspect 
and use off-the-shelf electrical systems to generate 
electrical power. These electrical systems usually include a 
gearbox or a hydraulic system to interface a slow moving 
prime mover to a conventional high-speed rotary machine. 
The use of gearboxes or hydraulics introduces potential 
extra-scheduled and unscheduled maintenance costs. 
Moreover, the maintenance for offshore devices is much 
more expensive than onshore equivalents and limited by 
weather conditions, which results in increased downtime 
costs. 

The present review aims at giving an update of the 
most recent trends regarding main wave energy 
conversion projects around the around at different levels 
(demonstration stage, in production, and commercialized 
projects) with respect to overviews already published in 
the past years [6-13]. In particular, mooring will be 
discussed, as it is a key feature behind massive 
deployment of wave energy converters. Finally, a 
discussion will highlight challenges that wave energy 
converters need to overcome to become commercially 
competitive in the global energy market. 

II. Wave Energy Background 
Figure 2 show an atlas of the global power density 

distribution of the oceans. The north and south 
temperature zones have the best sites for capturing wave 
power. The prevailing winds in these zones blow 
strongest in winter. Increased wave activity is found 
between the latitudes of 30° and 60° on both 
hemispheres, induced by the prevailing western winds 
blowing in these regions. 

A wave resource is typically described in terms of 
power per meter of wave front (wave crest length) [8]. 
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It can also be described in terms of wave power per 
meter crest length (Pw_mcl). 
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It should be noted that the wave height H is defined as 
equal to 2A (Fig. 3). 
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Fig. 3. Wave dimensions. 

 

 
 

Fig. 2. Global annual mean wave power estimation in kW/m spanning 10 years period [10] 



 

 

III. Wave Energy Converters 

III.1. WEC Concepts 

WECs have been developed to extract energy from 
shoreline out to the deeper waters offshore. These 
devices are generally categorized by the installation 
location and the Power Take-Off (PTO) system. 
Locations are shoreline, near shore and offshore (Fig. 4). 
In this context, most devices can be characterized as 
belonging to six types: Attenuator; Point absorber; 
Oscillating wave surge converter; Oscillating water 
column; Overtopping device; Submerged pressure 
differential (Fig. 5). 

III.2. WEC Main Projects 

Figure 6 summarizes the main WEC projects in terms 
of concepts and locations. It should be mentioned that 
this figure tries to summarize the main and well-known 
WEC mainly over the demonstration stage. Indeed, there 
is a large number and variety of WEC that vary in 
concept and design. In addition to the fact, that there 
were more than 1000 patents in 2009 [10]. In fact, all of 
these projects should be considered as in early stages if 
compared to other renewable technologies (i.e. wind). 

In this particular huge developing context, it should be 

noted a new French WEC project called EM Bilboquet 
[14-15]. The PTO extracts the mechanical power due to 
incoming waves by a system made up of a cylindrical 
buoy sliding along a partially submerged structure (Fig. 
7). This structure is made up of a vertical cylinder, 
referenced in the following as spar, with a damping plate 
attached at its keel. Energy resulting from the relative 
motion between the two concentric bodies is harnessed 
by rack-and-pinion, which drives a permanent magnet 
synchronous generator through a gearbox [16]. 

IV. Wave Energy Extraction 
Figure 8 summarizes the different conversion stages. 

In particular this figure shows that there is a variety of 
ways to extract power from waves: pneumatically, 
hydraulically, and mechanically (PTO) [17]. This 
mechanical interface is used to convert the slow 
rotational speed or reciprocating motion into high-speed 
rotational motion for connection to a conventional rotary 
electrical generator. In this context, attention will be 
directed at the mechanism needed to convert wave 
energy into electricity as most building blocks in the 
generation system remain nearly the same after being 
transformed into the electrical form [18]. 
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Fig. 4. WECs locations. 
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Fig. 5. WECs concepts. 



 

 

A PA OWS

LOCATION

CONCEPTS

OWC OT DP

O
FF
SH

O
RE

N
EA

RS
H
O
RE

O
N
SH

O
RE

PELAMIS	  (UK)

CETO	  (UK)

A:	  ATTENUATOR
PA:	  POINT	  ABSORBER
OWS:	  OSCILLATING	  WAVE	  SURGE
OWC:	  OSCILLATING	  WAVE	  COLUMN
OT:	  OVERTOPPING
DP:DIFFERENTIAL	  PRESSURE

A:	  ATTENUATOR
PA:	  POINT	  ABSORBER
OWS:	  OSCILLATING	  WAVE	  SURGE
OWC:	  OSCILLATING	  WAVE	  COLUMN
OT:	  OVERTOPPING
DP:DIFFERENTIAL	  PRESSURE

OYSTER	  (UK)

OCEANLINX	  (AU)

LIMPET	  (UK)

WAVE	  DRAGON	  (DK)

AWS	  (UK)

WAVESTAR	  (DK)

POWERBUOY	  (USA)
LANGLEE	  (NO)

SSG	  (NO)

A PA OWS

LOCATION

CONCEPTS

OWC OT DP

O
FF
SH

O
RE

N
EA

RS
H
O
RE

O
N
SH

O
RE

PELAMIS	  (UK)

CETO	  (UK)

A:	  ATTENUATOR
PA:	  POINT	  ABSORBER
OWS:	  OSCILLATING	  WAVE	  SURGE
OWC:	  OSCILLATING	  WAVE	  COLUMN
OT:	  OVERTOPPING
DP:DIFFERENTIAL	  PRESSURE

A:	  ATTENUATOR
PA:	  POINT	  ABSORBER
OWS:	  OSCILLATING	  WAVE	  SURGE
OWC:	  OSCILLATING	  WAVE	  COLUMN
OT:	  OVERTOPPING
DP:DIFFERENTIAL	  PRESSURE

OYSTER	  (UK)

OCEANLINX	  (AU)

LIMPET	  (UK)

WAVE	  DRAGON	  (DK)

AWS	  (UK)

WAVESTAR	  (DK)

POWERBUOY	  (USA)
LANGLEE	  (NO)

SSG	  (NO)

 
 

Fig. 6. WECs main projects. 
 

  
 

Fig. 7. The EM Bilboquet French wave energy converter. 
 

Linear generators are an option on the testing stage, 
but they are not yet currently used in most developed 
WECs [19-24]. In particular, different types of linear 
generators were investigated for the AWS WECs [25-
27]. These investigations have led to the conclusion that 
the transverse flux permanent magnet generator is a good 
candidate in terms of higher power density and 
efficiency. The use of permanent magnet synchronous 
generator is an intermediate option [16], [28]. The use of 

induction generators implies a specific mechanical PTO 
that induces additional losses affecting the WEC overall 
efficiency [29-32]. In this context, there are still 
mechanical engineering challenges in terms of electrical 
generator offshore suitability [10], [33]. Table 1 
summarizes the PTO systems and the electrical generator 
options for the some of Fig. 6 WEC projects. 

V. Wave Energy Converter Mooring 
To use wave energy for electricity generation, WECs 

must be anchored to the seabed and moored by cables 
(Fig. 9). Similar to other offshore structures moored on 
the sea floor, a typical WEC mooring system is likely to 
be composed of three parts: the mooring line, the 
connectors and the anchor. Chain, wire rope and 
synthetic fiber rope are the three main mooring line types 
that are used in offshore structures and could be used for 
WECs [38-40]. Chains provide good catenary stiffness 
and are abrasion resistant. However, their restraining 
stiffness may not be appropriate for some WECs. They 
can hamper the oscillation motion required to convert 
energy. Synthetic ropes are advantageous because of 
their buoyancy property, which will reduce mooring 
weight influence during normal operation and are good 
candidates for deep-water applications [41]. 
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Fig. 8. WEC different type of conversions. 



 

 

Mooring Anchor  
 

Fig. 9. Wave energy converters mooring and anchor. 
 

TABLE 1. SOME WEC PROJECTS PTOS AND GENERATORS. 
 

WEC PTO Generator 

PELAMIS Attenuator/Hydraulics Cage induction 
generator 

POWERBUOY Point absorber Permanent magnet 
synchronous 

generator 

WAVESTAR 
[34] 

Point absorber/ 
Hydraulics 

Permanent magnet 
synchronous 

generator 

SEAREV [5], 
[35] 

Point absorber Permanent magnet 
synchronous 

generator 

BILBOQUET Point absorber Permanent magnet 
synchronous 

generator 

OYSTER  Oscillating wave surge 
converter 

Cage induction 
generator 

LANGLEE 
[36] 

Oscillating wave surge 
converter 

Permanent magnet 
synchronous 

generator 

LIMPET Oscillating water column 
& Wells turbine 

Cage induction 
generator 

OCEANLINX Oscillating water column 
& Denniss-Auld turbine 

Cage induction 
generator 

PICO [8] Oscillating water column 
& Wells turbine 

Doubly-fed 
induction 
generator 

WAVE 
DRAGON 

Overtopping & Kaplan 
turbine 

Permanent magnet 
synchronous 

generator 

SSG [37] Overtopping Permanent magnet 
synchronous 

generator 

AWS Direct drive Linear permanent 
magnet generator 

 
There are many kinds of connectors used on WECs 

and other marine structures [38], [42]. Anchors are the 
terminals that transfer the whole system forces to the 
seabed. 

The two major requirements for a WEC mooring are 
to withstand the environmental and other loadings 
involved in keeping the device on station, and to be 
sufficiently cost-effective so that the overall device 
economics remain viable. In particular the mooring 
system is subject to highly cyclic, nonlinear load 
conditions, mainly induced by the incident waves. 

Mooring systems, which may be suitable for WECs, 
can be categorized into two main configurations: spread 
mooring and single point mooring. Spread mooring 
restricts a WEC motion in the horizontal plane and hence 
will not allow it to weather-vane. This type of mooring 
may be appropriate for non-directional energy 
converters. Single point mooring allows a WEC to 
weather-vane [43-44]. There are several sub-types as 
listed in Table 2 and it is difficult to define which one is 
the best without considering the WEC type, location, 
safety, and cost [45-47]. However, it seems that Catenary 
Anchor Leg Mooring (CALM) in spread mooring, and 
Single Anchor Leg Mooring (SALM) in single point 
mooring are more popular in practical projects [48-49]. 

Figure 10 shows some commonly used mooring 
configurations. 

V.1. Mooring Requirements 

The mooring could not be considered as an additional 
cost item in the overall economics of a WEC. It should 
be designed as an integral element of the overall system 
that contributes to power extraction efficiency [50-52]. 

 
TABLE 2. MOORING TYPES. 

 

Type Spread Single point 

Sub-types Catenary mooring 

Taut mooring 

Turret mooring 

CALM 

(Catenary Anchor Leg Mooring) 

SALM 

(Single Anchor Leg Mooring) 

ALC 

(Articulated Loading Column) 

SPAR 
(Single Point Mooring & Reservoir) 

Fixed tower mooring 



 

 

(a) (b) (c)

(d) (e)

(LANGLEE, NO) (SEAREV, FR) (FLANSEA, BE)

(POWERBUOY, USA) (PELAMIS, UK)

(a) (b) (c)

(d) (e)

(LANGLEE, NO) (SEAREV, FR) (FLANSEA, BE)

(POWERBUOY, USA) (PELAMIS, UK)  
 

Fig. 10. Typical mooring systems for wave energy converters: 
(a) Catenary line; (b) Taut line; (c) Taut line with mid-column float; (d) Taut line with weights, (e) Taut line with weights and floats. 

 
In this context, the following list shows the main 
requirements that need to be considered for WEC 
moorings systems (a detailed list could be found in [41]). 

– Mooring stiffness is an active element in the wave 
energy conversion principle used. The mooring 
system should be sufficiently stiff to: 
ü Allow berthing for inspection and maintenance; 
ü Station keeping within specified tolerances; 
ü Maintain clearance distances between 

mooring; 
ü Avoid constraints in lines and power cable in 

every tide conditions. 
– It should be sufficiently compliant to the 

environmental loading to reduce the forces acting 
on anchors, mooring lines and the device itself to 
a minimum. 

– It should be sufficient to accommodate the tidal 
range at the installation location. 

It is therefore obvious that mooring design is a critical 
part of a WEC project. The devices are generally thought 
to be used in areas of demanding environmental loads 
due to waves, current and wind. These survivability 
issues are addressed in existing offshore standards, such 
as the DNV-OSE301 [53]. 

VI. Challenges for Commercial Viability 
It has been proven that wave energy extraction is very 

attractive as it is spatially more concentrated than both 
wind and solar energy; it is also more persistent and 
predictable than wind energy. On the other hand, the 
development, from concept to commercial stage, has 
been found to be a very slow and expensive process [11], 
[54]. Indeed, it is difficult to follow what was done in the 
wind turbine industry where at first, small machines 
where developed first, and were subsequently scaled-up 



 

 

to larger sizes and powers for massive deployment. In 
fact, optimal wave energy absorption involves some kind 
of resonance. This implies that WECs geometry and size 
are linked to wavelength. So, if pilot plants are to be 
tested in the open ocean, they must be large structures 
[6]. 

In this specific context, challenges that WECs should 
to overcome to become commercially competitive 
leading to massive deployment could be summarized as: 

– As for offshore converters, WECs should withstand 
extreme wave condition leading to difficult and 
costly maintenance operations. 

– As above discussed, mooring design is a critical 
part. In addition to the demanding environmental 
loads due to waves, current and wind, the mooring 
system should also withstand constraints due to the 
WEC alignment for capture optimization. Given the 
continuous environmental loading, fatigue has been 
identified as one of the key engineering challenges 
[55]. In addition, marine growth and corrosion need 
to be considered [56]. 

– Higher costs of construction, deployment, and 
maintenance need to be supported with substantial 
financial support from governments. 

Regarding mooring fatigue and cost issues, it has been 
recently suggested to develop WECs without mooring 
[57-58]. The developed converter has station-keeping 
ability and evasive maneuver by diving. For station-
keeping within a uniform bound, a wave glider has been 
adopted as propulsion system [59] (Fig. 11). In addition, 
such kind of system has the ability to submerge to a 
certain depth for its safety in emergency condition such 
as typhoon [60]. 

VII. Conclusion 
This paper has proposed an up-to-date review of the 

most recent trends regarding main wave energy converter 
technologies with respect to overviews already published 
in the past years. In addition, mooring has been discussed 
and has been shown to be a key feature behind massive 
deployment of wave energy converters. Finally it has 
been highlighted some challenges that needs to be 
overcome to enlarge the vision of large-scale commercial 
arrays of wave energy converters. 

 

 
 

Fig. 11. A mooring-less wave energy converter concept [57]. 
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