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perturbed asynchronous linear fixed point methods
in finite precision
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Abstract

This paper deals with perturbed linear fixed point methods in the
presence of round off errors. Successive approximations, as well as
the more general asynchronous iterations are treated. Forward and
backward error estimates are presented, and these are used to propose
theoretical stopping criteria for these methods. In the case of asyn-
chronous iterations, macro iterations are used as a tool in order to
obtain estimates.

Keywords. approximate contraction, parallel algorithms, asynchronous it-
erations, fixed point methods, successive approximation methods, round off
errors, stopping criterion, forward errors, backward errors.

AMS Subject Classification. 65F10, 65G05, 65Y05, 68Q22, 68Q10.

1 Introduction

The termination of parallel asynchronous iterations is a complex and crucial
problem. Thus, it is of primary importance to study stopping criteria for
such iterations. In this paper, we consider in particular several theoretical
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topics related to stopping criteria for parallel asynchronous iterations in the
case of perturbation by floating point errors of affine mappings. This issue
is particularly complex due to the nondeterminism and lack of synchroniza-
tion. In [24] we have studied perturbations of parallel asynchronous fixed
point methods by round off errors. In this paper, we give some extensions
related to forward and backward errors (see [6] and [16]). We will consider
first the case of successive approximation methods. Then, we will consider
the more general case of parallel asynchronous iterations. In each case, we
develop a theoretical analysis on how to choose a stopping criterion if one
desires the resulting approximation to satisfy certain forward or backward
error estimates. We point out that our contribution is theoretical and that
we do not present here any application to actual computational situations.
The reader is referred to [10] and to [11] for different studies concerning
the termination of asynchronous iterations in nonperturbed and perturbed
contexts, respectively.

There are many situations where the solution of a lot of auxiliary linear
problems with the same matrix occur in a numerical simulation. This is
the case in particular in numerical fluid dynamics simulation whereby the
Navier-Stokes equation is solved by using auxiliary linear operators such as
the discretized Laplacian (see [25] and [15]). Then, it can be possible and
useful to perform some specific preprocessing with respect to the linear op-
erator. The preprocessing will have the purpose to approximate the Perron-
Frobenius eigenelements of the associated Jacobi or Gauss-Seidel mapping
issued from multi-overlapping domain decomposition. We note that such a
preprocessing can also occur in a variant of the Schwarz alternating method
whereby we have to solve a linear fixed point problem via asynchronous it-
erations in order to obtain the value of the solution on the boundary of the
overlapping domain (see [20]). Another promising perspective is probably to
derive extensions of the results presented in this paper to the case of general
multisplitting techniques (see [3]).

In the sequel, we will use the following weighted norm variant of the
convexity theorem of Riesz established in [24].

Theorem 1 Let us consider a matriz B € L(R™), with entries b;j. Let us
denote by p(|B|) the spectral radius of the matriz |B| with entries |b;;|. Then,
for all real numbers € > 0,e small enough, there exist two positive vectors
e(e) and e*(e) and a scalar Ae > 0,such that

{ B e(e) < Ae ele),
|BT] e*(e) = [B|" ¢*(e) < Ac €*(e),



where Ac € [p(|B]), p(|B|) + €]. Moreover for each p € [1, 0], we have
[Bllep < Aes

where || - ||ep is a matriz norm derived from the following Perron-Frobenius
weighted p—norm

Il = [Z 'ﬁ(')] . (1)

Remark 1 In the case of parallel asynchronous iterations, we will use the
following weighted norm (see [12])

= m 1.2
HxHe,oo 19‘%}7(71 (ei(e) ’ ( )

which corresponds to the case where p = oo and we have also || Blle,co < Ac

(see [13]).

Remark 2 The situation where € is equal to zero corresponds to the case
where the matriz B is irreducible. Then e and e*, respectively, are eigen-
vectors of matrices |B| and |B|T, respectively, associated with the respective
spectral radius.

The paper is organized as follows. In section 2 we analyze successive
approximation methods for affine mappings and one of the main results
deals with the adaptation of the approximate contraction concept to round
off perturbations. Some results concerning usual stopping criteria are also
given. Furthermore, an expression of the backward error and an associated
stopping criterion for the successive approximation method are proposed.
Moreover, a sharp bound on the condition number of the matrix arising in
the affine problem, with respect to the Perron-Frobenius weighted p—norms
(1.1) is given and aspects of backward errors are presented, for the succes-
sive approximation method. In section 3, we consider the case of general
affine fixed point methods on a product space, i.e. of asynchronous itera-
tive methods. The corresponding study needs a special case of the previous
topological context of Perron-Frobenius weighted p—norms (1.1) to the max-
imum weighted norm (1.2). In the general case of asynchronous iterations,
we derive stopping criteria based on bounds of the error by using the con-
cept of macro-iteration developped in [18]. The previous results can be
also extended to the case of periodic asynchronous iterations with multiple
initializations in the specific case of affine mappings (see [21]).



2 Perturbation by round off errors of affine map-
pings

2.1 Notations and complementary background
Let m be an integer. Let us consider two matrices A, B € L(R™) such that

A=1-B.
Assume that the spectral radius of the matrix |B| satisfies

p(1B)) < 1. (2.1)
Let ¢ € R™ be a vector; consider the following linear system

Au* = ¢, (2.2)

and the associated fixed point mapping

u€ R™ — v ="T(u) =Bu+ec. (2.3)

Clearly, u* is the unique solution of (2.2) if and only if u* is the unique

fixed point of the mapping 7. In order to approximate the fixed point u*,
let us consider parallel asynchronous iterations {u" },cn defined recursively
as follows (see [2]), for all m > 0 and 7 € {1,..,m},

u

w1 _ | Tileu? ™00, i i € J(n), (2.4
’ u?, if i & J(n),

where u? is the initial guess and

J = {J(n)}nen is a sequence of non void subsets of {1,2,...,m}, (2.5)

S = {s1(n), s2(n), ..., sm(n) }nen, is a sequence of elements of N™. (2.6)

Moreover J and S, satisfy

Vi€ {1,2,...,m},Card{n € N| i€ J(n)} = +o0, (2.7)
Vi e{l,2,..,m},Vn € N, s;j(n) <n, (2.8)
Vi e {L,2,..,m}, le sj(n) = +o0. (2.9)



In the framework of floating point computations and round off error
pertubations, we must replace in (2.4) the exact mapping 7' by an approxi-
mate mapping denoted by 7. In order to deal with this perturbation, let us
introduce now the following notations (see [24]). We define the real number

T=p(t+1)x, (2.10)

where ¢ is the maximum number of nonzero elements in a row of the matrix
B, p is a positive constant equal to 4 = 1.0101... (see [14] on page 63 and
[16] on page 75), and yx is such that for any floating point number y we have

flly) = y(L+6),16] < x.

In fact, if 8 denotes the base and s the precision, then y is defined by
X = %51—5 in the case of rounding and y = #'~% in the case of chopping
(see [14] and [16]).

Let us also consider a strengthened form of the assumption (2.1) by
substituting B by H%B, in which the spectral radius of the matrix |B]
satisfies

1
1+71°

p(1B]) < (2.11)

According to (2.11) and Theorem 1, € can be chosen sufficiently small so
that

a=(1+7)A <L (2.12)

Let us associate to u € R™ the vectorial norm |u| with components
luil,i = 1,... ,m. By using (2.10), we can write (see [24])

[ Tu —Tu| < 7(|B||u| + |c|). (2.13)

We present now an important property related to approximate contraction;
see [19] and also [24] where the proof is given.

Lemma 1 Assume that € is sufficiently small so that (2.12) is valid. Then,
the perturbed fixed point mapping satisfies

|u* —Tv| < (14 7)|B|lv —u*|+7(I — |B|)_1|c|,Vv e R™,

and for each p € [1,00] we have

T
|u* — T”He,p < (T4 7)Acllu™ — U“e,p + ﬁHCHe,p,Vv € R™.
€



Thus, for each p € [1,00], the mapping T satisfies the approximate contrac-
tion property

|u* = Tvllep < aflu” —vllep + 0, Vv € R™, (2.14)
where 0 satisfies

-

p 1_—>\E||C||E,p' (2.15)

2.2 The particular case of successive approximations

Let us concentrate now on the classical successive approximation method
associated with the mapping T, which of course is included in the broad
class of asynchronous iterative methods. In this case we have

J(n)={L,..,m},Vn € N,
and
sj(n) =0,Yn € N,VYj € {1,..,m}.

Using (2.14) and results in [19] we develop now a stopping criterion.

Proposition 1 Assume that (2.12) holds for e sufficiently small. After n
iterations of the successive approzimation method associated with the per-
turbed fized point mapping T, we have the following estimate of the error for
each p € [1, 00

lw* = u*lep <

» S (@l =

.,
lew + T llellen)- (2.16)

Proof. It follows from Lemma 1 that (2.14) holds. Then, we have

* N < oMl — 0 l—a" o*
[|w u"[lep < a"fJu ullep + 1 p*
-«
Furthermore,
lu' = u0llep > llur — ulep — lu* — u'[lep,
and since
[ = ullep < allu* —u’llcp + 05
we have || L 0 | .
0 u —u|lep + 0p
=y < T2,



Thus,

*

R

* n
— <
“U’ u ||57p “1—q 1

and by using (2.15) the proof is complete. m
The a priori stopping criterion (see [19]) can be stated as follows: for
any p € [1,00] and 1 > 0, let us evaluate the real number 7n,, defined by

aflut — ullep l-o

l—« =1, b o = n”Ul - U[]He,p. (2'17)

Therefore,
Ty = (log(n) +log(1 — @) —log([lu" — u|lc,p)) -
log ()

Then, let us define the integer n,, by

ny = [ny] = min{n € N;n > n,}; (2.18)
by using (2.16), we can assert that

I = wllep <0+ = a;(l —llellep ¥r = ng. - (219)

Remark 3 i) If the range R(T') of T is a finite set (see [19], on page 84),
then, whatever the cardinality of R(T), there exists an integer n* such that
for each p € [1, 0]

o = u"lep < lellep, ¥r2 = .

(- )l - A)

However, it seems difficult to express a value of n* with respect to the data
of the problem.
i1) Consider the estimate (2.16) written at the first iteration; then

1 T
u* —ut <—(a. ut — P 4+ ——e )
o =g < 72— (@l =y + 1 Il

Analogously, at the n — th iteration we can write

1 T
uw —u" < — (a. u® — ! + —le ) ) 2.20
| lep < 77— (el lep + 77— )\EH lle.p (2.20)



Then, the corresponding stopping criterion reads as follows: for any p €
[1,00] and the given real number n > 0, the successive approzimation method
is stopped when

lu™ —u™ Y|, 11—«

P <y e Jut —u |, < i 2.21
- <n, de [[u" —u IIE,p_na (2.21)

By using (2.20), we can assert that, if the condition (2.21) is satisfied, then

||u* _ uTL

lep <+ (2.22)

,
m”cﬂe,p-
Practically, it can be noted that, if the term 19_—;a = mﬂcﬂe,p is large,
due to the fact that ¢ is very close to 1 and ||c||¢p is large, then, there is
no need to look for good accuracy. For example, if we consider the case of
ill conditioned problems, such as the discretized Laplacian problem or the

discretized convection diffusion problem, the spectral radius of the iteration
matriz can be close to one. In this case \¢ will be also very close to one.

2.3 An estimate of the forward error of the perturbed suc-
cessive approximation method

In the case where the range of T' is finite then, according to [19], whatever
the cardinality of R(T), there exists a finite integer n" such that for all

n>nl u" € Bg(u*; &Za)’ where the set Bg is a closed ball of center v* and

radius laf’a. R(T) is of course a finite set in the framework of finite precision
arithmetics associated with the use of floating point numbers. Then we are
able to give expressions of forward errors according to the work of N. J.
Higham (see definitions of chapter 1, section 1-10 in [16]). Concerning the
forward error, let (2.1) to (2.13) hold. For any p € [1,00] the condition
number of the matrix A = (I — B), with respect to the Perron-Frobenius

norm is defined as
biep(I — B) = I = Bllepll(I = B) ™ lep-

If € > 0 is small enough so that A\, < 1, then,

_ 1
I = Bllep 1+, (1= B) Hlep < 7
1— A
and the condition number k., (I — B) satisfies
1+ A
RealT = B) < A(\) = 15 (2.23)
- e



Proposition 2 Assume that (2.12) holds for € sufficiently small. Then,
the forward error at the m — th iteration of the successive approximation
method associated with the perturbed fized point mapping T satisfies, for
each p € [1,00], the following estimate,

* __ n(l,,1 _ ,,0
Ju u||e,p§R(AE)< P S u||e,p>‘ (224)

[[u*|ep l—a  1- 17_—/\/\5E llellep

Proof. u* being the fixed point of T, it follows from (2.3) that
u*| = |Bu” +c| 2 |¢] — [Bu*| > |e| — |B]|u"],

which implies that
(I +|B))|u*] > |c|-

Then, using the Perron-Frobenius norm, we obtain for each p € [1, 00|,
(L + A [ lep > Nellep,
which implies

1 I+ A

[Ju*

(2.25)

|e,p B ||C||e,p'

From Lemma 1, it follows that the approximate contraction property (2.14)
holds. Multiplying member by member each side of (2.16) and (2.25), we
can express the forward error as follows

||U* _ un

le.p < 1+X 1

a"|lut = +
||U*||e,p —1—q« HCHE,p( “ HE,P

.
1_—)\6’|C|e,p)-

We can also write

[w* — u"|le

T P < R(Ae) (

T 1— A a”“ul — u0||67p
l-a 11—« l|e ’

|€ap |€ap

which implies (2.24) by taking into account (2.12), and the proof is complete.
[ |

As a consequence, let us modify the stopping criterion defined by (2.17)
in the following way: for p € [1,00] and for any real number n > 0, let us
estimate the real number 71) defined by

1 aMlu! — ey

S M [

_ TAe ) llellep .
L= A" flul = ulep

=17, i.e. o = (1




Then nj is given by

*

iy

lep) = log(llu! —u’llcp))  (2.26)

(log () + log(7) + log({le

~—

- log(a

T Ne
1-Xe*

where y =1 —

Assuming that 1?\); is small enough, then

TAe
1— X

*

1
3~ Toagay o) +los(leley) ~

n

—log(Jlu’ — u’lles));

by using (2.26) and according to (2.18), let us define the integer nj by

n;, = [fy]; thus, by using (2.24), we obtain

lw* —u"le

L < (A ). ¥n>n 2.27
iy % <500 (1 775 ) vz (220

Remark 4 In a way similar to point ii) of Remark 3, the estimate (2.24)
can be given here also at the first iteration. Then, analogously, we obtain at
the n — th iteration

[l —ulep _ . T 1 afu® —u
0 < () . + = =
[ e —a 11— lelley 5

W

The corresponding stopping criterion, based on the forward error, can be
written as follows: for p € [1,00] and n > 0 given, the successive approzi-
mation method is stopped when

1 allu” —u" ey
% g
which implies
o A lelle,
" = e < (1= 750,

and the corresponding forward error satisfies

[w* = u™lep _ T
—— = < iA) | —— .
< A(A) 1_a+77

[[u*{le.p

10



2.4 Example

Consider an m x m matrix A and a vector ¢ € R™. Let us denote by a;; the
entries of the matrix A and by D the diagonal part of A. Let us assume that

A is an H-matrix, (2.28)

that is to say, according to [4], that the comparison matrix M(A) = |D| —
|L| — |U| is an M-matrix, where —I and —U represent the lower and the
upper parts of A.

We consider now the situation related to the Jacobi method; in this case,
our previous results can be used. Let us consider the matrix By = I —15_1121;
then, the assumption (2.28) is equivalent to

p(|By|) < 1, where |By| = |I — D"'A] . (2.29)
Let us consider now the problem
Au = ¢,

which is of course equivalent to the problem
u = Bju+ D™'¢= Bju + ¢, where c = D7 'e.
For this particular situation, let us denote A\ by A7, where A/ € [p(|By|), p(|Bs|)+
e]. Let us also denote by
1+
1= A

the condition number associated with the Jacobi matrix and consider the

R(N)

real number
a=X(1+r),

where 7 is given by (2.10). Taking into account the round off perturbation
error of the fixed point mapping associated with the Jacobi iteration, by
using the result of Proposition 2, we obtain for any p € [1, c0]

|e,p i T 1 oanul — ’LLO
S PP s v R

|lu* —u” |e,p

[e*]]e.p

Moreover, (2.20) gives
* n < 1 n n—1 T
Hu —u “e,p = m a||u —u “e,p + WHCHQP s

11



and for any p € [1, oo], thanks to (2.21) we obtain

11—«

n_ ,n—1
[ = 0 llep <nie [lu” —u" ey < -

l1—«

|e

So, when the previous inequality holds, according to (2.22), we obtain, for
any p € [1,00], the estimate

[u* = u[lep <+

Aoy )l

By using the same argument, we can obtain an analogous estimate for
the Gauss-Seidel method and more generally for any compatible splitting of
an H-matrix A.

2.5 An estimate of the backward error for the perturbed
successive approximation method

Let us assume that

i(\e) <1 (2.30)

l-«o
For each p € [1, 00], the backward error is defined as follows (see [16])

||(I B B)un B C“e,p — ||(I B B)(un B U’*)H&p (2 31)
1T = Bllepllu™lle,p 1T = Bllepllu]lep

For each p € [1, 0], we have the over-estimation

(I — B)u" _CHe,p ““*_UnHe,p,
IT = Bllepllu™llep = llullep

and because ||u*[lep — |[|[u* — u"||cp < ||u™|lep, we obtain

I(L = B)u" — cllep [ — u"flep
I -B lep — llu*

u" |e,p ’

|e,p |e,p — [lu* —u”

which can be written finally as follows

[(I = B)u" —cllep _ [v* —u"llep 1

I = Bllepllullep = lurllep 1 - luzutlles -
T Tle

Clearly, since the left hand side of the last inequality is nonnegative, we
must have

[ = u"lep < [[u]ep- (2.32)

12



Now, using (2.30), let us choose a real positive number 7, such that

x>

(Ae)( +n) <L

1l -«

Therefore for all n > nj‘]

(I = B)u" —cllep _ .. ( )
=< H()\e) n - T :
1= Bl ey [=a ") T=ROI (G + 1)

lep

3 The general case of asynchronous iterations

Let us now consider the general case of perturbed asynchronous iterations;
then, we have to replace the mapping T by its perturbation 7' in (2.4).
In this case, the asynchronous iteration produces a sequence of iterates,
denoted by {u"},cn, initialized by u°, and defined as follows for all n. > 0
and 7 € {1,..,m}

i :{ Tyl ™., i € T(n), 51)
’ ul, if i & J(n),
where the sequences J and S are defined respectively by (2.5), (2.6) and
the conditions (2.7) to (2.9) are satisfied. We point out that in the case
of parallel asynchronous iterative methods, whereby computations are per-
formed in parallel without any order nor synchronization, it is particularly
important and challenging to derive criteria so that certain bounds on the
error hold. These aspects are developped in the remaining of this section.
In this context, the notion of macro iteration plays a major part. Let us
consider the numbers

s(n) = gglg}?m(sg'(r))- (3.2)

Let us now define the sequence {ny}ren as follows

{ no =0, B (3.3)

ng+1 = min{n| Unkgs(t)gtgn J(t) ={1,..,m}}.

In several works concerning the convergence of asynchronous iterations, the
behavior of the successive iterates is based on the relations

u™ € EF Vn > ny, (3.4)

13



where {E*}cn is a sequence of nested Cartesian product sets (see [5] and
[19]), satisfying

Eft! c EF Vk e N. (3.5)

In the context of asynchronous iterations, we have to use the Perron-Frobenius
weighted maximum norm (corresponding to the case p = oo, see [12]). In
such a framework, when considering convergence properties of iterations
(2.4) associated with the fixed point mapping 7', (see [12] and [18]) the
nested sets are defined by

B = {u€ R™ | [lu* — ulleoo < o[l — 1’0}
In the case of asynchronous iterations (3.1) associated with the perturbed
mapping T, the nested sets are given as follows (see [19] and [24])

1—ak
—0n), (36)

Y = {u € B | lu* — ufleso < o fu* —

|e,oo +

where 05, = 175 ||c|le,co- Then, in the case of perturbed asynchronous iter-
ations, we have the following result

Proposition 3 Assume that (2.12) holds for € sufficiently small. Then, the
absolute error of the perturbed asynchronous iterations (3.1) satisfies for all
n>ng andk € N

1 T
0¥ — 4"l 00 < R (ak”ul — | e00 + — )\€||c||57oo> , (3.7)

and for all n > ni and k € N, the corresponding forward error satisfies the
following estimate

lo* —u™|leco _ . T 1 oz]““Hu1 — 0 |e.co
- N6 < &N ’ . .
[ P pes iy = (38)

le,o0 T I

Proof. It follows from Lemma 1 that (2.14 ) holds; then for all u € R™, we
have

lu = Tufleoo = llu— v+ u* = Tulleoo 2 lu = u*|leo0 — lu* = Tull¢00-

Thus,
[u = Tulleoo = (1 = a)llu — u*[le0 — 0%,

14



which implies
1
[l — u*|le,00 < m(“u — Tul|e,00 + 0%), Vu € EF.

Then by using (3.6)

1— k
I “ 0%, Yu € BF.
—

k
«
[l — u*[le,00 < E(HUO — T’ 00 + 05,) +

Therefore

“u - U*“e,oo < (akHuO - TUO“e,oo + 0;o)avu € E".

1l—«

This shows that (3.7) is true. Furthermore, since u* = (I — B)~!c and
lelless = 111 = BY(I = B)*elleo < I = Blleooll( = B)'elleoo, we
obtain
1 1 Il - B
<

le,00 le

leco 1= B) e

|€,OO < 1+||B|€,OO < 1+A€

|e,oo lc |e,oo lc

[Ju leoo

Consequently, by multiplying member by member each side of the previous
inequality and (3.7), we obtain for each k£ and all n > ny

||un _ u*“e,oo < 14+ X T akHu,O _ Tuo”e,oo
1— A Il

[e*fleee = 1—a le,00

Since #(Ae) = 155, @ = (14 7)Ac and

1— A 1— A 1

-« :1—>\6—7')\E:1_—173‘/{ ’

we finally obtain for each k and all n > ny

||u“—u*||e,oo<%m< o, 1 a’fnu[’—TuOue,oo)
— € )

[[u*][e,00 l-—a 11— lelle,co

and the proof is achieved. m

Consequently, by using the bound on the error (3.7), we can provide a
stopping criterion for general asynchronous iterations as follows: for a given
real number 7 > 0, let us estimate the real number l%,, defined by

o ! — u”]|e,0 k l-«a

=7, le " =n—F—.
’ lut = u0lle,0

— (3.9)

15



Then

1
= i (080 +10g(1 =) ~log(lu’ =) (310
By using (3.10) and according to (2.18), let us define the integer k; by
ky = [ky]; by using (3.7), we can assert that

= e < 7+ el nor V> . (3.11)

(- )l - A)

With respect to the forward error, let us modify the previous criterion of the
general asynchronous iterations defined by (3.9) to (3.11) in the following
way: for a real number n > 0, let us evaluate the real number £k} defined by

1 oPillu! — oo
-2 lellews

. k* TAe llclle,00
= Le. a'm = (1 — ’
,r” ( 1 _ )\E) ||u1 _ u0||€,oo )

so that E; is given by

B = o 10800) + 1og(3) + og(cl ) — og(u — ule)) (312

T e
1-Ae*

where y =1 —

: TAe
Assuming that =5

7=+ is small enough, then

_ 1 TA

kX~ 1 1 €.00) — <
3~ e (80 + 1oa(lelle ) = 75

~log(Ju' —u’

le,co))-

Using (3.12) and according to (2.18), let us define the integer k}; by k; =
[k3]; so that, using (3.8), we obtain

[ = u"fle,00

[Ju*

<&\ (n + L) Vn > . (3.13)

l1—«

|e,oo

Remark 5 The above stopping criterion for asynchronous iterations, is
based on the use of the macro iteration index k. Nevertheless, we point out
that the current value of k is not easy to obtain practically; note that pro-
cedures such as the one proposed in [10] can be implemented in order to
compute the current value of k concurently with the value of the iterate.

Concerning the backward error, we have

(I = B)u" = clleco _ [I(I = B)(u" — u")le,00
11— B |e,00““n |e,oo 11— B |e,00““n

|e,oo
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Therefore
(L = B)u™ — clleo _ [Ju* — u™le00

I = Blleoollu™leco =™ Nlu™lle00

Because ||u*]|¢,00 — ||t* — u"||¢,00 < ||t ]]e,00, We Obtain

[(L = B)u" = cfle.o [ = u"fle,00

11 = Blleollu™lleco = lutlle,oo = llu* — u[le,co”

which can be written finally as follows

(I = B)u"™ = clleoo _ [lu* = ufleco 1

11— B||6,00||Un||6,oo B ““*HE,OO 1-— > —uflesco *

TuTle, 0
Thus, if the condition (3.13) is satisfied and if furthermore

T

R(Ae)(

+1n) <1,
l—«o

then the corresponding backward error is bounded by

H(I_B)un _C“e,oo 1

<400 (125 +1) oo
||I - BHE,OOHU’”HE,OO -« 1- K(Ae)(m + 77)

(3.14)

,Vnznk%.

Remark 6 The previous estimate of the backward error is an extension of

the classical one (see [16]) to the parallel context.

Remark 7 The results presented in this section can be extended to the case
of periodic asynchronous iterations with multiple initializations (see [9], [7]
and [22]) that can also be regarded as successive approzimation methods on

a product space (see [21]).
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