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Many solutions have been defined for multidimensional database modelling. These
propositions consider the same aggregation function to determine the values of an
indicator according to different levels of granularity into the multidimensional space.
We provide a more flexible conceptual model that supports multiple differentiated
aggregations. Multiple aggregations allow associating different aggregation functions
to the same measure for each dimension and for each hierarchy. Differentiated
aggregation allows specific aggregations at each level (parameter). Our model is
based on a double graphical formalism, expressive enough to control the validity of
aggregation functions. We also study the consequences of this conceptual modelling
for building lattices of pre-computed aggregates in a relational online analytical
processing (R-OLAP) environment.

Keywords: multiple aggregations; multidimensional database; data warehouse
conceptual modelling; multidimensional lattices

1. Introduction

Online analytical processing (OLAP) analyses consist in monitoring indicators repre-

sented as points in a multidimensional space using different analysis axes. According to

hierarchies associated with analysis axes, aggregation functions are used for obtaining a

synthetic view of indicator values. Data are grouped according to the selected detail

level and aggregated by the functions. Drilling operations (roll-up and drill-down), often

used in OLAP analyses, make intensive use of these aggregation functions.

Multidimensional databases (MDB) provide an appropriate framework for decision-

maker analyses. However, in some cases, the default aggregation functions provided

may be maladjusted for decision-making. For example, the analysis of temperatures can

be performed uniformly with a same aggregation function. The annual maximum tem-

perature is obtained from the monthly maximum temperatures. The latter are obtained

from daily maximum temperatures. However, the analysis of temperatures by depart-

ments is usually based on the average temperatures by cities, while the analysis of tem-

peratures by region can be performed from an aggregation of the department

temperatures, which takes into consideration the department’s area (a weighted aver-

age). Thus, this analysis involves non-uniform different aggregation functions (such as

average or weighted average) according to a considered analysis level (department,
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region, etc.). Moreover, in classical analyses, aggregation at a granularity level can be

generally obtained from the aggregation of any lower level (the annual maximum tem-

perature is the maximum temperature either monthly or daily). But in case of tempera-

tures based on a spatial distribution, calculating temperatures by regions cannot be

obtained directly from the city temperatures (the minimum granularity available). To

get the temperature of a region, it is necessary to calculate the average temperature by

department and then to do a weighted average of these temperatures.

This article presents a new multidimensional model expressive enough to support sev-

eral cases of aggregation. We study the consequences of this conceptual model on the lat-

tice of pre-aggregates (Gray, Bosworth, Layman, & Pirahesh, 1996) at the logical level.

In previous work (EDA, 2012; Hassan, Ravat, Teste, Tournier, & Zurfluh, 2012),

we detailed our conceptual and logical models. Here, we:

! Extend the conceptual model with a new type of aggregation (hierarchical);

! Revisit the execution order mechanism in order to be more expressive;

! Implement our prototype to study the consequences on lattice reductions.

This paper is organised as follows: Section 2 presents related work. Section 3

recalls the classical conceptual multidimensional model then defines our extensions for

differentiated multiple aggregations, followed by the graphical formalism of these

extensions. Section 4 details the logical R-OLAP model along with its optimisation

relations and the impact of our extensions on this model. We validate our proposal in

Section 5 by presenting our prototype and detailing our experiments.

2. Related Work

There are typically two approaches for modelling multidimensional databases: the first

approach is based on the data cube metaphor according to which the MDB is represented

by cubes, and the second one is known as multidimensional modelling, where the MDB

is described by a star schema or constellation (Kimball, 1996). The cube metaphor is

based on an equivocal separation between structure elements and values (Torlone, 2003).

Modelling analysis axes is not very expressive, due to the difficulty of representing mul-

tiple hierarchical organisations of dimensions. It also collides with the hypercube repre-

sentation when the multidimensional space consists of more than three analysis axes.

Finally, it is limited when it comes to representing constellations of facts and shared

dimensions. Due to these limitations, our approach falls in the second category.

In the context of multidimensional modelling, several synthetic reviews (Chaudhuri &

Dayal, 1997; Lechtenbrger & Trujillo, 2009; Vassiliadis & Sellis, 1999) and comparative

surveys (Abelló, Samos, & Saltor, 2006; Boulil, Bimonte, & Pinet, 2011; Gyssens &

Lakshmanan, 1997; Lujàn-Mora, Trujillo, & Song, 2005; Oliveira, Rodrigues, Martins, &

Moura, 2011; Pedersen, Jensen, & Dyreson, 2011; Prat, Wattiau, & Akoka, 2010; Ravat,

Teste, Tournier, & Zurfluh, 2008; Vassiliadis & Skiadopoulos, 2000) are available in the

scientific literature. Some, such as Lechtenbrger and Trujillo (2009), deal with problems

related to complex structures such as non-strict, roll-up incomplete and drill-down incom-

plete hierarchies. We don’t address this kind of problem. We focus on the problem of

using several aggregation functions in an analysis.

Most of the existing contributions consider that a measure is associated with only

one aggregation function, used with all modelled aggregation levels. This function

calculates the same aggregation for all combinations of all modelled parameters.



Initial contributions (Gyssens & Lakshmanan, 1997; Vassiliadis & Skiadopoulos,

2000) allow manipulating several aggregation functions for each measure during OLAP

analyses, but do not include these aggregation functions in the model. In Pedersen et al.

(2011), the authors, in their conceptual model, can link several aggregation functions to

a single measure. However, in these three papers, the same function will be used with

all the dimensions and all aggregation levels. The model YAM2 (Yet Another

Multidimensional Model; Abelló et al., 2006) supports a different aggregation function

for each dimension. However, the model does not support function change either

between hierarchies or within the hierarchical levels. The aggregation model of Prat

et al. (2010) allows associating an aggregation function to each dimension or each hier-

archy or sub-hierarchy, but the model considers only standard functions (SUM, AVG, MIN,

MAX and COUNT). In Boulil et al. (2011), the authors overcome this limit. However,

these last two papers (Boulil et al., 2011; Prat et al., 2010) suffer from a limitation: the

authors do not consider the case where aggregation functions are non-commutative (for

example, average and weighted average).

Regarding commercial tools, Business Objects uses a single aggregation function for

each measure. By contrast, Microsoft Analysis Services offers the possibility of applying

a ‘custom rollup’ in a hierarchy in several ways (Harinath, Zare, Meenakshisundaram,

Carroll, & Guang-Yeu Lee, 2009):

! By using unary operators for solving the aggregation problem over a particular

type of hierarchy (parent-child attributes hierarchy). The parent-child hierarchies

are built from a single attribute with a reflexive join relationship on the attribute

itself (technically, a join on the dimension table itself );

! By using MDX (multidimensional expressions) scripts, either directly or by using

the attribute property ‘CustomRollupColumn’ which indicates a column where

MDX scripts are stored.

Here, aggregation functions are related neither to a specific dimension nor to an

aggregation level. They are related to a member (an instance) of an aggregation level

in a hierarchy (i.e. a line in the dimension table). Therefore, applying this ‘custom rol-

lup’ to a single aggregation level requires repeating it for all the instances of that level.

This causes storage and performance problems (Harinath et al., 2009). Moreover, bind-

ing ‘custom rollup’ with a specific instance can be problematic with data updates.

The MDX language allows the possibility for building data sets (that will be aggre-

gated by aggregation functions) using functions: PeriodsToDate, YTD (year-to-date),

QTD (quarter-to-date), MTD (month-to-date), Crossjoin, Cousin, Descendants, Children,

Hierarchize and Members. However, this possibility is not related to our problem: chang-

ing the aggregation function according to a considered analysis dimension or hierarchy or

level.

Our aim is to remove these limits by designing a conceptual multidimensional

model integrating differentiated multiple aggregates. By multiple we mean that the

same measure can be aggregated by several aggregation functions according to hierar-

chies or analysis axes, and by differentiated we mean that these aggregations may vary,

depending on the chosen aggregation level.

In addition, aggregation functions are classified:

! From an aggregation mechanism point of view, aggregation functions belong to

three different categories (Gray et al., 1996). The first corresponds to distributive



functions that calculate, at a level of granularity, aggregated values from the values

already aggregated at the level of granularity just below (e.g. the sum of an amount

per year can be calculated from the summed values of each semester). The second

corresponds to algebraic functions that calculate aggregated values from stored

intermediate results (e.g. the average of an amount per year can be calculated from

the sum of the amounts and the count of occurrences). Finally, the third corre-

sponds to holistic functions that cannot be calculated from intermediate results. In

this case, aggregated values must be calculated from the elementary values of the

lowest level of granularity, the base level (e.g. the RANK function).

! From a summarisability point of view, aggregation functions are classified into two

groups (Abelló et al., 2006): (1) ‘transitive’ which guarantees summarisability,

(2) ‘non-transitive’ which implies that aggregations must always be calculated

from the base level.

! From a measure (data) point of view, aggregation functions are of three types

(Pedersen et al., 2011): (1) applicable to additive data; (2) applicable to snapshot

data that can be used for average calculations; (3) applicable to constant data or

non-numerical data, i.e. data that can only be counted.

All these proposals as well as aggregation function classifications assume that the

measure aggregation can be calculated from the base level. Our goal is to consider

cases when the measure cannot be aggregated from the base level, using a concept

named aggregation constraints.

3. Conceptual data model

3.1. Classical concepts

Let us define N, F and D such as:

N = {n1, n2, ... } is a finite set of non-redundant names,

F = {F1,...,Fn} is a finite set of facts, n ≥ 1,

{D1,...,Dm} is a finite set of dimensions, m ≥ 2.

Definition 1. A fact, denoted Fi, ∀ i ∈[1...n], is defined by (nFi, MFi), where

nFi∈N is the name that identifies the fact,

MFi = {m1,...,mpi} is a set of measures or indicators.

We define a global measure set as M ¼
Sn

i¼1 M
Fi

Definition 2. A dimension, denoted Di, ∀ i ∈[1...m], is defined by (nDi, ADi, HDi),

where

nDi∈N is the name that identifies the dimension,

ADi = {a
Di

1 ,...,aDi
ri
} is the set of the attributes of the dimension,

HDi = {H
Di

1 ,...,HDi
si
}is a set of hierarchies

Hierarchies organise dimension attributes (parameters and weak attributes) from the

finest graduation level to the most general graduation level. Thus, a hierarchy defines

valid navigation paths on an analysis axis.



We define the attribute set A ¼
Sm

i¼1 A
Di and the hierarchy set H ¼

Sm
i¼1 H

Di

Definition 3. A hierarchy, denoted Hj (abusive notation of H
Di

j , ∀ i ∈[1..m],

∀j∈[1...si]) is defined by (nHj, PHj, ≺Hj, WeakHj), where

! nHj∈N is the name that identifies the hierarchy,

! PHj = {p
Hj

1 ,..., p
Hj

qj } is a set of attributes called parameters, PHj ⊆ ADi,

! ≺
Hj = {(pHjx, p

Hj
y) | p

Hj
x ∈ PHj ∧ pHjy ∈ PHj } is an antisymmetric and transitive

binary relation between parameters. Recall that the antisymmetry means that

(pHjk1 ≺
Hj pHjk2) ∧ (pHjk2 ≺

Hj pHjk1) ⇒ pHjk1 = pHjk2 while the transitivity means

that (pHjk1 ≺
Hj pHjk2) ∧ (pHjk2 ≺

Hj pHjk3) ⇒ pHjk1 ≺
Hj pHjk3.

! WeakHj : PHj → 2A
DinPHj

is an application that associates to each parameter a set

of attributes, called weak attributes (2N represents the power set of N).

We define parameter sets PDi ¼
SSi

j¼1 P
Hj and P ¼

Sm
i¼1 P

Di ¼
Sm

i¼1

SSi
j¼1 P

Hj

Lemma 1. For each dimension Di, a root parameter, denoted IdDi ∈ PDi, exists and

defined as follows: ∀j∈[1...si], 8p
Hj

k ∈PDi, IdDi ≠ p
Hj

k | IdDi ≺Hj p
Hj

k .

Lemma 2. For each dimension Di, an extremity parameter, denoted AllDi ∈ PDi, exists

and defined as follows: ∀j∈[1...si], ∀ p
Hj

k ∈PDi, AllDi ≠ p
Hj

k | p
Hj

k ≺
Hj AllDi.

We also define weak attribute sets WDi ¼
S

8j2½1...si';8k2½1...qj'
WeakHjðp

Hj

k Þ and

W ¼
Sm

i¼1 W
Di ¼

Sm
i¼1

S

8j2½1...si';8k2½1...qj'
WeakHjðp

Hj

k Þ

Lemma 3. For each dimension Di, all its attributes are exclusively either parameters or

weak attributes, PDi ∩ WDi = ∅ and PDi ∪ WDi = ADi.

Example 1. We illustrate our approach with an example of weather analysis. In this

example, analysts study maximum, minimum and average temperatures, and wind

speeds. To support these analyses, we establish an MDB with two facts defined as

follows:

! FTemperature = (“Temperature”, {Tem_Avg, Tem_Max, Tem_Min}).

! FWind = (“Wind”, {Speed}).

These analyses are performed according to geographic, temporal and meteorological

(wind direction) information. We consider that each country is composed of several

regions. Each region includes departments, which contain cities. We also consider that

every city has an administrative level, which can be a country capital, a department

prefecture or a regional capital. Near cities, there are weather stations that measure

temperatures and wind speeds several times a day.

The Geography dimension has two hierarchies that allow taking into account two

ways for observing temperatures: simple or scientific. The simple aggregation adopts

the same method used in weather forecasting: when presenting a country’s maximum

or minimum temperatures, it refers to the capital city’s temperatures. Similarly, when

temperatures in a region or a department are presented, these are the temperatures of a

significant city (regional capital or departmental prefecture). The scientific aggregation

takes into account the temperatures of all regions to calculate those of a country.

Similarly, when calculating temperatures in a region or in a department, we take into

account respectively all its departments or all its cities.



The Time dimension has only one hierarchy that organises hourly granulations at

which temperatures have been measured during the day. The Direction dimension has a

hierarchy that has only the root and the ALL levels. The Date dimension has several

hierarchies that organise the different granularities of the day.

In the following paragraph, we present the formal definitions of the dimensions:

! DTime = (“Time”, {aEvery_3_hours, aQuarter-day, aHalf-day, ALL
Time}, {HHTime}) with

* HHTime = (“HTime”, {aEvery_3_hours, aQuarter-day, aHalf-day, ALL
Time}, {(aEvery_3_-

hours, aQuarter-day), (aQuarter-day, aHalf-day), (aHalf-day, ALL
Time)}).

! DDirection = (“Direction”, {afrom, ALL
Direction}, {HHdir}) with

* HHdir = (“Hdir”, {afrom, ALL
Direction}, {(afrom, ALL

Direction)}).

! DDate = (“Date”, {aDay, aLibD, aMonth, aLibM, aWeek, aSeason, aYear, ALLDate},

{HHmonth, HHweek, HHseason}) with

* HHmonth = (“Hmonth”, {aDay, aWeek, aYear, ALLDate}, {(aDay, aWeek), (aWeek,

aYear), (aYear, ALL
Date)}, {(aDay, {aLibD})}),

* HHweek = (“Hweek”, {aDay, aMonth, aYear, ALLDate}, {(aDay, aMonth), (aMonth,

aYear), (aYear, ALL
Date)}, {(aDay, {aLibD}), (aMonth, {aLibM})}), and

* HHseason = (“Hseason”, {aDay, aSeason, aYear, ALL
Date}, {(aDay, aSeason), (aSeason,

aYear), (aYear, ALL
Date)}, {(aDay, {aLibD})}).

! DGeography = (“Geography”, {aCity, aAdministrative_Level, aDepartment, aD_Surface, aRegion,

aR_Surface, aCountry, aC_Surface, ALL
Geography}, {HHgeo_Scien, HHgeo_simp}) with

* HHgeo_Scien = (“Hgeo_Scien”, {aCity, aDepartment, aRegion, aCountry, ALL
Geography},

{(aCity, aDepartment), (aDepartment, aRegion), (aRegion, aCountry), (aCountry,
ALLGeography)}, {(aCity, {aAdministrative_Level}), (aDepartment, {aD_Surface}), (aRegion,

{aR_Surface}), (aCountry, {aC_Surface})}), and

* HHgeo_simp = (“Hgeo_simp”, {aCity, aDepartment, aRegion, aCountry, ALL
Geography},

{(aCity, aDepartment), (aDepartment, aRegion), (aRegion, aCountry), (aCountry,
ALLGeography)}, {(aCity, {aAdministrative_Level})}).

3.2. Extensions for differentiated multiple aggregations

In order to specify the differentiated multiple aggregations, the previous definitions are

extended as follows:

! The first extension concerns the aggregation process.

* General aggregation consists in aggregating the values of a measure using

any hierarchical level and always the same function.

* Multiple dimensional aggregation consists in aggregating measure values

using different aggregation functions depending on the used dimension.

* Multiple hierarchical aggregation consists in aggregating measure values

using different aggregation functions that depend on the used hierarchy.

* Differentiated aggregation consists in aggregating measure values by chang-

ing the aggregation function between two consecutive aggregation levels.

! The second extension concerns the execution order of the aggregation functions

between dimensions. It is possible to combine several different aggregation

functions over different dimensions during an analysis. These functions are often

non-commutative. Thus, an execution order has to be considered.

! The third extension concerns aggregation constraints. All aggregations are not

carried out uniformly using systematically all lower hierarchical levels



(contrarily to the aggregation process designed in classical multidimensional

models). As a consequence, we introduce a constraint mechanism on the aggre-

gation process to indicate the valid aggregation level that allows obtaining the

upper level.

Let ℱ = {f1, f2,...} be a finite set of aggregation functions.

Definition 4. A multidimensional schema, denoted S, is defined by (F, D, Star,

Aggregate), where:

! F = {F1,...,Fn} is the set of facts, if |F|=1 then the multidimensional schema is

called a star schema while if |F|>1 it is a constellation schema,

! D = {D1,...,Dm} is the set of dimensions,

! Star: F → 2D is a function that associates each fact to a set of dimensions

according to which it can be analyzed (note that 2D represents the powerset of

D).

! Aggregate: M ! 2N
,-F-2D-2H-2P-N.

associates each measure to a set of aggrega-

tion functions. Aggregate defines different types of aggregation functions sup-

ported by our model (general, multiple dimensional, multiple hierarchical,

differentiated):

* General aggregation: 2D, 2H and 2P are not used (2D = ∅, 2H = ∅ and

2P = ∅).

* Multiple dimensional aggregation: 2H and 2P are not used (2H = ∅ and

2P = ∅). Here, the function aggregates the measure over the entire considered

dimension.

* Multiple hierarchical aggregation: 2P is not used (2P = ∅). Here, the function

aggregates the measure over the entire considered hierarchy.

* Differentiated aggregation: the function aggregates the measure between a con-

sidered parameter and the parameter directly above it in the same hierarchy.

ℕ* binds to each aggregation function an execution order. The aggregation function

with the smallest order has the highest priority. If two aggregation functions are com-

mutative, then both functions will have the same order.

ℕ
- is used to constrain aggregations by indicating a specific level from which the

considered aggregation must be calculated. An unconstrained aggregation will be asso-

ciated with 0 while a constrained aggregation will be associated with a negative value

to force the calculation from a chosen level lower than the considered level.

Example 2. Following the example introduced in Example 1, decision makers analyse

wind speeds according to their Direction, the Geography and the Date, whereas they

analyse temperatures according to Time, Date and Geography. We formally define this

MDB as (F, D, Star, Aggregate) where

! F = {FTemperature, FWind}

! D = {DGeography, DDate, DTime, DDirection},

! Star: F → 2D |

Star(FTemperature) = {DGeography, DDate, DTime}

Star(FWind) = {DGeography, DDate, DDirection}

! Aggregate: M ! 2N
,-F-2D-2H-2P-N.

Aggregate(Speed) = {(1, AVG(Speed), {}, {}, {}, 0),



(1, SELECT_CENTRE(Administrative_Level, Speed), {Geography}, {}, {}, 0),

(1, AVG(Speed), {Geography}, {H_geo_simp}, {Country}, −4)1,

(1, AVG(Speed), {Geography}, {H_geo_scien}, {Country}, −4)}

! Aggregate(Tem_Avg) = {(2, AVG(Tem_Avg), {}, {}, {}, 0),

(2, SELECT_CENTRE(Administrative_Level, Tem_Avg), {Geography},

{H_geo_simp}, {}, 0),

(2, AVG(Tem_Avg), {Geography}, {H_geo_simp}, {Country}, −1),2

(1, AVG(Tem_Avg), {Geography}, {H_geo_scien}, {City}, 0),

(1, AVG_W(Tem_Avg, D_Surface), {Geography}, {H_geo_scien},

{Department}, −1),

(1, AVG_W(Tem_Avg, R_Surface), {Geography}, {H_geo_scien},

{Region}, −1),

(1, AVG_W(Tem_Avg, C_Surface), {Geography}, {H_geo_scien},

{Country}, −1)}

! Aggregate(Tem_Min) = {(1, MIN(Tem_Min), {}, {}, {}, 0),

(1, SELECT_Centre(Administrative_Level, Tem_Min), {Geography},

{H_geo_simp}, {}, 0),

(1, MIN(Tem_Min), {Geography}, {H_geo_simp}, {Country}, −4)}

Aggregate(Tem_Max) = {(1, MAX(Tem_Max), {}, {}, {}, 0),

(1, SELECT_CENTRE (Administrative_Level, Tem_Max), {Geography},

{H_geo_simp}, {}, 0),

(1, MAX(Tem_Max), {Geography}, {H_geo_simp}, {Country}, −4)}

The function Avg_W(X, Y) takes as input two numerical parameters. It returns the

average of values of X weighted by Y. In other words, the weighted average Avg_W

(X, Y) =

P

ðX-Y Þ
P

Y
. The function Select_Centre(I,M) takes as input two numerical param-

eters. It returns the value M which corresponds to the value of Max(I). If there are sev-

eral Max(I), then the function selects the average of the corresponding M values. For

example, if Select_Centre (Administrative_Level, Tem_Avg) is done at the Country

level, it returns the temperature of the capital city (the city with the highest administra-

tive level). Moreover, if applied at the department or region level, it returns respec-

tively the temperature of the department prefecture or that of the region’s capital city.

If we analyse for example the average temperatures using the Date and the Time

dimensions, the decisional system must use the general function (AVG) to aggregate the

measure values because there is no other specific function for these dimensions. If we

analyse using the simple hierarchy of the Geography dimension, the system uses the

multiple hierarchical function (SELECT_CENTRE). Except for the ALL level, the system

must calculate the aggregated values from the country level using the differentiated

function (AVG). However, using the scientific hierarchy, the system uses on each aggre-

gation level a different differentiated aggregation function. Aggregation is done using

the level directly below (AVG to aggregate the department level using the city level and

AVG_W for the other levels). Furthermore, if we analyse data using two or more dimen-

sions, then functions over the scientific hierarchy are a priority; that means that we

must apply it before the other functions.

Lemma 4. Aggregation functions ensure the full coverage of multidimensional

schemas. Thus, there does not exist any parameter (i.e. aggregation levels) for which

the aggregation function to be applied is unknown.



∀ i ∈ [1..n], ∀ mk ∈ MFi, ∃ f ∈ ℱ, ∃ x1 ∈ ℕ*, ∃ x2 ∈ ℕ
−,

jðx1; f ; fg; fg; fg; x2Þ 2 AggregateðmkÞ
8Dj 2 StarðFiÞjðx1; f ; fDjg; fg; fg; x2Þ 2 AggregateðmkÞ
8Hs 2 HDj jðx1; f ; fDjg; fHsg; fg; x2Þ 2 AggregateðmkÞ

8Pq 2 PHsnfAllDjgjðx1; f ; fDjg; fHsg; fPqg; x2Þ 2 AggregateðmkÞ

8

>

>

<

>

>

:

Less formally, the coverage of the schema is carried out in several ways:

! By using a general aggregation function,

! By using a multiple dimensional aggregation function for each dimension,

! By using a multiple hierarchical aggregation function for each hierarchy,

! By using a differentiated aggregation function for each aggregation level,

! By combining multiple dimensional and hierarchical aggregation functions with

differentiated ones. Each dimension or hierarchy having no multiple function

must have a differentiated function for each aggregation level (i.e. parameter).

3.3. Graphical formalisms

We introduce a graphical formalism to ease the understanding of the schema of the

MDB. We distinguish two levels of graphical formalism.

Structural schema. The structural schema allows globally visualising the multidimen-

sional schema of the MDB by hiding the aggregation mechanisms. This global view is

obtained from the Star function.

Figure 1. Structural schema of the multidimensional database (MDB).



Example 3. The MDB formally described in the previous examples is displayed using

our graphical formalism as in Figure 1. The proposed graphical formalism is based on

the works of Golfarelli et al. (1998) and Ravat, Teste, Tournier, and Zurfluh (2007;

Ravat et al., 2008). This MDB allows analysis of weather indicators (measures): aver-

age, minimal and maximal temperatures as well as wind speeds. These measures are

organised according to two facts: Wind and Temperature. Each fact is associated to three

dimensions among four available dimensions: Geography, Date, Time and Direction.

Aggregation schema. An aggregation schema is defined for each measure mi∈Fi using

the function Aggregate. Each schema details the aggregation mechanisms during an

analysis for a selected measure by displaying only structural elements directly linked to

Figure 2. Aggregation schemas.
Note: Adm_lev = Administrative_Level.



the measure: Fi and Star(Fi). This schema is an extension of our previous work

(Hassan et al., 2012).

Example 4. From the previously presented structural schema, it is possible to obtain

the aggregation schema of the different measures. Figure 2 details four aggregation

schemas that correspond to the four measures Speed, Tem_Avg, Tem_Min and Tem_Max

of our case study.

As shown in Figure 2, the hierarchies are presented in split version, unlike the

structural schema which is presented in compact version. The aggregation functions are

represented with lozenges. Each lozenge shows also the execution order and the possi-

ble aggregation constraint. The positions of the lozenges depend on the function type:

! A general function is represented with a lozenge on the side of the fact,

! A multiple dimensional function is represented on the edge linking the fact to the

dimension,

! A multiple hierarchical function is represented in the bottom of the hierarchy,

! A differentiated function is represented on the edge between two parameters.

The aggregation with a constraint assigned to –1 is calculated from the level

directly below; e.g. the average temperature for each country in the scientific hierarchy

is calculated from temperatures per regions, whereas the general average wind speed

(level ALL) is calculated from the wind speeds per city because the constraint is

assigned to –4.

In summary, we suggest to graphically represent an MDB from two levels: on the

one side, the structural schema provides a global view of the multidimensional struc-

tural elements (facts, dimensions and hierarchies) whereas the complexity due to aggre-

gations is hidden. On the other side, aggregation schemas provide a detailed view of

the aggregation mechanisms of one measure (general, multiple dimensional, multiple

hierarchical and differentiated aggregations, aggregation constraints and aggregation

order) while the complexity due to the constellation schema is minimised.

4. Logical model

4.1. Classical approach

Our current implementation uses an R-OLAP approach, consisting in using relational

databases for implementing multidimensional schemas (Kimball, 1996). This approach

has several advantages, such as reusing well-proven data management properties, and

the capacity of systems to handle large data volumes.

The conceptual multidimensional structures (facts and dimensions) are translated at

the logical level into relations (Kimball, 1996). The hierarchical structure of the dimen-

sion attributes (hierarchies) at the conceptual level is used to optimise the MDB. This

optimisation consists in pre-calculating aggregations required by decision makers that

perform OLAP analyses within the multidimensional space (Gray et al., 1996) using

queries. These pre-aggregations can be modelled using a pre-aggregation lattice

(Chaudhuri & Dayal, 1997) where each node represents a pre-aggregate and each edge

represents a path for calculating the aggregates. When the aggregation function used is

distributive or algebraic, an aggregate can be calculated from the level just below, while

in the case of a holistic aggregation function, the aggregate has to be calculated using

the all-the-way-down base relations (the lowest level).



Example 5. To illustrate the classical R-OLAP implementation, we use a simplified

MDB example (see Figure 1); our structural schema is detailed in Figure 3a.

Here, facts and dimensions are translated into relational tables. Hierarchies are used

to complement the schema with a set of relations that pre-compute aggregates, these

being possibly required by user queries. The lattice of pre-computed aggregates,

displayed in Figure 4, represents all these additional relations.

Each node represents a relation; e.g. the nodes Dep_3h_Day and ALLG_3h_Day

correspond to the following respective relations:

Dep_3h_Day(Department, Day, Each_3_Hours, Tem_Avg)

ALLG_3h_Day(Day, Each_3_Hours, Tem_Avg)

(b)(a)

Figure 3. Structural and aggregation schemas of simplified example.

Figure 4. Classical lattice.
Note: 3h = Every_3_hours; Dep = Department; Hd = Half-day; ALLG = ALLGeography; ALLT =
ALLTime; ALLD = ALLDate.



Within these relations, the attribute Tem_Avg represents the average temperatures

calculated by the aggregation function AVG. Note that this function is algebraic. In the

classical approach, contrarily to our proposition, a unique aggregation function is used

in the whole lattice for the measure Tem_Avg.

4.2. Extending the approach with multiple and differentiated aggregations

Extensions previously defined impact the “classical’ lattice.

Edge types. Unlike the classical approach, where only one aggregation function is con-

sidered, multiple and differentiated aggregation functions require the use of different

aggregations on each edge of the lattice.

Using different aggregation functions for the same measure according to parameters

requires differentiating lattice edges. This allows defining for each pair of nodes the

corresponding aggregation function.

Example 6. Figure 3b presents the aggregation schema of our simplified example.

Three aggregation functions are used to process average temperatures. For each depart-

ment, we use the classical average (AVG) function. However, the average temperature

over all departments takes into account the size of each department and uses a

weighted function (AVG_W). Thus, in the lattice, it is necessary to distinguish the edge

between City and Department parameters (that use AVG) from the edge between

Department and ALL (that use AVG_W). In Figure 5, simple lines correspond to the AVG

function and double lines are for AVG_W.

Pruning the lattice. In the conceptual model, there is an order between the functions.

This represents the order in which the aggregation functions have to be used among

the dimensions. This order generates invalid edges in the lattice; hence, it is possible to

prune them.

Figure 5. Lattice with typed edges.
Note: 3h = Every_3_hours; Dep = Department; Hd = Half-day; ALLG = ALLGeography;
ALLT = ALLTime; ALLD = ALLDate.



Example 7. In our example (see Figure 3 b), the weighted average function, AVG_W

(Tem_Avg, D_Surface) cannot be used on the Geography dimension after the use of

AVG(Tem_Avg) on the Date dimension. In other words, it is impossible to process the

season average temperature (node ALLG_ALLT_Season) from department average tem-

peratures for each season (node Dep_ALLT_Season). Thus, the edge between these

nodes is deleted. Figure 6 shows the lattice after deleting the invalid edges.

Modifying edges. We also represent the possibility of calculating aggregations from

another level than the one directly below the selected one. We use a constraint on the

Figure 6. Lattice with pruned edges.
Note: 3h = Every_3_hours; Dep = Department; Hd = Half-day; ALLG = ALLGeography; ALLT =
ALLTime; ALLD = ALLDate.

Figure 7. Lattice with constraint = –2.
Note: 3h = Every_3_hours; Dep = Department; Hd = Half-day; ALLG = ALLGeography;
ALLT = ALLTime; ALLD = ALLDate.



aggregation with a value of 0 (the aggregation can be calculated from any lower level)

or –1 (the aggregation can only be calculated from the level directly below the selected

one). Such constraints imply possible path changes in the lattice.

Example 8. In our example, the general average temperature (level ALL) is calculated

from department temperatures (constraint value = –1). Had we chosen the hypothesis of

calculating this temperature using city temperatures, the constraint would have been

assigned to –2 and the lattice would have been as in Figure 7.

Blocking transitivity. Constraints associated to aggregations also have an impact on

the corresponding constrained edges. This implies that a node can only be calculated

from another precise node. It is thus forbidden to calculate an upper node using transi-

tivity on the lower nodes, as would normally be possible. Thus, aggregation paths are

blocked upwards as soon as there is a constrained edge.

Example 9. The node City_Hd_Season can be calculated from the node directly below

City_3h_Season; by transitivity it could also be calculated from City_3h_Day. However,

the edge generated from the constraint on the function AVG_W(Tem_Avg, D_Surface)

associating the nodes Dep_3h_Day and ALLG_3h_Day blocks transitivity. Thus,

ALLG_3h_Day can be calculated from Dep_3h_Day (node directly below) but not from

another lower node (such as City_3h_Day).

Similarly, different execution orders between functions also block transitivity. This

implies non-transitive edges within the lattice (aggregations will only be calculated

from the node directly below).

Example 10. The node Dep_Hd_Season can be calculated by transitivity from

Dep_3h_Day but not from City_3h_Day. Indeed, the schema forces the calculus to start

with temperatures according the Avg() function over the Geography dimension (node

Figure 8. Controlled pre-aggregate lattice.
Note: 3h = Every_3_hours; Dep = Department; Hd = Half-day; ALLG = ALLGeography;
ALLT = ALLTime; ALLD = ALLDate.



Dep_3h_Day) in order to be able to process temperatures according to the Avg()

function over Date and Time dimensions (node Dep_Dh_Season).

Figure 8 shows the final controlled pre-aggregate lattice. Edges with crossed circles

are obtained either from aggregation constraints or from an execution order.

5. Validations

We implemented a prototype, described hereafter. We then detail the meta-schema on

which the prototype is based. Finally, validation experiments are detailed.

5.1. OLAP-Multi-Function Prototype

Our prototype OLAP-Multi-Function was implemented using Java 6 on top of the

Oracle 11 g Database Management System (DBMS). OLAP-Multi-Function is an exten-

sion of a previous prototype: Graphic OLAP (Ravat et al., 2007, 2008). Graphic OLAP

allows defining and manipulating an R-OLAP constellation as well as visualising and

querying the multidimensional data with the use of a graphical representation and a

multidimensional table (MT). Displaying the constellation is done using a meta-schema

that describes the multidimensional model (see Figure 9). The prototype consists of

three levels: interfaces, processing and storage.

Interfaces. The main functionality of OLAP-Multi-Function is visualising and facilitat-

ing the integration and the use of aggregation functions in the multidimensional model.

By using the meta-schema and a hyperbolic space, we present the aggregation schemas

(rear window in Figure 10). We use a graphic interface (top window in Figure 10)

allowing the definition of our four types of aggregation functions:

General: we determine only the function.

Multiple dimensional: we define the function and dimension.

Multiple hierarchical: we specify the function, dimension and hierarchy.

Differentiated: we determine the function, dimension, hierarchy and parameter.

Figure 9. Prototype architecture.



To define aggregation constraints and execution orders of the functions, we use

another graphic interface (Figure 11).

A command line editor allows entering textual orders in an OLAP-SQL language

(Ravat, Teste, & Zurfluh, 2002) The result of a query is a multidimensional table

containing the requested data.

Example 11. For analysing the average temperatures by season and by department (see

Figure 3 a), the OLAP-SQL command is as follows:

Figure 10. Hyperbolic view and aggregation functions definition. (French implementation of
our example).

Figure 11. Defining function inputs, execution order and aggregation constraints.



SELECT Tem_Avg

ON ROWS Geography USING Hgeo_Scien (Department)

ON COLUMNS Date USING Hseason (Season)

FROM Temperature;

Processing. Each OLAP-SQL command is lexically and syntactically analysed to be

validated. Validated commands are translated by the OLAP/SQL engine and send to the

RDBMS. Queries are calculated and results are shown by the graphic generator in a

multidimensional table.

Example 12. To perform the command of Example 11, the OLAP/SQL engine sends to

the database the following query:

SELECT Department, Season, AVG(Tem_Avg) AS Tem_Avg

FROM (SELECT Date.Season, Geography.Department, Time.Each_3_Hours,

Date.Day, AVG(Temperature.Tem_Avg) AS Tem_Avg

FROM Date, Geography, Temperature, Time

WHERE Temperature.Each_3_Hours = Time.Each_3_Hours

AND Temperature.City = Geography.City

AND Temperature.Day = Date.Day

GROUP BY Date.Season, Geography.Department,

Time.Each_3_Hours, Date.Day)

GROUP BY Season, Department

Figure 12. Meta-schema.



Storage. The storage level includes two databases. The first one contains facts and

dimension data implemented with the R-OLAP model. The second one contains the

meta-schema describing the structures of the multidimensional schema (facts, dimen-

sions and hierarchies) as well as the aggregation functions to build valid and coherent

SQL queries. Figure 12 shows this meta-schema using a Unified Modeling Language

(UML) class diagram. White classes describe the classical model (F, D and Star of

Definition 4) while shaded classes describe our extensions (Aggregate of Definition 4).

We can note that, according to this meta-schema, a fact is composed of measures

and can be analysed by several dimensions. Each dimension consists of parameters,

hierarchies and weak attributes. Parameters are ordered to represent aggregation levels

of hierarchies. A parameter can belong to several hierarchies. For each aggregation

level, there may exist a set of weak attributes.

In this meta-schema, note that a measure can be aggregated by several aggregation

functions (class Function) but the aggregation function is linked to only one measure.

The class Function has an attribute (constraint) that is used to force the aggregation,

indicating a lower aggregation level from which the considered aggregation must be

calculated. It has also an attribute (execution order) used to order the execution of non-

commutative aggregation functions. The function takes at least one input which is

either a measure, a parameter or a weak attribute.

We have four types of aggregation function that inherit from class Function:

! A General function is linked only with the measure. The measure has at most

one general aggregation function. This function is used to aggregate the measure

values in the multidimensional space where there is no other specific aggregation

function.

! A Multiple dimensional function is associated with only one dimension over

which this function is applied. The dimension can have several aggregation func-

tions, one for each different measure.

! A Multiple hierarchical function is linked with only one hierarchy over which

we apply this function. As for the previous function, the hierarchy can have sev-

eral aggregation functions, one for each different measure.

! A Differentiated function is associated with only one aggregation level for aggre-

gating the measure values between this level and the level directly above it in the

same hierarchy. Similarly, the aggregation level can have several aggregation

functions, one for each different measure.

5.2. Experiments

During our research, we carried out a series of experiments.

Experiment 1.

We studied relations between the functions’ priorities (execution order) and the

complexity of a lattice of a measure.

Collection. We use three multidimensional schemas with four, five and six dimen-

sions. We consider that each dimension has only one hierarchy with four granularity levels

(parameters) and functions used on a same dimension have the same execution order.

Protocol. Firstly, all dimensions have the same execution order. Then we change

the execution order of dimensions one by one until each dimension has its own execu-

tion order. We monitor the evolution of number of edges of the lattice.



Results. Figure 13 shows that the number of edges of the lattice decreases as the

number of different execution orders increase. Note that for all three cases this decrease

is linear. These results show that the execution order allows us to significantly reduce

the number of edges of the lattice.

Experiment 2.

We studied relations between the number of dimensions and the complexity of a

lattice of a measure.

Collection. We use two multidimensional schemas with dimensions of four parame-

ters. In the first, all dimensions have the same priority, i.e. a single value of execution

order for all functions. The second has different execution orders for each dimension.

Protocol. We observe the number of nodes, edges and non-transitive edges depend-

ing on the number of dimensions (from two to six)

Results. Figure 14 shows that if all dimensions have the same priority, the number

of edges (curve edges) increases much faster than the number of nodes (curve nodes).

If each dimension has a different value of execution order, the increase in the number

of non-transitive edges (curve non-transitive edges) is clearly less than the increase in

the total number of edges (curve optimised edges). The curve optimised edges is identi-

cal to the curve nodes (indicating that for each node there is only one edge). Thus, if

each dimension has a different execution order, the optimised lattice is no longer a

graph, but a tree (Figure 15); hence, to calculate each node, there is only one path from

the base level. This reduces the number of edges and makes some nodes critical as

many paths require the calculation of these nodes (for example, the nodes Dep_3h_Day

and ALLG_3h_Day in Figure 15).

Figure 14. Number of edges and nodes according to the number of dimensions.

Figure 13. Number of edges according to the number of execution orders.



Experiment 3.

We studied the impacts of non-transitive edges on the time of creating the lattice.

Collection. We work on two different versions of the lattice of Figure 15. The first

is identical to Figure 15 where 42% of the edges are non-transitive. The second differs

from the first as it does not contain any non-transitive edges. To avoid ambiguities

resulting from the difference between the functions, we use only one function (AVG)

on the entire lattice.

Protocol. We observe the time for creating the entire lattice in accordance with the

number of tuples of fact (from 2 to 8 million). We create the lattice in two ways:

(1) we create each node from the base node (fact); (2) we create each node from the

node directly below.

Results. Non-transitive edges do not change the time required to build the node

from the node directly below. Accordingly, time required to build the two versions of

the lattice is identical (curve Sequential in Figure 16). However, non-transitive edges

significantly increase the time required for building a node from the base node. This is

Figure 15. Controlled lattice of pre-computed aggregates (each dimension has a different order).
Note: 3h = Every_3_hours; Dep = Department; Hd = Half-day; ALLG = ALLGeography;
ALLT = ALLTime; ALLD = ALLDate.

Figure 16. Time of creating the lattices according to the number of tuples of fact.



shown clearly in Figure 16, where the additional time to build the lattice with 42% of

non-transitive edges (curve With blocking) is up to 75% of the time required to build

the lattice without non-transitive edges (curve without blocking). Here, in the case of a

large number of non-transitive edges, the need to use pre-aggregates is clearly shown.

6. Conclusion

In this paper, we propose a conceptual model for multidimensional data that allow

associating several aggregation functions to a measure taking into account the analysis

axes (multiple functions) and the granularity levels (differentiated functions). Our

model is expressive enough to control the validity of these functions. Aggregation

constraints allow us to define the level where aggregation must be calculated, and exe-

cution order defines the order between functions required to calculate the aggregations.

We also provide a two-level graphical formalism: the structural schema describes the

multidimensional structures while hiding the aggregation complexity, and aggregation

schemas describe the aggregation mechanisms for each measure. Moreover, at the

logical level, we show how to use our conceptual model to provide controlled

pre-aggregation lattices.

As future work, we are considering revisiting algorithms that compute

pre-aggregates by using our model and then by defining an adapted cost function in

order to evaluate the building and maintenance cost of an optimised MDB. We are also

studying the impact of OLAP algebraic operators on our model.

Notes

1. Values are aggregated directly from the base level.
2. Values are aggregated from the already aggregated values of the level directly below the

considered one.
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