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Abstract

In this paper nonparametric wavelet estimators of the quantile density function are proposed.

Consistency of the wavelet estimators is established under the Lp risk. A simulation study illustrates

the good performance of our estimators.
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1. Introduction

Motivation. Quantile density function, the derivative of the quantile function, comes up in

the study of lifetime and survival data. The expression for the limiting variance of empirical and

kernel type estimators of the quantile function involves the quantile density function. The hazard

quantile function too can be written in terms of the quantile density function. Nonparametric5

estimators of the quantile density function have been studied by [33], [23] and [45]. Most of these

estimators underperform at the tails, see, for example, [45]. Hence there is a need to look at

alternate estimators.

On the quantile function. Quantiles are often used for statistical modeling and analysis
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of data. Measures based on quantiles are less influenced by outliers. Hence they are particularly10

useful in the study of lifetime data and also for studying heavy tailed distributions. Sometimes

the distribution function of the random variable of interest can not be expressed in a closed form.

However, the quantile function can be written in an explicit form, for example, Generalized Lambda

distribution (GLD) and Skew logistic distribution (see [20] and [24]).

Researchers have used quantiles for preliminary data analysis. Statistical analysis of data based15

on quantile functions has been carried out in reliability and survival analysis and other branches

of applied statistics (see, for example, [37], [44], [48], [30], [31], [39] and [41]). [46, 47] have devel-

oped multiple comparison procedures for quantile functions. Nonparametric test procedures under

competing risks have been developed by [34], [22] and [40].

Let X be a continuous random variable with cumulative distribution function F (x), density20

function f(x) and hazard function r(x). The quantile function of X is defined as

Q(x) = F−1(x) = inf{y ∈ R; F (y) ≥ x}, x ∈ [0, 1]. (1.1)

It satisfies

F (Q(x)) = x. (1.2)

[32] and [23] defined the quantile density function corresponding to quantile function Q(x) by

g(x) = Q′(x) =
1

f(Q(x))
, x ∈ [0, 1]. (1.3)

Note that the sum of two quantile density functions is again a quantile density function. This idea

is useful in modeling data. [31] defined the hazard quantile function R(x) as follows :

R(x) = r(Q(x)) =
f(Q(x))

1− F (Q(x))
=

1

(1− x)g(x)
, x ∈ (0, 1).

Hence a nonparametric estimator of the quantile density function will give us an estimator of the

hazard quantile function.25

Overview of previous works. Let X1, X2, . . . , Xn be iid random variables from distribution

F (x) defined on a probability space (Ω,A,P). [23] suggested the following two smooth estimators

of the quantile density function. The first one, denoted by ĝj1(x), is given by

ĝj1(x) =
1

f̂(Q̂(x))
, x ∈ [0, 1], (1.4)
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where f̂(x) is a kernel type density estimator of the form :

f̂(x) =
1

nh(n)

n∑
i=1

K
(x−Xi

h(n)

)
,

where h(n) is the bandwidth and K(.) an appropriate kernel function, and Q̂(x) is the usual

empirical estimator of Q(x). The properties that the kernel function and the bandwidth need to30

satisfy have been listed in [45].

The second estimator of [23] is given as

ĝj2(x) =

n∑
i=2

X(i)

(
Kh(n)

(
x− i− 1

n

)
−Kh(n)

(
x− i

n

))
, x ∈ [0, 1], (1.5)

where X(i) is the ithorder statistic, i = 1, 2, . . . , n, and Kh(u) = (1/h)K(u/h).

[23] and [45] showed that the performance of the estimator of g(x) given by (1.4) is better than

that of the estimator given by (1.5).35

[45] proposed the following smooth estimator of the quantile density function :

ĝS(x) =
1

h(n)

∫ 1

0

K
( t− x
h(n)

) 1

f̂(Q̂(t))
dt, x ∈ [0, 1], (1.6)

where K(.) is a kernel and h(n) is the bandwidth sequence. It can be also be expressed as

ĝS(x) =
1

nh(n)

n∑
i=1

K
(Si − x
h(n)

) 1

f̂(X(i))
.

where Si is the proportion of observations less than or equal to X(i), the ith order statistic.

Contributions. In this paper, we explore a different approach by considering estimators based on

projections on a wavelet basis of the (crude) form :

ĝ(x) =
∑
m

âmem(x), x ∈ [0, 1],

where âm denotes an estimator of the coefficient am =
∫
g(x)em(x)dx and {em} forms the wavelet

basis. Such basis is of interest, thanks to its localization in space and frequency properties. For

the standard nonparametric estimation problems in density, regression,. . . . wavelet estimators

outperform kernel estimators in representing discontinuities (edges, spikes,. . . ). Basics on wavelet40

estimation can be found in [21].

In this study, we develop two kinds of wavelet estimators for the quantile density function g : a

linear one based on simple projections and a nonlinear one based on a hard thresholding rule. Our
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wavelet hard thresholding estimator has the feature to be adaptive according to g(x). Let us mention

that, due to the choice of âm considered, our estimators belong to the family of warped wavelet45

basis estimators introduced by [26] in another statistical context - regression problem with random

design. Under some smoothness assumptions on g(x), we determine fast rates of convergence of the

proposed estimators under the Lp risk.

Paper organization. The rest of this paper is organized as follows. In the next section, we

present our wavelet estimators. The main theoretical results are described in Section 3 and Section50

4 is devoted to the numerical performances of our estimators. The proofs of the technical results

appear in Sections 5.

2. Wavelet estimators

Wavelet expansion. We define the spaces Lp([0, 1]), p ≥ 1, by

Lp([0, 1]) =

{
h : [0, 1]→ R;

∫
[0,1]

|h(x)|pdx <∞

}
.

For the purpose of the paper, we consider an orthonormal wavelet basis of L2([0, 1]) associated

with the initial wavelet functions φ and ψ of the Daubechies wavelets db2N , where N denotes a55

positive integer. The functions φ and ψ are compactly supported and continuously differentiable.

For any x ∈ R,

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then, with an appropriate treatment at the boundaries, there exists an integer τ satisfying 2τ ≥ 2N

such that, for any ` ≥ τ , the system

W = {φ`,k; k ∈ {0, . . . , 2` − 1}; ψj,k; k ∈ {0, . . . , 2j − 1}, j ≥ `}

is an orthonormal basis of L2([0, 1]).

For convenience, we suppose that X1 is compactly supported, say X1(Ω) = [0, 1], and that F is

continuous and strictly monotone from [0, 1] to [0, 1].

Let us suppose that g ∈ L2([0, 1]). Hence, for any integer ` ≥ τ , we have the following wavelet

expansion on W :

g(x) =

2`−1∑
k=0

c`,kφ`,k(x) +

∞∑
j=`

2j−1∑
k=0

dj,kψj,k(x), x ∈ [0, 1],
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where60

cj,k =

∫
[0,1]

g(x)φj,k(x)dx, dj,k =

∫
[0,1]

g(x)ψj,k(x)dx. (2.1)

All the technical details can be found in, e.g., [11] and [27].

Wavelet coefficients estimators. The wavelet coefficients cj,k and dj,k are unknown and

need to be estimated. Our approach is based on the following remark : by the change of variable

x = F (y) with y ∈ X1(Ω) = [0, 1], we can rewrite cj,k as65

cj,k =

∫
[0,1]

g(x)φj,k(x)dx =

∫
[0,1]

1

f(Q(x))
φj,k(x)dx

=

∫
[0,1]

φj,k(F (x))dx. (2.2)

Similarly

dj,k =

∫
[0,1]

ψj,k(F (x))dx. (2.3)

Since F is unknown, we estimate it by the empirical estimator :

F̂ (x) =
1

n

n∑
i=1

1{Xi≤x}, x ∈ [0, 1],

where 1 is the indicator function.

This leads to the following integral estimator for cj,k :

ĉj,k =

∫
[0,1]

φj,k(F̂ (x))dx. (2.4)

The analogous estimator for dj,k is

d̂j,k =

∫
[0,1]

ψj,k(F̂ (x))dx. (2.5)

Due to the composition of the element of the wavelet basis with F̂ (x), ĉj,k and d̂j,k can be viewed as70

warped wavelet basis coefficient estimators. Such estimators were introduced by [26] in the context

of regression with random design. Other improvements and modern developments can be found in

[5, 6] for the same regression model and in [7] for the relative density estimation problem (with

trigonometric basis).
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Remark 2.1. Clearly, ĉj,k and d̂j,k are not unbiased estimators for cj,k and dj,k. However, using75

the dominated convergence theorem, one can prove that they are asymptotically unbiased. Moreover,

they satisfy power moments and concentration inequalities. See Lemmas 5.1, 5.2, 5.3 and 5.4 below.

Remark 2.2. Our study can be extended for X1(Ω) = [a, b] with a < b finite. Using the change of

variables x = F (y) with y ∈ X1(Ω) = [a, b], we get

cj,k =

∫
[0,1]

g(x)φj,k(x)dx =

∫
[a,b]

φj,k(F (x))dx.

So we consider the last integral over [a, b] instead of [0, 1].80

Based on ĉj,k and d̂j,k given in (2.4) and (2.5), respectively, we consider two kinds of wavelet

estimators for g(x) : a linear wavelet estimator ĝL(x) and a hard thresholding wavelet estimator

ĝH(x), both defined below.

Linear wavelet estimator. We define the linear wavelet estimator ĝL(x) by85

ĝL(x) =

2j0−1∑
k=0

ĉj0,kφj0,k(x), x ∈ [0, 1], (2.6)

where j0 is a positive integer chosen a posteriori (see Theorems 3.1 and 3.3).

Hard thresholding wavelet estimator. We define the hard thresholding wavelet estimator

ĝH(x) by

ĝH(x) =

2τ−1∑
k=0

ĉτ,kφτ,k(x) +

j1∑
j=τ

2j−1∑
k=0

d̂j,k1{|d̂j,k|≥λj}ψj,k(x), x ∈ [0, 1], (2.7)

where ĉj,k and d̂j,k are defined by (2.4) and (2.5), j1 is a positive integer and λj represents a90

threshold. Both j1 and λj will be chosen a posteriori (see Theorems 3.2 and 3.4)

The construction of ĝH(x) exploits the sparse nature of the wavelet decomposition of g(x) : only

the wavelet coefficients dj,k with large magnitude contain the main information (in terms of details)

of g. Hence ĝH(x) aims to estimate only the larger coefficients and remove the other (or estimate

it by 0). Further aspects and explanation related to this selection techniques can be found in [3],95

[21] and [50].
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As usual in wavelet estimation, we will suppose that the unknown function g(x) belongs to

Besov balls defined below.

Besov balls. Let M > 0, s > 0, r ≥ 1 and q ≥ 1. We say that g(x) belongs to the Besov ball100

Bsr,q(M) if there exists a constant M∗ > 0 (depending on M) such that (2.1) satisfy

(
2τ−1∑
k=0

|cτ,k|r
)1/r

+

 ∞∑
j=τ

2j(s+1/2−1/r)

2j−1∑
k=0

|dj,k|r
1/r


q

1/q

≤M∗,

with the usual modifications if r =∞ or q =∞.

In this expression, s is a smoothness parameter and r and q are norm parameters. Details on

Besov balls can be found in [29] and [21, Chapter 9].

3. Theoretical results105

3.1. First results

This section is devoted to the study of performance of wavelet estimators ĝL(x) and ĝH(x).

Theorem 3.1 determines the rates of convergence attained by ĝL(x) under the Lp-risk over Besov

balls.

Theorem 3.1. Let p ≥ 1. Assume that g ∈ Lmax(r,2)([0, 1]) ∩ Bsr,q(M) with s > 1/r, r ≥ 1 and

q ≥ 1. Set s∗ = min(s, s−1/r+ 1/p) and let ĝL(x) be as in (2.6) with j0 being the integer such that

n1/(2s∗+4) < 2j0+1 ≤ 2n1/(2s∗+4).

Then there exists a constant C > 0 such that

E

(∫
[0,1]

|ĝL(x)− g(x)|pdx

)
≤ Cn−s∗p/(2s∗+4).

The proof is based on statistical properties of ĉj,k and d̂j,k (see Lemmas 5.1 and 5.2), and110

technical bounds related to wavelet series and the Lp norm. At this stage, let us consider the rate

of convergence n−s∗p/(2s∗+4) as a benchmark. This aspect will be discussed later.

Theorem 3.2 explores the rates of convergence of ĝH(x) under the Lp-risk over Besov balls.
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Theorem 3.2. Let p ≥ 1 and ĝH be as in (2.7) with j1 being the integer satisfying(
n

ln(n)

)1/4

< 2j1+1 ≤ 2

(
n

ln(n)

)1/4

,

and λj being the threshold :

λj = K23j/2
√

2p

√
ln(n)

n
, (3.1)

with K = supx∈[0,1] |ψ′(x)|.115

Suppose that g ∈ Lmax(r,2)([0, 1]) ∩Bsr,q(M) with s > 1/r, r ≥ 1 and q ≥ 1. Then there exists a

constant C > 0 such that

E

(∫
[0,1]

|ĝH(x)− g(x)|pdx

)
≤ Cϕn,

where

ϕn =



(
ln(n)

n

)sp/(2s+4)

, for rs > 2(p− r),(
ln(n)

n

)(s−1/r+1/p)p/(2s−2/r+4)

, for rs < 2(p− r),(
ln(n)

n

)(s−1/r+1/p)p/(2s−2/r+4)

(ln(n))(p−r/q)+ , for rs = 2(p− r).

The proof is based on statistical properties of ĉj,k and d̂j,k (see Lemmas 5.3 and 5.4), and a

general result on the Lp risk of the hard thresholding wavelet estimator which can be proved by

combining Theorem 5.1 of [25] and Theorem 4.2 of [8].

If we do a global comparison between the results of Theorems 3.1 and 3.2, the rates of conver-120

gence achieved by ĝH(x) are better than the one achieved by ĝL(x). Moreover, let us recall that

ĝH(x) is adaptive while ĝL(x) is not adaptive due to its dependence on s in its construction.

In comparison to the standard density estimation problem, the rates of convergence obtained in

Theorems 3.1 and 3.2 are slower. To be more specific,

• for the wavelet linear estimation, the standard rate of convergence is n−s∗p/(2s∗+1), against125

n−s∗p/(2s∗+4) in Theorem 3.1 (see [21, Section 10.2]).

• for the wavelet nonlinear estimation, the standard rate of convergence is similar to ϕn but

with ”+1” instead of ”+4” in the exponent (see [13]).

The rest of the study proves that, under an additional assumption on g(x), the rates of conver-

gence obtained above can be improved and be made equal to the standard one.130
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3.2. Improved results but with an additional assumption

We now introduce the following Lipschitz(1/2) assumption :

(A) there exists a constant C∗ > 0 such that, for any (x, y) ∈ [0, 1]2,

|g(x)− g(y)| ≤ C∗
√
|x− y|.

Theorems 3.3 and 3.4 below show that, under (A), one can construct more efficients linear and

hard thresholding wavelet estimators than those presented in Theorems 3.1 and 3.2.

Theorem 3.3. Let p ≥ 1. Suppose that (A) is satisfied and g ∈ Bsr,q(M) with s > 1/r, r ≥ 1 and

q ≥ 1 such that min(s, s − 1/r + 1/p) > 1/2. Set s∗ = min(s, s − 1/r + 1/p) and ĝL(x) be as in

(2.6) with j0 being the integer such that

n1/(2s∗+1) < 2j0+1 ≤ 2n1/(2s∗+1).

Then there exists a constant C > 0 such that

E

(∫
[0,1]

|ĝL(x)− g(x)|pdx

)
≤ Cn−s∗p/(2s∗+1).

The proof is similar to the one of Theorem 3.1. The techniques involved in the proof make use of135

statistical results on ĉj,k and d̂j,k derived by [26] for the estimation of the regression function . These

statistical results justify the consideration of (A) and a restriction on j0, i.e., 2j0 ≤
√
n/ ln(n).

Theorem 3.4. Let p ≥ 1. Suppose that (A) is satisfied. Let ĝH(x) be (2.7) with j1 being the

integer satisfying √
n

ln(n)
< 2j1+1 ≤ 2

√
n

ln(n)
,

and λj being the threshold :

λj = κ

√
ln(n)

n
, (3.2)

where κ is a large enough constant (depending, among other, on C∗ and ψ). Suppose that g ∈

Bsr,q(M) with s > 1/r, r ≥ 1 and q ≥ 1. Then there exists a constant C > 0 such that

E

(∫
[0,1]

|ĝH(x)− g(x)|pdx

)
≤ CΨn,

9



where

Ψn =


(

ln(n)

n

)sp/(2s+1)

, for 2rs > (p− r),(
ln(n)

n

)(s−1/r+1/p)p/(2s−2/r+1)

, for (r, s, p) ∈ D,

where D = {(r, s, q) ∈ [1,∞)× (1/r,∞)× [1,∞); 1/2 + 1/r ≤ s ≤ (p− r)/(2r), r ≤ (p− 2)/(2(s−140

1/r) + 1)}.

The proof uses arguments similar to those in Theorem 3.2. Again, the main originality is the

use of new statistical results on ĉj,k and d̂j,k derived from the results proved by [26].

Let us remark that Ψn corresponds to the standard rate of convergence for the standard density

estimation problem via the hard thresholding wavelet method (see [13]).145

The next section explores the numerical performances of our wavelet estimators and compares

them with the estimators developed by [23] and [45].

4. Simulation Study

We consider the Beta distribution and the Generalized Lambda Distributions (GLD). It is

easy to see that when parameters in Beta distribution were chosen from (0, 1), the corresponding150

quantile density function satisfies all the conditions required to prove the results. On the other

hand GLD has four different parameters, i.e., λ1, λ2, λ3 and λ4. The parameters λ1 and λ2 are,

respectively, location and scale parameters, while λ3 and λ4 determine the skewness and kurtosis

of the GLD(λ1, λ2, λ3, λ4), see [24]. [19, Section 3] noted that GLD is very rich in the variety

of density and tail shapes. It contains unimodal, U-shaped, J-shaped and monotone probability155

density functions. These can be symmetric or asymmetric and their tails can be smooth, abrupt, or

truncated, and long, medium or short depending on the choice of parameters. [24, page 43] showed

that when λ3 > 0 and λ4 > 0 the support of GLD is [λ1 − 1/λ2, λ1 + 1/λ2]. On the other hand, it

is easy to see from the closed form of the quantile function of GLD that when λ3 > 1 and λ4 > 1,

we have g ∈ L2([0, 1]).160

We consider performance of linear wavelet estimator ĝL(x) and the hard thresholding wavelet

estimator ĝH(x) presented in Section 2 and compare them with a linear wavelet estimator after

local linear smoothing ĝLS(x) proposed by [36]. The new smooth linear wavelet estimator has been

adapted from [17, 18]. [1, 2], [9, 10] and [42, 43] have proposed this version of wavelet estimators

10



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Estimation of quantile density GLD(0,7,7,7),n=200

Figure 1: Estimation of quantile density. The black curve is the true GLD, the blue dotted line is linear wavelet

estimator, ĝL(x), the red dashed dot line is threshold wavelet estimator, ĝH(x), the green dashed line is smooth

version of our estimator, ĝLS(x), the yellow line with circles is Jones’ estimator, ĝj1(x), and the magenta line with

crosses is ĝS(x).

and showed that it performs better than ĝL(x) in different applications. Let us mention that it165

depends on a bandwidth h(n) (equal to 0.15 if there is no mention). Integrals in wavelet coefficient

estimators introduced in (2.4) and (2.5) have been approximated by Simpson’s rule. Coarsest

level, j0, is chosen as 5. The parameters j1 and λj are as given in Theorem 3.4 (according to the

value of n). Following [36], the constant κ of threshold is chosen as a scaled absolute median of

empirical wavelet coefficients. We employ Daubechies-Lagarias algorithm and write the codes in170

Matlab which are adapted from [36]. We compare these three estimators with ĝj1(x) and ĝS(x),

two estimators given in (1.4) and (1.6), respectively. Following [45], the kernel function chosen is

Triangular, K(x) = (1− |x|)1{|x|≤1} and h(n) = 0.15 if there is no mention.

Figures 1, 2 and 3 show the results of simulation for the Generalized Lambda Distributions

: GLD(0,7,7,7), GLD(0.5,1,2,6) and the Beta distribution - Beta (0.5, 0.5), respectively. In each175

figure, the black curve is the true quantile density function, the blue dotted line is linear wavelet

estimator ĝL(x), the red dashed dot line is threshold wavelet estimator ĝH(x), the green dashed

line is smooth version of our estimator ĝLS(x), the yellow line with circles is Jones’ estimator ĝj1(x)

and the magenta line with crosses is Soni-Dewan-Jain’s estimator ĝS(x). From these three figures

we conclude that the smooth version of the proposed wavelet estimators is closer to the unknown180
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Estimation of quantile density GLD(0.5,1,2,6),n=200

Figure 2: Estimation of quantile density. The black curve is the true GLD, the blue dotted line is linear wavelet

estimator, ĝL(x), the red dashed dot line is threshold wavelet estimator, ĝH(x), the green dashed line is smooth

version of our estimator, ĝLS(x), the yellow line with circles is Jones’ estimator, ĝj1(x), and the magenta line with

crosses is ĝS(x).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

3
Estimation of quantile density Beta(0.5,0.5),n=200

Figure 3: Estimation of quantile density. The black curve is the true Beta (0.5,0.5), the blue dotted line is linear

wavelet estimator, ĝL(x), the red dashed dot line is threshold wavelet estimator, ĝH(x), the green dashed line is

smooth version of our estimator, ĝLS(x), the yellow line with circles is Jones’ estimator, ĝj1(x), and the magenta

line with crosses is ĝS(x).
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Table 1: MISE for different estimators based on 500 replications

Estimator GLD(0,7,7,7) GLD(0.5,2,1.5,1.5) GLD(0.1.5,1.5,1.5) GLD(0.5,1,2,6) Beta(0.5,0.5)

n=200 n=500 n=200 n=500 n=200 n=500 n=200 n=500 n=200 n=500

ĝLS(x) 0.0078 0.0067 0.0101 0.0050 0.0189 0.0093 0.1149 0.0886 0.0252 0.0167

ĝj1(x) 0.0268 0.0273 0.0648 0.0521 0.1088 0.0797 0.4718 0.2798 0.1259 0.1011

ĝS(x) 0.0512 0.0530 0.0127 0.0064 0.0256 0.0127 0.3758 0.3343 0.0604 0.0459

quantile density function as compared to the other four estimators we have studied.

Next we consider the mean integrated square error (MISE) of the smooth linear estimator of

the quantile density function ĝLS(x), ĝj1(x) and ĝS(x) for Beta distributions (Beta (0.5, 0.5)) and

Generalized Lambda Distributions (GLD) GLD(0,7,7,7), GLD(0.5,2,1.5,1.5), GLD(0,1.5,1.5,1.5)

and GLD(0.5,1,2,6).185

Table 1 shows the estimation of Mean Integrated Square Error (MISE) for GLDs for four different

choices of parameters and Beta(0.5, 0.5). The results in this Table 1 are based on 500 replications

and sample sizes n = 200 and n = 500. We use the formula :

MISE =
n− 1

500(n+ 1)2

500∑
i=1

n∑
j=1

(
f̂i

(
j

n+ 1

)
− f

(
j

n+ 1

))2

,

where f̂i is the quantile density estimator in ith replication and f is true quantile density function.

Tables 2, 3 and 4 show the Mean Square Error (MSE) for different choices of fixed x ∈ [0, 1] and

different bandwidth parameters : h(n) = 0.15, 0.19, 0.25. We calculate the MSE of these estimators

by generating 500 samples from GLD(0.5,1,2,6), Beta (0.5,0.5) and GLD(0,7,7,7), respectively. The

sample size in each case is n = 200.190

From Figures 1-3 and Tables 1-4 we conclude that

(i) our wavelet based estimator performs well in estimation of unknown quantile density. The

performance of smooth version of linear wavelet estimator works the best.

(ii) our wavelet estimators perform well in the tails whereas [45] observed that the competitors195

13



(1.4) and (1.6) suffer from boundary effect.

(iii) in majority of cases, the MSEs for the smooth version of the wavelet estimator are smaller

than those of the competitors.

(iv) the MSEs and MISEs decrease as the sample size increases.

(v) the MSEs are bigger for x close to the tails.200

(vi) the MISEs of smooth version of wavelet estimators are smaller than the MISEs of the com-

petitors.

14



Table 2 MSEs (Standard Deviation) based on 500 replications and n=200, GLD(0.5,1,2,6)

h(n)

x estimate 0.15 0.19 0.25

0.01 ĝLS(x) 1.5244(1.4414) 1.9204(1.4104) 2.5767(1.3743)

ĝj1(x) 9.1864(21.656) 10.467(22.298) 10.115(20.877)

ĝS(x) 9.4850(2.2242) 10.418(1.7664) 11.719(1.4807)

0.1045 ĝLS(x) 0.1027(0.1373) 0.1263(0.1635) 0.1595(0.1787)

ĝj1(x) 0.9224(1.8540) 0.6914(1.2891) 0.4624(0.9149)

ĝS(x) 0.1396(0.1615) 0.3028(0.2442) 0.7100(0.2998)

0.2040 ĝLS(x) 0.0609(0.0633) 0.0904(0.0727) 0.1278(0.0897)

ĝj1(x) 0.2605(0.3657) 0.2045(0.3190) 0.1622(0.2456)

ĝS(x) 0.0767(0.1019) 0.0536(0.0748) 0.0556(0.0595)

0.4030 ĝLS(x) 0.0682(0.0601) 0.1515(0.0758) 0.2929(0.0776)

ĝj1(x) 0.0387(0.0638) 0.0322(0.0579) 0.0253(0.0460)

ĝS(x) 0.0261(0.0405) 0.0313(0.0473) 0.0437(0.0513)

0.6020 ĝLS(x) 0.0165(0.0219) 0.0296(0.0263) 0.0580(0.0324)

ĝj1(x) 0.0358(0.0548) 0.0293(0.0442) 0.0222(0.0423)

ĝS(x) 0.0205(0.0270) 0.0173(0.0248) 0.0145(0.0234)

0.8010 ĝLS(x) 0.0127(0.0176) 0.0127(0.0176) 0.0134(0.0190)

ĝj1(x) 0.0829(0.1376) 0.0566(0.0882) 0.0358(0.0540)

ĝS(x) 0.0287(0.0361) 0.0183(0.0249) 0.0107(0.0147)

0.9005 ĝLS(x) 0.0478(0.0615) 0.0527(0.0672) 0.0553(0.0673)

ĝj1(x) 0.0853(1403) 0.0600(0.0858) 0.0405(0.0953)

ĝS(x) 0.0365(0.0499) 0.0431(0.0549) 0.0785(0.0634)

0.99 ĝLS(x) 0.1761(0.2068) 0.1566(0.1840) 0.1333(0.1587)

ĝj1(x) 2.2551(2.7919) 2.2150(2.9676) 0.4694(2.3519)

ĝS(x) 0.5055(0.2449) 0.5793(0.2201) 0.6505(0.1897)
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Table 3 MSEs (Standard Deviation) based on 500 replications and n=200, Beta(0.5,0.5)

h(n)

x estimate 0.15 0.19 0.25

0.01 ĝLS(x) 0.0477(0.0678) 0.0665(0.0816) 0.1253(0.1202)

ĝj1(x) 0.7728(2429) 0.9684(0.2820) 1.2762(0.3435)

ĝS(x) 0.1847(0.0532) 0.2204(0.0577) 0.2780(0.0649)

0.1045 ĝLS(x) 0.0231(0.0357) 0.0255(0.0399) 0.0414(0.0556)

ĝj1(x) 0.0937(0.0580) 0.1663(0.0792) 0.3074(0.1169)

ĝS(x) 0.0860(0.0619) 0.1083(0.0660) 0.1403(0.0700)

0.2040 ĝLS(x) 0.0142(0.0190) 0.0128(0.0174) 0.0125(0.0174)

ĝj1(x) 0.0332(0.0409) 0.0175(0.0278) 0.0114(0.0197)

ĝS(x) 0.0193(0.0252) 0.0151(0.0247) 0.0253(0.0347)

0.4030 ĝLS(x) 0.0288(0.0291) 0.0516(0.0309) 0.0912(0.0287)

ĝj1(x) 0.0738(0.0412) 0.0471(0.0591) 0.0421(0.0565)

ĝS(x) 0.0350(0.0446) 0.0342(0.0396) 0.0416(0.0403)

0.6020 ĝLS(x) 0.0365(0.0352) 0.0571(0.0338) 0.0999(0.0364)

ĝj1(x) 0.0646(0.0888) 0.0502(0.0616) 0.0478(0.0663)

ĝS(x) 0.0364(0.0457) 0.0317(0.0379) 0.0385(0.0405)

0.8010 ĝLS(x) 0.0169(0.0218) 0.0157(0.0212) 0.0151(0.0207)

ĝj1(x) 0.0319(0.0507) 0.0132(0.0175) 0.0113(0.0178)

ĝS(x) 0.0195(0.0297) 0.0176(0.0255) 0.0289(0.0333)

0.9005 ĝLS(x) 0.0136(0.0240) 0.0170(0.0250) 0.0210(0.0277)

ĝj1(x) 0.1110(0.0618) 0.1994(0.0862) 0.3351(0.1155)

ĝS(x) 0.0989(0.0658) 0.1308(0.0693) 0.1538(0.0643)

0.99 ĝLS(x) 0.0218(0.0367) 0.0386(0.0521) 0.0684(0.0628)

ĝj1(x) 0.7654(0.2416) 0.9902(0.2863) 0.2495(0.2813)

ĝS(x) 0.2062(0.0585) 0.2484(0.0633) 0.2954(0.0603)
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Table 4 MSEs (Standard Deviation) based on 500 replications and n=200, GLD(0,7,7,7)

h(n)

x estimate 0.15 0.19 0.25

0.01 ĝLS(x) 0.0581(0.0425) 0.0741(0.0391) 0.1084(0.0375)

ĝj1(x) 0.3120(0.0349) 0.1223(0.0337) 0.1648(0.0229)

ĝS(x) 0.4556(0.0339) 0.5246(0.0189) 0.5338(0.0116)

0.1045 ĝLS(x) 0.0021(0.0029) 0.0026(0.0031) 0.0048(0.0041)

ĝj1(x) 0.0524(0.0125) 0.0426(0.0087) 0.0261(0.0054)

ĝS(x) 0.0408(0.0099) 0.0492(0.0068) 0.0480(0.0043)

0.2040 ĝLS(x) 0.0022(0.0015) 0.0035(0.0017) 0.0045(0.0020)

ĝj1(x) 0.0014(0.0007) 0.0001(0.0001) 0.0030(0.0009)

ĝS(x) 0.0008(0.0006) 0.0003(0.0003) 0.0044(0.0011)

0.4030 ĝLS(x) 0.0028(0.0014) 0.0068(0.0019) 0.0151(0.0025)

ĝj1(x) 0.0218(0.0014) 0.0340(0.0016) 0.0587(0.0019)

ĝS(x) 0.0220(0.0015) 0.0344(0.0017) 0.0596(0.0020)

0.6020 ĝLS(x) 0.0038(0.0017) 0.0081(0.0022) 0.0165(0.0024)

ĝj1(x) 0.0212(0.0014) 0.0333(0.0016) 0.0578(0.0018)

ĝS(x) 0.0214(0.0015) 0.0337(0.0017) 0.0587(0.0020)

0.8010 ĝLS(x) 0.0039(0.0018) 0.0049(0.0017) 0.0053(0.0018)

ĝj1(x) 0.0020(0.0009) 0.0002(0.0002) 0.0021(0.0007)

ĝS(x) 0.0013(0.008) 0.0001(0.0002) 0.0032(0.0009)

0.9005 ĝLS(x) 0.0023(0.0034) 0.0031(0.0039) 0.0055(0.0044)

ĝj1(x) 0.0563(0.0141) 0.0476(0.0102) 0.0304(0.0058)

ĝS(x) 0.0478(0.0108) 0.0572(0.0076) 0.0558(0.0046)

0.99 ĝLS(x) 0.782(0.0534) 0.0877(0.0464) 0.1155(0.0370)

ĝj1(x) 0.0324(0.0374) 0.1275(0.0376) 0.1667(0.0240)

ĝS(x) 0.4416(0.0365) 0.5134(0.0200) 0.5240(0.0121)

205
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5. Proofs

5.1. Auxiliary results

The following lemmas show several statistical properties (moments and concentration inequali-

ties) of the estimators ĉj,k and d̂j,k given in (2.4) and (2.5), respectively. The proofs or appropriate

references are given in the next sub-section.210

Lemma 5.1. Let p ≥ 1, ĉj,k be defined by (2.4) and d̂j,k be defined by (2.5). Then

• there exists a constant C > 0 such that

E((ĉj,k − cj,k)2p) ≤ C23jp
1

np
.

• there exists a constant C > 0 such that

E((d̂j,k − dj,k)2p) ≤ C23jp
1

np
.

Lemma 5.2. Let p ≥ 1, d̂j,k be defined by (2.5) and λj be defined by (3.1). Then

P
(
|d̂j,k − dj,k| ≥ λj

)
≤ 2

1

np
.

Lemma 5.3. Suppose that (A) is satisfied. Let p ≥ 1, j such that 2j ≤
√
n/ ln(n), ĉj,k be defined215

by (2.4) and d̂j,k be defined by (2.5). Then

• there exists a constant C > 0 such that

E((ĉj,k − cj,k)2p) ≤ C 1

np
.

• there exists a constant C > 0 such that

E((d̂j,k − dj,k)2p) ≤ C 1

np
.

Lemma 5.4. Suppose that (A) is satisfied. Let p ≥ 1, j such that 2j ≤
√
n/ ln(n), d̂j,k be defined

by (2.5) and λj be defined by (3.2). Then220

P
(
|d̂j,k − dj,k| ≥ λj

)
≤ 2

1

np
.

In the rest of the paper, we use C to denote positive constants whose value may change from

line to line.
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5.2. Proofs of the auxiliary results

Proof of Lemma 5.1. Note that (φj,k(x))′ = 23j/2φ′(2jx−k) and K = supx∈[0,1] |φ′(x)| <∞.

The mean value theorem gives, for any (x, y) ∈ [0, 1]2,

|φj,k(x)− φj,k(y)| ≤ 23j/2K|x− y|.

Therefore

|ĉj,k − cj,k| =

∣∣∣∣∣
∫
[0,1]

(
φj,k(F̂ (x))− φj,k(F (x))

)
dx

∣∣∣∣∣
≤

∫
[0,1]

|φj,k(F̂ (x))− φj,k(F (x))|dx

≤ C23j/2
∫
[0,1]

|F̂ (x)− F (x)|dx. (5.1)

Using the Hölder inequality and the Fubini theorem, we have225

E((ĉj,k − cj,k)2p) ≤ C23jpE

(∫
[0,1]

|F̂ (x)− F (x)|dx

)2p


≤ C23jp

(∫
[0,1]

E
(

(F̂ (x)− F (x))2p
)
dx

)
.

The Rosenthal inequality (see [38]) yields

E
(

(F̂ (x))− F (x))2p
)

≤ C

(
(1− F (x))2pF (x) + (F (x))2p(1− F (x))

n2p−1
+

(F (x)(1− F (x)))p

np

)
≤ C

1

np
.

Hence

E((ĉj,k − cj,k)2p) ≤ C23jp
1

np
.

Working with ψ instead of φ, we show that

E((d̂j,k − dj,k)2p) ≤ C23jp
1

np
.

The proof of Lemma 5.1 is complete.
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Proof of Lemma 5.2. By (5.1) with ψ instead of φ, we obtain230

|d̂j,k − dj,k| ≤ K23j/2
∫
[0,1]

|F̂ (x)− F (x)|dx

≤ K23j/2 sup
x∈[0,1]

|F̂ (x)− F (x)|,

with K = supx∈[0,1] |ψ′(x)|. It follows from the Massart version of the Dvoretzky-Kiefer-Wolfowitz

inequality (see [15] and [28]) and the definition of λj (3.1) that

P
(
|d̂j,k − dj,k| ≥

λj
2

)
≤ P

(
K23j/2 sup

x∈[0,1]
|F̂ (x)− F (x)| ≥ 1

2
K23j/2

√
2p

√
ln(n)

n

)

≤ P

(
sup
x∈[0,1]

|F̂ (x)− F (x)| ≥
√
p

2

√
ln(n)

n

)

≤ 2 exp

−2n

(√
p

2

√
ln(n)

n

)2
 = 2

1

np
.

This ends the proof of Lemma 5.2.

Proof of Lemmas 5.3 and 5.4. By the change of variable x = Q(y), let us observe that

d̂j,k − dj,k =

∫
[0,1]

(
ψj,k(F̂ (x))− ψj,k(F (x))

)
dx

=

∫
[0,1]

(
ψj,k(Û(x))− ψj,k(x)

)
g(x)dx,

with

Û(x) =
1

n

n∑
i=1

1{Ui≤x}, Ui = F (Xi).

Then the proofs of Lemmas 5.3 and 5.4 follow from the technical part of [26, Subsection 9.2.2.235

pages 1093 - 1098] with g instead of f(G−1). Let us mention that for the validity of results we need

to suppose (A) and a restriction on j is considered in our study, i.e., 2j ≤
√
n/ ln(n).

5.3. Proofs of the main results

Proof of Theorem 3.1. We expand g on the wavelet basis W as

g(x) =

2j0−1∑
k=0

cj0,kφj0,k(x) +

∞∑
j=j0

2j−1∑
k=0

dj,kψj,k(x),
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where cj0,k =
∫
[0,1]

g(x)φj0,k(x)dx and dj,k =
∫
[0,1]

g(x)ψj,k(x)dx. Hence

ĝL(x)− g(x) =

2j0−1∑
k=0

(ĉj0,k − cj0,k)φj0,k(x)−
∞∑
j=j0

2j−1∑
k=0

dj,kψj,k(x).

Using the inequality : |x+ y|p ≤ 2p−1(|x|p + |y|p), (x, y) ∈ R2, we obtain

E

(∫
[0,1]

|ĝL(x)− g(x)|pdx

)
≤ 2p−1(F +G), (5.2)

where

F = E

∫
[0,1]

∣∣∣∣∣∣
2j0−1∑
k=0

(ĉj0,k − cj0,k)φj0,k(x)

∣∣∣∣∣∣
p

dx


and

G =

∫
[0,1]

∣∣∣∣∣∣
∞∑
j=j0

2j−1∑
k=0

dj,kψj,k(x)

∣∣∣∣∣∣
p

dx.

Using a Lp norm result on wavelet series (see [21, Proposition 8.3]), the Cauchy-Schwarz in-240

equality and Lemma 5.1, we obtain

F ≤ C2j0(p/2−1)
2j0−1∑
k=0

E (|ĉj0,k − cj0,k|p)

≤ C2j0(p/2−1)
2j0−1∑
k=0

(
E
(
(ĉj0,k − cj0,k)2p

))1/2
≤ C2j0(p/2−1)2j023j0p/2

1

np/2
= C

(
24j0

n

)p/2
. (5.3)

On the other hand, using g ∈ Bsr,q(M) and proceeding as in [14, eq. (24)], we have immediately

G ≤ C2−j0s∗p. (5.4)

It follows from (5.2), (5.3), (5.4) and the definition of j0 that

E

(∫
[0,1]

|ĝL(x)− g(x)|pdx

)
≤ C

((
24j0

n

)p/2
+ 2−j0s∗p

)
≤ Cn−s∗p/(2s∗+4).

This ends the proof of Theorem 3.1.

245

Proof of Theorem 3.2. Theorem 3.2 is a consequence of Theorem 5.1 below with ν = 3/2 and

Lemmas 5.1 and 5.2 above.
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Theorem 5.1. Let h ∈ L2([0, 1]) be an unknown function to be estimated from n observations and

consider its wavelet decomposition. Let ĉj,k and d̂j,k be estimators of these wavelet coefficients cj,k

and dj,k respectively. We suppose that there exist three constants ν > 0, C > 0 and κ > 0 such that250

the following inequalities hold :

Moments inequalities : for any j ≥ τ such that 2j ≤ n and k ∈ {0, . . . , 2j − 1},

E
(
(ĉj,k − cj,k)2p

)
≤ C22νjp

(
ln(n)

n

)p
and

E
(

(d̂j,k − dj,k)2p
)
≤ C22νjp

(
ln(n)

n

)p
.

Concentration inequality : for any j ≥ τ such that 2j ≤ n/ ln(n) and k ∈ {0, . . . , 2j − 1},

P

(
|d̂j,k − dj,k| ≥

κ

2
2νj
√

ln(n)

n

)
≤ C

(
ln(n)

n

)p
.

Let us define the hard thresholding wavelet estimator of h by

ĥ(x) =

2τ−1∑
k=0

ĉτ,kφτ,k(x) +

j1∑
j=τ

2j−1∑
k=0

d̂j,k1{
|d̂j,k|≥κ2νj

√
ln(n)
n

}ψj,k(x), x ∈ [0, 1],

where j1 is the integer satisfying(
n

ln(n)

)1/(2ν+1)

< 2j1+1 ≤ 2

(
n

ln(n)

)1/(2ν+1)

.

Suppose that h ∈ Bsr,q(M) with s > 0, r ≥ 1 and q ≥ 1. Then there exists a constant C > 0

such that

E

(∫
[0,1]

|ĥ(x)− h(x)|pdx

)
≤ CΘn,ν ,

where

Θn,ν =



(
ln(n)

n

)sp/(2s+2ν+1)

, for rs > (ν + 1/2)(p− r),(
ln(n)

n

)(s−1/r+1/p)p/(2s−2/r+2ν+1)

, for rs < (ν + 1/2)(p− r),(
ln(n)

n

)(s−1/r+1/p)p/(2s−2/r+2ν+1)

(ln(n))(p−r/q)+ , for rs = (ν + 1/2)(p− r).
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The general form of Theorem 5.1 can be proved using arguments similar to Theorem 5.1 of [25]255

for a bound of the Lp-risk and Theorem 4.2 of [8] for the determination of the rates of convergence.

Proof of Theorem 3.3. The proof follows step by step the one of Theorem 3.1 with the use

of Lemma 5.3 instead of Lemma 5.1. Thanks to the new definition of j0, we finally obtain

E

(∫
[0,1]

|ĝL(x)− g(x)|pdx

)
≤ C

((
2j0

n

)p/2
+ 2−j0s∗p

)
≤ Cn−s∗p/(2s∗+1).

260

Proof of Theorem 3.4. The proof follows along the lines of that of Theorem 3.2 with the

use of Lemmas 5.3 and 5.4 instead of Lemmas 5.1 and 5.2, and an adjustment on the rates of

convergence as in [26, Proposition 2]. This minor modification is due to our definition of j1.

ACKNOWLEDGEMENTS - We thank the associate editor and the referees for their critical265

comments which have led to the improved version of the paper.

References

[1] Abbaszadeh, M., Chesneau, C. and Doosti, H. (2012). Nonparametric estimation of a density

under bias and multiplicative censoring via wavelet methods, Statistics and Probability Letters,

82, 932- 941.270

[2] Abbaszadeh, M., Chesneau, C. and Doosti, H. (2013). Multiplicative censoring : estimation of

a density and its derivatives under the Lp-risk, Revstat, 11, 255-276.

[3] Antoniadis, A. (1997). Wavelets in statistics : a review (with discussion), Journal of the Italian

Statistical Society Series B, 6, 97-144.

[4] Caroll, R.J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density, Journal275

American Statistical Association, 83, 1184-1186.

[5] Chagny, G. (2013a). Penalization versus Goldenshluger-Lepski strategies in regression estimation

with warped bases, Esaim Probability and Statistics, 17, 328-358.

23



[6] Chagny, G. (2013b). Warped bases for conditional density estimation, Mathematical Methods of

Statistics, 22, (4), 253-282.280

[7] Chagny, G. and Lacour, C. (2015). Optimal adaptive estimation of the relative density, TEST

(DOI : 10.1007/s11749-015-0426-6), to appear.

[8] Chesneau, C. (2008). Wavelet estimation via block thresholding : a minimax study under Lp

risk, Statistica Sinica, 18, 3, 1007-1024.

[9] Chesneau, C., Dewan, I and Doosti, H. (2012). Wavelet linear density estimation for associated285

stratified size-biased sample. Journal of Nonparametric Statistics, 24, (2), 429-445.

[10] Chesneau, C., Dewan, I. and Doosti, H. (2014). Nonparametric estimation of two dimensional

continuous- discrete density function by wavelets. Statistical Methodology, 18, 64-78.

[11] Cohen, A., Daubechies, I., Jawerth, B. and Vial, P. (1993). Wavelets on the interval and fast

wavelet transforms, Applied and Computational Harmonic Analysis, 24, 1, 54-81.290

[12] Daubechies, I. (1992). Ten lectures on wavelets, SIAM.

[13] Delyon, B. and Juditsky, A. (1996). On minimax wavelet estimators, Applied Computational

Harmonic Analysis, 3, 215-228.

[14] Donoho, D.L., Johnstone, I.M., Kerkyacharian, G. and Picard, D. (1996). Density estimation

by wavelet thresholding, Annals of Statistics, 24, 508-539.295

[15] Dvoretzky, A., Kiefer, J. and Wolfowitz, J. (1956). Asymptotic minimax character of the sample

distribution function and of the classical multinomial estimator. Annals Mathematical Statistics,

27, 642-669.

[16] Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problem.

Annals Statistics, 19, 1257-1272.300

[17] Fan, J. (1992). Design-adaptive nonparametric regression. Journal of American Statistical As-

sociation, 87, 998-1004.

[18] Fan, J. (1993). Local linear regression smoothers and their minimax efficiencies. Annals of

Statistics, 21, 196-216.

24



[19] Freimer, M., Kollia, G., Mudholkar, G.S. and Lin, C.T. (1988). A study of the Generalized305

Tukey Lambda family, Communications in Statistics - Theory and Methods, 17, 3547-3567.

[20] Gilchrist,W. (2000). Statistical Modeling with Quantile Functions, Chapman and Hall, New

York.
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