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Montpellier Place Eugène Bataillon 34095 Montpellier, France

2Laboratoire Hubert Curien - UMR 5516-CNRS-Université Jean Monnet-
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We propose a holographic microscopy reconstruction method, which propagates the hologram, in
the object half space, in the vicinity of the object. The calibration yields reconstructions with an
undistorted reconstruction grid i.e. with orthogonal x, y and z axis and constant pixels pitch. The
method is validated with an USAF target imaged by a ×60 microscope objective, whose holograms
are recorded and reconstructed for different USAF locations along the longitudinal axis: -75 to +75
µm. Since the reconstruction numerical phase mask, the reference phase curvature and MO form an
afocal device, the reconstruction can be interpreted as occurring equivalently in the object or in image
half space.

OCIS codes: (090.1995) Holography: Digital holography, (110.0180) Imaging systems: Mi-
croscopy, (170.7050)
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1. Introduction

In Digital Holography, a camera records the inter-
ference pattern of the object field wavefront with a
known coherent reference beam. This digital holo-
gram is then used to reconstruct numerically the
image of the object by back propagating the mea-
sured object field wavefront from the hologram to
the object [1]. Many methods have been proposed
to reconstruct the holographic image in free space
[2], like single Fourier transform method [1], plane
wave expansion method with two Fourier trans-
forms [3], or adjustable magnification method [4].
Although digital holographic microscopy is exten-
sively used [5–10], very few papers describe the re-
construction procedure that must be used in holo-
graphic microscopy.
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Montfort et al. [11] proposed a holographic mi-
croscopy reconstruction algorithm, in which the
field is propagated in free space from the camera
to the image of the object (conjugate of the object
by the microscope objective MO) [11–15]. Various
methods can be used then to compensate for the
phase curvature of the lens, and for the tilt angle of
off-axis holography. Ferraro et al. [12] use a refer-
ence hologram as phase mask. Montfort et al., and
Colomb et al. [11, 13–15] use a calculated phase
mask that is defined by its Zernike polynomial ex-
pansion, where coefficients are adjusted to optimize
the contrast of the image. Residual phase distor-
tions can be then compensated by using a Zernike
phase mask located in the plane of the object. In
most cases, these methods have been used to mea-
sure the phase of “flat objects”, e.g. a biologic sam-
ple between slide and cover slide or a micro lens de-
vice [5–9, 16, 17]. These methods are well adapted
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Fig. 1. Typical holographic microscopy setup. USAF:
USAF target located in plane O’; MO: microscope objec-
tive that images the USAF target in plane O; BS1, BS2:
beam splitters; M: mirror. E and ER: signal and refer-
ence fields; Note that BS2 is angularly tilted in order to
perform off axis holography.

to such cases, owing to these great efforts to com-
pensate phase distortions and get a precise phase
reference.

To illustrate reconstruction, let us consider a typ-
ical holographic microscopy setup (see Fig. 1). The
object is located in plane O’ and is imaged by the
microscope objective MO in plane O. The camera
located in plane C records the hologram H that is
the interference pattern of the signal field E with
the reference field ER. The purpose is is to re-
construct the amplitude and the phase of the field
scattered by the object in the object plane O’, and
near this plane (if the object is thick or if one wants
to measure the wave field). Before making recon-
struction, one needs to calibrate the setup to get
the reconstruction parameters, which depend on
the optical elements in the image half space: lo-
cation of MO, BS2 and camera, BS2 angular tilt
and direction and curvature of the reference beam
(i.e. location of point R). Once the calibration of
the setup is made, the reconstruction must be valid
for any object. This means that provided that the
optical elements in the image half space remain un-
changed, this calibration will therefore remain valid
even if the object half space is modified (object and
object location, direction and curvature of the illu-
mination beam).

The reconstruction methods mentioned above
[11–15] made reconstruction in the image half
space. This means that the image of the object in
plane O is reconstructed by propagating the holo-
gram over a distance d from C to O. This propaga-
tion is calculated in free space, by using either the
one Fourier Transform (1-FFT) method [1], or the

angular spectrum (2-FFT) method [3]. However,
reconstruction in the image half space becomes dif-
ficult when varying the location of the object along
z′, or when imaging thick objects. Indeed, the loca-
tion of the image O and the reconstruction distance
d = |CO| strongly depend on the object location z′,
which complexifies the reconstruction process. If
the object is located near plane C’, which is imaged
by MO on the camera (i.e. on plane C), we get d ≃
0. The 2-FFT reconstruction method, which is well
suited to small d, should thus be preferred. Con-
versely, if the object is close to the MO focal plane,
we get d → ∞, and the 1-FFT method should be
used. This point tends to be problematic if we con-
sider reconstruction of both amplitude and phase
of the light scattered by a thick 3D sample, or if
one wants to measure the wave field. As a matter
of fact, it prevents experimental setup calibration
from remaining valid for the entire sample thick-
ness. Making the setup calibration independent of
the sample position according to MO is therefore
an issue to tackle.
Here, we propose to consider that the recorded

signal |E +ER|
2 represents the hologram H ′ of the

field scattered by the object in the plane of the
image of the camera (i.e. in plane C’). The re-
construction is therefore made in the object half
space, by propagating hologram H ′ over a distance
d′ = |C’O’| from plane C’ to plane O’. Since d′ is
always small (a few microns), the 2-FFT method[3]
is well adapted in all cases (d ≃ 0 or d ≃ ∞),
which notably simplifies reconstruction algorithms.
Moreover, if the calibration is done well, this recon-
struction can be made with orthogonal x′, y′ and
z′ axes, while keeping constant the pixel pitches in
the x′ and y′ axes.

2. Calculation of the hologram of the field in
plane C’

The hologram H recorded by the camera in plane
C is:

H = |E + ER|
2 (1)

= |E|2 + |ER|
2 + EE∗

R + E∗ER

where E and ER are the signal and reference fields
in plane C. Because of the microscope objective
MO, the curvature of the reference field and the
off axis angular tilt, the phase of H in plane C is
not equal to the phase of the signal field in the cam-
era conjugate plane C’, from which the object half
space reconstruction will be made. Moreover, the
+1 grating order term EE∗

R that is proportional to
the field E must be selectively filtered. To perform
the reconstruction from the field E in plane C’, it is
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thus necessary to manipulate the data to compen-
sate for these phase effects and to select the EE∗

R
term that is proportional to E [18]. This manipula-
tion of the data must be made with few calibration
parameters which characterize the optical elements
of the image half space part of the setup, and which
do not depend on the the object i.e. on the optical
elements of the object half space.

2.A. Phase curvature in the camera plane C

Let us analyze first the phase curvature of EE∗

R
in plane C. For that purpose, we will consider a
”gedanken experiment” without object in which
the illumination beam is plane wave beam oriented
along the optical axis z′. The field E is thus flat in
plane C’.
This plane wave is focused by MO at point P in

the MO pupil plane. The signal complex field E

exhibit thus a phase factor equal to ejk(x
2+y2)/2r,

where k = 2π/λ is the modulus of the wavevec-
tor in air, and where r is the radius of curvature
of the wavefront that is equal to the MO pupil-
to-camera distance r = |PC|. Similarly, the phase
of the complex conjugate of the reference field E∗

R

is e−jk(x2+y2)/2r′ where r′ = |RC| is the radius
of curvature of ER (with r′ = ∞ if the reference
beam is a plane wave). This means that the phase
of the +1 grating order term EE∗

R in plane C is

e+jk(x2+y2)/2r′′ with 1/r′′ = 1/r − 1/r′.

2.B. Phase curvature correction by reconstruc-
tion of the MO pupil

Let us reconstruct the image H̃1(kx, ky) of the MO
pupil by using the 1-FFT method [1]. We have thus:

H̃1(kx, ky) = FFT
[

e−jk(x2+y2)/2r′′ H(x, y)
]

(2)

where e−jk(x2+y2)/2r′′ is equal to e−jk(x2+y2)/2r ×

e+jk(x2+y2)/2r′ . The first phase factor e−jk(x2+y2)/2r

is the 1-FFT propagation kernel over a distance r,

while the second factor e+jk(x2+y2)/2r′ compensates
the curvature of E∗

R. Since the back focal point P is
located within the MO pupil plane, the propagation
distance r is equal to |PC|. This means that the

reconstruction phase factor e−jk(x2+y2)/2r′′ exactly

compensates the phase curvature e+jk(x2+y2)/2r′′ of
EE∗

R calculated in section 2.A .
To determine r′′, we propose to reconstruct the

MO pupil images |H̃1|
2 by adjusting r′′ so as to

obtain the sharpest image of the pupil edge. This
operation can be done with any objets that scatters
light, in particular with a ground glass located in
front of MO. It can also be made with the object

Fig. 2. Reconstructed USAF target hologram in the
pupil plane H̃1(kx, ky) (1024×1024 pixels). (c) Zoom of
the +1 grating order of (512 × 512 pixels). (d) Fourier
space filtered hologram H̃2(kx, ky) of the +1 grating or-
der made with a circular crop of the MO pupil image
(radius rk=162 pixels) followed by a translation of the
selected zone in the center of the Fourier space. (d)
Spatially filtered hologram H ′

2(x, y) with proper phase
correction. Arbitrary scale brightness is |H...|

2, color is
phase i.e. argH....

of interest i.e. without any previous calibration of
the setup.
We have validated our reconstruction with a

USAF target located near plane C’. We have re-
constructed the pupil image |H̃1(kx, ky)|

2 obtained
with the target in plane C’ and displayed it on Fig.2
(a). 3 bright zones corresponding to the +1, -1 and
zero grating orders are visible. These zones are sep-
arated because of the off-axis tilt angle. Here, the
reconstruction parameter r′′ has been properly ad-
justed, and the pupil edge of the +1 grating order
zone is sharp as seen on the zoom displayed on Fig.2
(b).

2.C. Spatial filtering and off-axis phase correc-
tion

To perform the spatial filtering that selects EE∗

R
and to compensate the off axis angular tilt, we
propose to crop the data within the circular MO
pupil image (which is sharp), and to translate the
cropped zone to the center of the calculation grid.
Cropping the data provides spatial filtering, and
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the translation corresponds to the off-axis compen-
sation.
The filtered and phase-corrected hologram of the

pupil in the Fourier space H̃2 is thus:

H̃2(kxy) = H̃1(kxy + dkxy) if |kxy| < rk

= 0 if not (3)

where kxy = (kx, ky), dkxy is the translation that
moves the +1 pupil image in the center of the
Fourier space, and rk the pupil radius. The cor-
responding real space hologram H2 is:

H2(x, y) = FFT−1
[

H̃2(kx, ky)
]

(4)

where FFT−1 is the reverse 2D Fourier transform.
We have displayed |H2(x, y)|

2 on Fig. 2(d) with
phase displayed with color. Since the USAF target
is located in plane C’, the image of the target is
sharp. Moreover the phase, which is displayed in
color, is the same in every point of the image, like
the phase of the field E in plane C’. This means
that the phase has been properly corrected.

2.D. Object/image half space holograms

In the previous calculation, the holograms H, H̃1,
H̃2 ... are matrices of data, that represent the field
either in the image or the object half space.
To avoid any confusion, we will consider that H,

H̃1, H̃2 ... are the holograms, and x, y, kx, ky the
coordinates in the image half space. The pitch is
∆x for x and y, and ∆k = 2π/(N∆x) for kx and
ky (where ∆x is the camera pixel size, and N the
size of the calculation grid) .

On the other hand, H ′, H̃ ′

1, H̃
′

2 ... are the holo-
grams, and x′, y′, k′x and k′y the coordinates in the

object half space. The pitch is ∆′x = ∆′x/G for
x′ and y′, and ∆′k = G∆′k for k′x and k′y (where
G ≫ 1 is the MO transverse gain from plane C’ to
plane C). We have thus:

H ′

...(x
′, y′) = H...(x, y) (5)

H̃ ′

...(k
′

x, k
′

y) = H̃...(kx, ky)

with x′ = x/G, y′ = y/G , k′x = kxG and k′y = kyG.

3. Reconstruction of the field in any plane

3.A. Reconstruction in the object half space

We have calculated the phase-corrected hologram
H ′

2 in plane C’ in section 2 by Eq.4 and Eq.5. The
image H ′

3(x
′, y′, z′) of the object in any z′ plane is

reconstructed by using the 2-FFT reconstruction
method [3] from H ′

2(x
′, y′). Since H̃ ′

2 = FFT(H ′

2),

we have:

H ′

3(x
′, y′, z′) =

FFT−1
[

ej(k
′2
x +k′2y )z′/2kmH̃ ′

2(k
′

x, k
′

y)
]

(6)

where ej(k
′2
x
+k′2

y
)z′/2km is the 2-FFT propagation

kernel over distance z′. The origin z′ = 0 corre-
sponds thus to plane C’. Note that since propaga-
tion from C’ to O’ takes place in a medium (air,
water or oil) of refractive index nm, k has been re-
placed by km = nmk in the propagation kernel.

3.B. Reconstruction in the image half space

Equation (5) makes the correspondance of the holo-
grams H... and H ′

... in planes C and C’. It can be
generalized for any plane by:

H ′

...(x
′, y′, z′) = H...(x, y, z) (7)

H̃ ′

...(k
′

x, k
′

y, z
′) = H̃...(kx, ky, z)

where z is a formal coordinate that is not equal
to d = |CO|. We can now calculate H3(x, y, z) by
using a relation formally equivalent to Eq. (6). We
get:

H3(x, y, z) = FFT−1
(

ej(k
2
x
+k2

y
)z/2kH̃2(kx, ky)

)

(8)

Since propagation in the image half space is made
in air, we have chosen in Eq. (8) a propagation
kernel that involves k (instead of km). Equations
(6) and (8) yield exactly the same calculations on
the discrete data of the calculation grid if we have

z = z′G2/nm (9)

This equation defines the formal coordinate z.

3.C. Afocal device making the reconstructions
in the object and image half space equivalent

The reconstruction made in the image half space
by Eq. 8 and Eq. 9 can be reinterpreted quite
simply. The phase curvature of the reference beam

(phase factor ejk(x
2+y2)/2r′) combined with the nu-

merical phase factor ejk(x
2+y2)/2r′′ used to image

the MO pupil (and to correct the phase in plane
C’) is equivalent to a Numerical Lens (NL) of focal

length r (phase factor ejk(x
2+y2)/2r) located in the

camera plane C (see Fig. 3). Since the MO and NL
have a common focal point P, MO and NL form
an afocal optical device, with an overall transverse
gain G and a longitudinal gain G2/nm. Performing
the reconstruction either in the object or image half
space is thus totally equivalent.
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Fig. 3. Reinterpretation of the holographic microscopy
setup. USAF: USAF target located in plane O’; MO:
microscope objective; NL: numerical lens of focal r lo-
cated in the camera plane C; MO + NL: afocal optical
device that images the USAF target in plane O”.

The reconstruction made in the image half space
with the afocal optical device is close to the recon-
struction called ”Image Plane Approach” by Mon-
fort et al. [18]. Nevertheless, these authors consider
a varying magnification factor, which involves ex-
plicitly the size of the image of the object in plane
O, and which depends strongly on the location of
the object. But the varying magnification and the
varying object magnification (plane O’ to image
plane O: see Fig.1) compensate, yielding a constant
magnification (object in plane O’ to reconstructed
image in plane O”: see Fig.3), which is simply equal
to G.

4. Experimental validation

To validate our reconstruction method, we have
made a test experiment with a λ =785 nm laser
(Sanyo DL-7140-201) by imaging an USAF target
with an oil immersion (nm = 1.518) Microscope Ob-
jective MO (NA=1.4 ×60) and a holographic setup
built by modifying a commercial upright micro-
scope. A detailed description of the setup is given
in reference [20]. The holograms are recorded for
m = 0...59 different positions z′m of the target along
z′, the positions being adjusted manually with steps
of ∆z′ = 2.5 µm. The sharpest image (nearly fo-
cused without any correction) corresponds to loca-
tion m = 29. The holograms are recorded with
a PCO Pixelfly camera (1280 × 1024 square pixels
of size ∆x = 6.7 µm), and the measured data are
cropped into a 1024 × 1024 calculation grid.
The hologram H ′

3 of the USAF target at position
m = 29 is displayed on Fig. 4 (a). Since the USAF
target is nearly focused without any correction, re-
construction is made with z′ = 0. Moreover, since

Fig. 4. (a) Reconstructed hologram H ′

3
of the USAF

target for positions m = 29 made with z′ = 0 (a), and
m = 0 with z′ ≃ −72.5µm (b). Arbitrary scale bright-
ness codes intensity i.e. |H ′

3
|2, color codes phase i.e.

argH ′

3. The white dashed line squares are visual guides,
with exactly the same size, but slightly shifted positions.

Fig. 5. Reconstruction distances z′m and zm as function
of the USAF target location m (red points) and best
linear fit (black solid line).

the phase correction has been made, the phase of
the illumination beam is flat i.e. the color is ap-
proximately the same within the whole USAF tar-
get. We have then used the m = 29 USAF image,
which is sharp, to calibrate G. We got G = 74.61.
We have then reconstructed the USAF target for

every position, from m = 0 to m = 59. Figure 4
(b) shows for example the USAF image for position
m = 0. As expected, the size and location of the
USAF image remains the same, showing that the x
and y scales are conserved. This can be verified by
comparing Fig. 4 (a) and (b). For positions m = 0
(corresponding to z′ ≃ −72.5 µm) and m = 29
(z′ ≃ 0), the size of the USAF target is exactly
preserved (see white dashed rectangle) while the
position is slightly shifted.
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For each position m, we have reconstructed the
hologram H ′

3(x
′, y′, z′m) by adjusting z′m (or zm) so

as to obtain the sharpest image. As the USAF
target is an “amplitude object”, we have adjusted
z′m by using the ”focus plane detection criteria” of
Dubois et al. [21]. Since the position and size of
the image remain the same, this automatic adjust-
ment of z′m works well. Figure 5 shows the recon-
struction distances z′m obtained by this method.
As can be seen, z′m varies linearly with m with
a slope dz′m/dm = −2.56 µm which corresponds
to the mechanical displacement, and with an off-
set m = 28.97 that is nearly equal to the location
m = 29, where the USAF target is on focus on the
camera.

5. Remark on the calibration of the setup

In section 2.A, we have calibrated the setup i.e.
determined r′′ and dkxy by reconstructing the im-
age of the pupil with an object that scatters enough
light. r′′ is adjusted to get the sharpest pupil edges,
and dkxy by translating the pupil in the center of
the Fourier space.
In section 4, we have seen that the the size and

location (in x and y directions) of the reconstructed
image of the USAF target do not change by mov-
ing the target along z′. This property provides a
second calibration method. One can move an ob-
ject along the z′ direction and consider two differ-
ent object positions, for example z′ = −72.5µm,
and z′ = 0. One can then record the holograms
and reconstruct the images of the object for these
positions, as done in Fig.4 (a) and (b). One can
then adjust r′′ in order to get the same size for the
two reconstructed images, and adjust and dkxy to
get the same positions. In the example of Fig.4, the
adjustment of r′′ is nearly perfect (since the USAF
sizes are exactly the same on (a) and (b) ), while
the adjustment of dkxy could be improved (since
the positions are slightly shifted). Our experience
is that second calibration method (size and posi-
tion of the two reconstructed images with different
z′) yields a more precise calibration than the first
method (pupil sharpness and pupil translation).
The two proposed calibration methods do not re-

quire a flat phase illumination like the methods
based on the phase flatness of the reconstructed
image [15]. Note also that the reconstruction di-
rection z′ depends on the calibration method which
is used to get dkxy. If the phase flatness is used, the
z′ axis is the direction of the illumination beam. If
the translation of pupil image is used (first calibra-
tion method), z′ is parallel to the line that joins the
pupil center to the camera center. If the position of

reconstructed image of the object (USAF target)
is used (second calibration method), z′ is parallel
with the z motion. This last method is the best
method when a modified commercial microscope is
used to make holography, since the z′ axis coincides
with the microscope z axis.

6. Remark on reconstruction with a tube lens

All the results presented here remain valid when
a tube lens is placed between the pupil P and the
beam splitter BS2. In the ”gedanken experiment”
with a plane wave illumination beam, the tube lens
changes the curvature of the field E in plane C ,
i.e. r. The calibration parameter r′′, and the NL
focal length r are thus both changed. By using the
second calibration method, r′′ is adjusted so that
the size of the reconstructed image object is not
dependent on the object position z′. This means
that the ensemble of lenses MO+tube lens+ NL
still constitutes an afocal device, with transverse
and longitudinal magnifications G and G2/nm.

7. Conclusion

We have proposed a holographic microscopy recon-
struction method which propagates the hologram in
the object half space, in the vicinity of the object.
Since the reconstruction phase, the reference phase
curvature and MO form an afocal device, the re-
construction can be interpreted as occurring equiv-
alently in the object or in image half space.
The reconstruction method has been validated

with an USAF target which has been imaged with a
high numerical aperture microscope objective MO
for different locations of the target along the lon-
gitudinal axis z′. We have verified that the recon-
struction is made with orthogonal axes x′, y′ and
z′, and that the pixel pitches x′, y′ and z′ do not
depend on the USAF target location. The experi-
mental test has been made with a plane illumina-
tion beam oriented along the z axis, and we have
verified that the reconstructed phase (colors on Fig.
4 (a) and (b) ) varies slowly with x, y. The proposed
reconstruction is compatible with spherical or dark
field illumination [22–25].
Two calibration methods, which do not require

plane wave illumination have been proposed. The
first method is based on the reconstruction of the
MO pupil, with an object that scatters light. This
method can be used with holograms of interest
which have recorded without proper calibration of
the setup, and has been used in that case [23]. The
second method, which is more precise, requires to
translate an objet along the z′ axis and to record
two holograms for two different z′.
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[1] U. Schnars and W. Jüptner, “Direct recording of
holograms by a CCD target and numerical recon-
struction,” Appl. Opt. 33, 179–181 (1994).

[2] P. Picart and J. Leval, “General theoretical formu-
lation of image formation in digital Fresnel hologra-
phy,” J. Opt. Soc. Am. A 25, 1744–1761 (2008).

[3] H. Yun, S. Jeong, J. Kang, and C. Hong, “3-
Dimensional Micro-structure Inspection by Phase-
Shifting Digital Holography,” Key Eng. Mater. 270,
756–761 (2004).

[4] F. Zhang, I. Yamaguchi, and L. Yaroslavsky, “Algo-
rithm for reconstruction of digital holograms with
adjustable magnification,” Opt. Lett. 29, 1668–
1670 (2004).

[5] E. Cuche, F. Belivacqua, and C. Depeursinge,
“Digital holography for quantitative phase-contrast
imaging,” Opt. Lett. 24, 291–293 (1999).

[6] P. Ferraro, G. Coppola, S. De Nicola, A. Finizio,
and G. Pierattini, “Digital holographic microscope
with automatic focus tracking by detecting sample
displacement in real time,” Opt. Lett. 28, 1257–
1259 (2003).

[7] F. Charrière, A. Marian, F. Montfort, J. Kuehn,
T. Colomb, E. Cuche, P. Marquet, and C. De-
peursinge, “Cell refractive index tomography by
digital holographic microscopy,” Opt. Lett. 31, 178–
180 (2006).

[8] J. Garcia-Sucerquia, W. Xu, S. Jericho, P. Klages,
M. Jericho, and H. Kreuzer, “Digital in-line holo-
graphic microscopy,” Appl. Opt. 45, 836–850
(2006).

[9] S. Lee, Y. Roichman, G. Yi, S. Kim, S. Yang, A. van
Blaaderen, P. van Oostrum, and D. Grier, “Charac-
terizing and tracking single colloidal particles with
video holographic microscopy,” Opt. Express 15,
18275–18282 (2007).

[10] J. Sheng, E. Malkiel, and J. Katz, “Digital holo-
graphic microscope for measuring three-dimensional
particle distributions and motions,” Appl. Opt. 45,
3893–3901 (2006).

[11] F. Montfort, F. Charrière, T. Colomb, E. Cuche,
P. Marquet, and C. Depeursinge, “Purely numerical
compensation for microscope objective phase curva-
ture in digital holographic microscopy: influence of
digital phase mask position,” J. Opt. Soc. Am. A
23, 2944–2953 (2006).

[12] P. Ferraro, S. De Nicola, A. Finizio, G. Coppola,
S. Grilli, C. Magro, and G. Pierattini, “Compen-

sation of the inherent wave front curvature in dig-
ital holographic coherent microscopy for quantita-
tive phase-contrast imaging,” Appl. Opt. 42, 1938–
1946 (2003).

[13] T. Colomb, F. Montfort, J. Kühn, N. Aspert,
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pert, F. Montfort, P. Marquet, and C. Depeursinge,
“Automatic procedure for aberration compensation
in digital holographic microscopy and applications
to specimen shape compensation,” Appl. Opt. 45,
851–863 (2006).

[16] T. Zhang and I. Yamaguchi, “Three-dimensional
microscopy with phase-shifting digital holography,”
Opt. Lett. 23, 1221–1223 (1998).

[17] E. Cuche, P. Marquet, and C. Depeursinge, “Simul-
taneous amplitude-contrast and quantitative phase-
contrast microscopy by numerical reconstruction of
Fresnel off-axis holograms,” Appl. Opt. 38, 6994–
7001 (1999).

[18] F. Montfort, F. Charrière, T. Colomb, E. Cuche,
P. Marquet, and C. Depeursinge, “Purely numerical
compensation for microscope objective phase curva-
ture in digital holographic microscopy: influence of
digital phase mask position,” J. Opt. Soc. Am. A
23, 2944–2953 (2006).

[19] E. Cuche, P. Marquet, and C. Depeursinge, “Spatial
filtering for zero-order and twin-image elimination
in digital off-axis holography,” Appl. Opt. 39, 4070–
4075 (2000).

[20] N. Verrier, D. Alexandre, and M. Gross, “Laser
doppler holographic microscopy in transmission:
application to fish embryo imaging,” Opt. Express
22, 9368–9379 (2014).

[21] F. Dubois, C. Schockaert, N. Callens, and
C. Yourassowsky, “Focus plane detection criteria in
digital holography microscopy by amplitude analy-
sis,” Opt. Express 14, 5895–5908 (2006).

[22] M. Atlan, M. Gross, P. Desbiolles, É. Absil,
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