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In this paper nonparametric wavelet estimators of the quantile density function are proposed.

Consistency of the wavelet estimators is established under the L p risk. A simulation study illustrates the good performance of our estimators.

Introduction

Motivation. Quantile density function, the derivative of the quantile function, comes up in the study of lifetime and survival data. The expression for the limiting variance of empirical and kernel type estimators of the quantile function involves the quantile density function. The hazard quantile function too can be written in terms of the quantile density function. Nonparametric estimators of the quantile density function have been studied by [START_REF] Parzen | Quantile Probability and Statistical Data Modeling[END_REF], [START_REF] Jones | Estimating densities, quantiles, quantile densities and density quantiles[END_REF] and [START_REF] Soni | Nonparametric estimation of quantile density function[END_REF]. Most of these estimators underperform at the tails, see, for example, [START_REF] Soni | Nonparametric estimation of quantile density function[END_REF]. Hence there is a need to look at alternate estimators.

On the quantile function. Quantiles are often used for statistical modeling and analysis of data. Measures based on quantiles are less influenced by outliers. Hence they are particularly useful in the study of lifetime data and also for studying heavy tailed distributions. Sometimes the distribution function of the random variable of interest can not be expressed in a closed form.

However, the quantile function can be written in an explicit form, for example, Generalized Lambda distribution (GLD) and Skew logistic distribution (see [START_REF] Gilchrist | Statistical Modeling with Quantile Functions[END_REF] and [START_REF] Karian | Fitting statistical distributions : The Generalized lambda distribution and generalized bootstrap methods[END_REF]).

Researchers have used quantiles for preliminary data analysis. Statistical analysis of data based on quantile functions has been carried out in reliability and survival analysis and other branches of applied statistics (see, for example, [START_REF] Reid | Estimating the median survival time[END_REF], [START_REF] Slud | A comparison of reflected versus testbased confidence intervals for the median survival time, based on censored data[END_REF], [START_REF] Su | Nonparametric estimation for the difference or ratio of median failure times[END_REF], [START_REF] Nair | Total time on test transforms of order n and its implications in reliability analysis[END_REF], [START_REF] Nair | Quantile based reliability analysis[END_REF], [START_REF] Sankaran | Nonparametric estimation of hazard quantile function[END_REF] and [START_REF] Sankaran | A non-parametric test for stochastic dominance using total time on test transform[END_REF]). [START_REF] Soni | Tests for successive differences of quantiles[END_REF][START_REF] Soni | Nonparametric multiple comparison methods for quantiles[END_REF] have developed multiple comparison procedures for quantile functions. Nonparametric test procedures under competing risks have been developed by [START_REF] Peng | Nonparametric quantile inference with competing risks data[END_REF], [START_REF] Jeong | Parametric regression on cumulative incidence function[END_REF] and [START_REF] Sankaran | A quantile based test for comparing cumulative incidence functions of competing risks models[END_REF].

Let X be a continuous random variable with cumulative distribution function F (x), density function f (x) and hazard function r(x). The quantile function of X is defined as

Q(x) = F -1 (x) = inf{y ∈ R; F (y) ≥ x}, x ∈ [0, 1]. (1.1)
It satisfies

F (Q(x)) = x. (1.2) 
[32] and [START_REF] Jones | Estimating densities, quantiles, quantile densities and density quantiles[END_REF] defined the quantile density function corresponding to quantile function Q(x) by

g(x) = Q (x) = 1 f (Q(x)) , x ∈ [0, 1]. (1.3)
Note that the sum of two quantile density functions is again a quantile density function. This idea is useful in modeling data. [START_REF] Nair | Quantile based reliability analysis[END_REF] defined the hazard quantile function R(x) as follows :

R(x) = r(Q(x)) = f (Q(x)) 1 -F (Q(x)) = 1 (1 -x)g(x)
, x ∈ (0, 1).

Hence a nonparametric estimator of the quantile density function will give us an estimator of the hazard quantile function.

Overview of previous works. Let X 1 , X 2 , . . . , X n be iid random variables from distribution F (x) defined on a probability space (Ω, A, P). [START_REF] Jones | Estimating densities, quantiles, quantile densities and density quantiles[END_REF] suggested the following two smooth estimators of the quantile density function. The first one, denoted by ĝj1 (x), is given by ĝj1

(x) = 1 f ( Q(x)) , x ∈ [0, 1], (1.4) 
where f (x) is a kernel type density estimator of the form :

f (x) = 1 nh(n) n i=1 K x -X i h(n) ,
where h(n) is the bandwidth and K(.) an appropriate kernel function, and Q(x) is the usual empirical estimator of Q(x). The properties that the kernel function and the bandwidth need to satisfy have been listed in [START_REF] Soni | Nonparametric estimation of quantile density function[END_REF].

The second estimator of [START_REF] Jones | Estimating densities, quantiles, quantile densities and density quantiles[END_REF] is given as

ĝj2 (x) = n i=2 X (i) K h(n) x - i -1 n -K h(n) x - i n , x ∈ [0, 1], (1.5) 
where X (i) is the i th order statistic, i = 1, 2, . . . , n, and K h (u) = (1/h)K(u/h).

[23] and [START_REF] Soni | Nonparametric estimation of quantile density function[END_REF] showed that the performance of the estimator of g(x) given by (1.4) is better than that of the estimator given by (1.5).

[45] proposed the following smooth estimator of the quantile density function :

ĝS (x) = 1 h(n) 1 0 K t -x h(n) 1 f ( Q(t)) dt, x ∈ [0, 1], (1.6) 
where K(.) is a kernel and h(n) is the bandwidth sequence. It can be also be expressed as

ĝS (x) = 1 nh(n) n i=1 K S i -x h(n) 1 f (X (i) )
.

where S i is the proportion of observations less than or equal to X (i) , the i th order statistic.

Contributions.

In this paper, we explore a different approach by considering estimators based on projections on a wavelet basis of the (crude) form :

ĝ(x) = m âm e m (x), x ∈ [0, 1],
where âm denotes an estimator of the coefficient a m = g(x)e m (x)dx and {e m } forms the wavelet basis. Such basis is of interest, thanks to its localization in space and frequency properties. For the standard nonparametric estimation problems in density, regression,. . . . wavelet estimators outperform kernel estimators in representing discontinuities (edges, spikes,. . . ). Basics on wavelet estimation can be found in [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF].

In this study, we develop two kinds of wavelet estimators for the quantile density function g : a linear one based on simple projections and a nonlinear one based on a hard thresholding rule. Our wavelet hard thresholding estimator has the feature to be adaptive according to g(x). Let us mention that, due to the choice of âm considered, our estimators belong to the family of warped wavelet basis estimators introduced by [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] in another statistical context -regression problem with random design. Under some smoothness assumptions on g(x), we determine fast rates of convergence of the proposed estimators under the L p risk.

Paper organization. The rest of this paper is organized as follows. In the next section, we present our wavelet estimators. The main theoretical results are described in Section 3 and Section 4 is devoted to the numerical performances of our estimators. The proofs of the technical results appear in Sections 5.

Wavelet estimators

Wavelet expansion. We define the spaces L p ([0, 1]), p ≥ 1, by

L p ([0, 1]) = h : [0, 1] → R; [0,1] |h(x)| p dx < ∞ .
For the purpose of the paper, we consider an orthonormal wavelet basis of L 2 ([0, 1]) associated with the initial wavelet functions φ and ψ of the Daubechies wavelets db2N , where N denotes a positive integer. The functions φ and ψ are compactly supported and continuously differentiable.

For any x ∈ R, φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k).

Then, with an appropriate treatment at the boundaries, there exists an integer τ satisfying 2 τ ≥ 2N such that, for any ≥ τ , the system

W = {φ ,k ; k ∈ {0, . . . , 2 -1}; ψ j,k ; k ∈ {0, . . . , 2 j -1}, j ≥ } is an orthonormal basis of L 2 ([0, 1]).
For convenience, we suppose that X 1 is compactly supported, say X 1 (Ω) = [0, 1], and that F is continuous and strictly monotone from [0, 1] to [0, 1].

Let us suppose that g ∈ L 2 ([0, 1]). Hence, for any integer ≥ τ , we have the following wavelet expansion on W :

g(x) = 2 -1 k=0 c ,k φ ,k (x) + ∞ j= 2 j -1 k=0 d j,k ψ j,k (x), x ∈ [0, 1],
where

c j,k = [0,1] g(x)φ j,k (x)dx, d j,k = [0,1] g(x)ψ j,k (x)dx. (2.1)
All the technical details can be found in, e.g., [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF] and [START_REF] Mallat | A wavelet tour of signal processing. The sparse way[END_REF].

Wavelet coefficients estimators. The wavelet coefficients c j,k and d j,k are unknown and need to be estimated. Our approach is based on the following remark : by the change of variable

x = F (y) with y ∈ X 1 (Ω) = [0, 1],
we can rewrite c j,k as

c j,k = [0,1] g(x)φ j,k (x)dx = [0,1] 1 f (Q(x)) φ j,k (x)dx = [0,1] φ j,k (F (x))dx. (2.2) Similarly d j,k = [0,1] ψ j,k (F (x))dx. (2.3) 
Since F is unknown, we estimate it by the empirical estimator :

F (x) = 1 n n i=1 1 {Xi≤x} , x ∈ [0, 1],
where 1 is the indicator function.

This leads to the following integral estimator for c j,k :

ĉj,k = [0,1] φ j,k ( F (x))dx. ( 2.4) 
The analogous estimator for

d j,k is dj,k = [0,1] ψ j,k ( F (x))dx. (2.5)
Due to the composition of the element of the wavelet basis with F (x), ĉj,k and dj,k can be viewed as warped wavelet basis coefficient estimators. Such estimators were introduced by [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] in the context of regression with random design. Other improvements and modern developments can be found in [START_REF] Chagny | Penalization versus Goldenshluger-Lepski strategies in regression estimation with warped bases[END_REF][START_REF] Chagny | Warped bases for conditional density estimation[END_REF] for the same regression model and in [START_REF] Chagny | Optimal adaptive estimation of the relative density[END_REF] for the relative density estimation problem (with trigonometric basis).

Remark 2.1. Clearly, ĉj,k and dj,k are not unbiased estimators for c j,k and d j,k . However, using the dominated convergence theorem, one can prove that they are asymptotically unbiased. Moreover, they satisfy power moments and concentration inequalities. See Lemmas 5.1, 5.2, 5.3 and 5.4 below.

Remark 2.2. Our study can be extended for

X 1 (Ω) = [a, b] with a < b finite. Using the change of variables x = F (y) with y ∈ X 1 (Ω) = [a, b], we get c j,k = [0,1] g(x)φ j,k (x)dx = [a,b] φ j,k (F (x))dx.
So we consider the last integral over

[a, b] instead of [0, 1].
Based on ĉj,k and dj,k given in (2.4) and (2.5), respectively, we consider two kinds of wavelet estimators for g(x) : a linear wavelet estimator ĝL (x) and a hard thresholding wavelet estimator ĝH (x), both defined below.

Linear wavelet estimator. We define the linear wavelet estimator ĝL (x) by ĝL (x) =

2 j 0 -1 k=0 ĉj0,k φ j0,k (x), x ∈ [0, 1], (2.6) 
where j 0 is a positive integer chosen a posteriori (see Theorems 3.1 and 3.3).

Hard thresholding wavelet estimator. We define the hard thresholding wavelet estimator ĝH (x) by

ĝH (x) = 2 τ -1 k=0 ĉτ,k φ τ,k (x) + j1 j=τ 2 j -1 k=0 dj,k 1 {| dj,k |≥λj } ψ j,k (x), x ∈ [0, 1], (2.7) 
where ĉj,k and dj,k are defined by (2.4) and (2.5), j 1 is a positive integer and λ j represents a threshold. Both j 1 and λ j will be chosen a posteriori (see Theorems 3.2 and 3.4)

The construction of ĝH (x) exploits the sparse nature of the wavelet decomposition of g(x) : only the wavelet coefficients d j,k with large magnitude contain the main information (in terms of details) of g. Hence ĝH (x) aims to estimate only the larger coefficients and remove the other (or estimate it by 0). Further aspects and explanation related to this selection techniques can be found in [START_REF] Antoniadis | Wavelets in statistics : a review (with discussion)[END_REF],

[21] and [START_REF] Vidakovic | Statistical Modeling by Wavelets[END_REF].

As usual in wavelet estimation, we will suppose that the unknown function g(x) belongs to Besov balls defined below.

Besov balls. Let M > 0, s > 0, r ≥ 1 and q ≥ 1. We say that g(x) belongs to the Besov ball B s r,q (M ) if there exists a constant M * > 0 (depending on M ) such that (2.1) satisfy

2 τ -1 k=0 |c τ,k | r 1/r +    ∞ j=τ   2 j(s+1/2-1/r)   2 j -1 k=0 |d j,k | r   1/r    q    1/q ≤ M * , with the usual modifications if r = ∞ or q = ∞.
In this expression, s is a smoothness parameter and r and q are norm parameters. Details on Besov balls can be found in [START_REF] Meyer | Wavelets and Operators[END_REF] and [21, Chapter 9].

Theoretical results

First results

This section is devoted to the study of performance of wavelet estimators ĝL (x) and ĝH (x).

Theorem 3.1 determines the rates of convergence attained by ĝL (x) under the L p -risk over Besov balls.

Theorem 3.1. Let p ≥ 1. Assume that g ∈ L max(r,2) ([0, 1]) ∩ B s r,q (M ) with s > 1/r, r ≥ 1 and q ≥ 1. Set s * = min(s, s -1/r + 1/p) and let ĝL (x) be as in (2.6) with j 0 being the integer such that

n 1/(2s * +4) < 2 j0+1 ≤ 2n 1/(2s * +4) .
Then there exists a constant C > 0 such that

E [0,1] |ĝ L (x) -g(x)| p dx ≤ Cn -s * p/(2s * +4) .
The proof is based on statistical properties of ĉj,k and dj,k (see Lemmas 5.1 and 5.2), and technical bounds related to wavelet series and the L p norm. At this stage, let us consider the rate of convergence n -s * p/(2s * +4) as a benchmark. This aspect will be discussed later. Theorem 3.2 explores the rates of convergence of ĝH (x) under the L p -risk over Besov balls. Theorem 3.2. Let p ≥ 1 and ĝH be as in (2.7) with j 1 being the integer satisfying

n ln(n) 1/4 < 2 j1+1 ≤ 2 n ln(n) 1/4
, and λ j being the threshold :

λ j = K2 3j/2 2p ln(n) n , (3.1 
)

with K = sup x∈[0,1] |ψ (x)|. Suppose that g ∈ L max(r,2) ([0, 1]) ∩ B s r,q (M ) with s > 1/r, r ≥ 1 and q ≥ 1.
Then there exists a constant C > 0 such that

E [0,1] |ĝ H (x) -g(x)| p dx ≤ Cϕ n ,
where

ϕ n =                  ln(n) n sp/(2s+4) , for rs > 2(p -r), ln(n) n (s-1/r+1/p)p/(2s-2/r+4) , for rs < 2(p -r), ln(n) n (s-1/r+1/p)p/(2s-2/r+4) (ln(n)) (p-r/q)+ , for rs = 2(p -r).
The proof is based on statistical properties of ĉj,k and dj,k (see Lemmas 5.3 and 5.4), and a general result on the L p risk of the hard thresholding wavelet estimator which can be proved by combining Theorem 5.1 of [START_REF] Kerkyacharian | Thresholding algorithms, maxisets and well concentrated bases (with discussion and a rejoinder by the authors[END_REF] and Theorem 4.2 of [START_REF] Chesneau | Wavelet estimation via block thresholding : a minimax study under L p risk[END_REF].

If we do a global comparison between the results of Theorems 3.1 and 3.2, the rates of convergence achieved by ĝH (x) are better than the one achieved by ĝL (x). Moreover, let us recall that ĝH (x) is adaptive while ĝL (x) is not adaptive due to its dependence on s in its construction.

In comparison to the standard density estimation problem, the rates of convergence obtained in Theorems 3.1 and 3.2 are slower. To be more specific,

• for the wavelet linear estimation, the standard rate of convergence is n -s * p/(2s * +1) , against n -s * p/(2s * +4) in Theorem 3.1 (see [21, Section 10.2]).

• for the wavelet nonlinear estimation, the standard rate of convergence is similar to ϕ n but with "+1" instead of "+4" in the exponent (see [START_REF] Delyon | On minimax wavelet estimators[END_REF]).

The rest of the study proves that, under an additional assumption on g(x), the rates of convergence obtained above can be improved and be made equal to the standard one.

Improved results but with an additional assumption

We now introduce the following Lipschitz(1/2) assumption :

(A) there exists a constant C * > 0 such that, for any (x, y)

∈ [0, 1] 2 , |g(x) -g(y)| ≤ C * |x -y|.
Theorems 3.3 and 3.4 below show that, under (A), one can construct more efficients linear and hard thresholding wavelet estimators than those presented in Theorems 3.1 and 3.2.

Theorem 3.3. Let p ≥ 1. Suppose that (A) is satisfied and g ∈ B s r,q (M ) with s > 1/r, r ≥ 1 and q ≥ 1 such that min(s, s -1/r + 1/p) > 1/2. Set s * = min(s, s -1/r + 1/p) and ĝL (x) be as in (2.6) with j 0 being the integer such that

n 1/(2s * +1) < 2 j0+1 ≤ 2n 1/(2s * +1) .
Then there exists a constant C > 0 such that

E [0,1] |ĝ L (x) -g(x)| p dx ≤ Cn -s * p/(2s * +1) .
The proof is similar to the one of Theorem 3.1. The techniques involved in the proof make use of 135 statistical results on ĉj,k and dj,k derived by [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] for the estimation of the regression function . These statistical results justify the consideration of (A) and a restriction on j 0 , i.e., 2 j0 ≤ n/ ln(n).

Theorem 3.4. Let p ≥ 1. Suppose that (A) is satisfied. Let ĝH (x) be (2.7) with j 1 being the

integer satisfying n ln(n) < 2 j1+1 ≤ 2 n ln(n) ,
and λ j being the threshold :

λ j = κ ln(n) n , (3.2) 
where κ is a large enough constant (depending, among other, on C * and ψ). Suppose that g ∈ B s r,q (M ) with s > 1/r, r ≥ 1 and q ≥ 1. Then there exists a constant C > 0 such that

E [0,1] |ĝ H (x) -g(x)| p dx ≤ CΨ n ,
where

Ψ n =          ln(n) n sp/(2s+1) , for 2rs > (p -r), ln(n) n (s-1/r+1/p)p/(2s-2/r+1)
, for (r, s, p) ∈ D,

where D = {(r, s, q) ∈ [1, ∞) × (1/r, ∞) × [1, ∞); 1/2 + 1/r ≤ s ≤ (p -r)/(2r), r ≤ (p -2)/(2(s - 1/r) + 1)}.
The proof uses arguments similar to those in Theorem 3.2. Again, the main originality is the use of new statistical results on ĉj,k and dj,k derived from the results proved by [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF].

Let us remark that Ψ n corresponds to the standard rate of convergence for the standard density estimation problem via the hard thresholding wavelet method (see [START_REF] Delyon | On minimax wavelet estimators[END_REF]).

The next section explores the numerical performances of our wavelet estimators and compares them with the estimators developed by [START_REF] Jones | Estimating densities, quantiles, quantile densities and density quantiles[END_REF] and [START_REF] Soni | Nonparametric estimation of quantile density function[END_REF].

Simulation Study

We consider the Beta distribution and the Generalized Lambda Distributions (GLD). It is easy to see that when parameters in Beta distribution were chosen from (0, 1), the corresponding quantile density function satisfies all the conditions required to prove the results. On the other hand GLD has four different parameters, i.e., λ 1 , λ 2 , λ 3 and λ 4 . The parameters λ 1 and λ 2 are, respectively, location and scale parameters, while λ 3 and λ 4 determine the skewness and kurtosis of the GLD(λ 1 , λ 2 , λ 3 , λ 4 ), see [START_REF] Karian | Fitting statistical distributions : The Generalized lambda distribution and generalized bootstrap methods[END_REF]. [19, Section 3] noted that GLD is very rich in the variety of density and tail shapes. It contains unimodal, U-shaped, J-shaped and monotone probability density functions. These can be symmetric or asymmetric and their tails can be smooth, abrupt, or truncated, and long, medium or short depending on the choice of parameters. [24, page 43] showed that when λ 3 > 0 and

λ 4 > 0 the support of GLD is [λ 1 -1/λ 2 , λ 1 + 1/λ 2 ]
. On the other hand, it is easy to see from the closed form of the quantile function of GLD that when λ 3 > 1 and

λ 4 > 1, we have g ∈ L 2 ([0, 1]).
We consider performance of linear wavelet estimator ĝL (x) and the hard thresholding wavelet estimator ĝH (x) presented in Section 2 and compare them with a linear wavelet estimator after local linear smoothing ĝLS (x) proposed by [START_REF] Ramirez | Wavelet density estimation for stratified size-biased sample[END_REF]. The new smooth linear wavelet estimator has been adapted from [START_REF] Fan | Design-adaptive nonparametric regression[END_REF][START_REF] Fan | Local linear regression smoothers and their minimax efficiencies[END_REF]. [START_REF] Abbaszadeh | Nonparametric estimation of a density under bias and multiplicative censoring via wavelet methods[END_REF][START_REF] Abbaszadeh | Multiplicative censoring : estimation of a density and its derivatives under the L p -risk[END_REF], [START_REF] Chesneau | Wavelet linear density estimation for associated stratified size-biased sample[END_REF][START_REF] Chesneau | Nonparametric estimation of two dimensional continuous-discrete density function by wavelets[END_REF] and [START_REF] Shirazi | Wavelet based estimation for the derivative of a density by block thresholding under random censorship[END_REF][START_REF] Shirazi | Nonparametric regression estimates with censored data based on block thresholding method[END_REF] Estimation of quantile density GLD(0,7,7,7),n=200

Figure 1: Estimation of quantile density. The black curve is the true GLD, the blue dotted line is linear wavelet estimator, ĝL (x), the red dashed dot line is threshold wavelet estimator, ĝH (x), the green dashed line is smooth version of our estimator, ĝLS (x), the yellow line with circles is Jones' estimator, ĝj1 (x), and the magenta line with crosses is ĝS (x). and showed that it performs better than ĝL (x) in different applications. Let us mention that it depends on a bandwidth h(n) (equal to 0.15 if there is no mention). Integrals in wavelet coefficient estimators introduced in (2.4) and (2.5) have been approximated by Simpson's rule. Coarsest level, j 0 , is chosen as 5. The parameters j 1 and λ j are as given in Theorem 3.4 (according to the value of n). Following [START_REF] Ramirez | Wavelet density estimation for stratified size-biased sample[END_REF], the constant κ of threshold is chosen as a scaled absolute median of empirical wavelet coefficients. We employ Daubechies-Lagarias algorithm and write the codes in Matlab which are adapted from [START_REF] Ramirez | Wavelet density estimation for stratified size-biased sample[END_REF]. We compare these three estimators with ĝj1 (x) and ĝS (x), two estimators given in (1.4) and (1.6), respectively. Following [START_REF] Soni | Nonparametric estimation of quantile density function[END_REF], the kernel function chosen is Triangular, K(x) = (1 -|x|)1 {|x|≤1} and h(n) = 0.15 if there is no mention.

Figures 1, 2 and3 show the results of simulation for the Generalized Lambda Distributions : GLD(0,7,7,7), GLD(0.5,1,2,6) and the Beta distribution -Beta (0.5, 0.5), respectively. In each figure, the black curve is the true quantile density function, the blue dotted line is linear wavelet estimator ĝL (x), the red dashed dot line is threshold wavelet estimator ĝH (x), the green dashed line is smooth version of our estimator ĝLS (x), the yellow line with circles is Jones' estimator ĝj1 (x) and the magenta line with crosses is Soni-Dewan-Jain's estimator ĝS (x). From these three figures Next we consider the mean integrated square error (MISE) of the smooth linear estimator of the quantile density function ĝLS (x), ĝj1 (x) and ĝS (x) for Beta distributions (Beta (0.5, 0.5)) and Generalized Lambda Distributions (GLD) GLD(0,7,7,7), GLD(0.5,2,1.5,1.5), GLD(0,1.5,1.

Table 1 shows the estimation of Mean Integrated Square Error (MISE) for GLDs for four different choices of parameters and Beta(0.5, 0.5). The results in this Table 1 are based on 500 replications and sample sizes n = 200 and n = 500. We use the formula :

M ISE = n -1 500(n + 1) 2 500 i=1 n j=1 fi j n + 1 -f j n + 1 2 ,
where fi is the quantile density estimator in ith replication and f is true quantile density function.

Tables 2, 3 and 4 show the Mean Square Error (MSE) for different choices of fixed x ∈ [0, 1] and different bandwidth parameters : h(n) = 0.15, 0.19, 0.25. We calculate the MSE of these estimators by generating 500 samples from GLD(0.5,1,2,6), Beta (0.5,0.5) and GLD(0,7,7,7), respectively. The sample size in each case is n = 200.

From Figures 123and Tables 1-4 we conclude that (i) our wavelet based estimator performs well in estimation of unknown quantile density. The performance of smooth version of linear wavelet estimator works the best.

(ii) our wavelet estimators perform well in the tails whereas [START_REF] Soni | Nonparametric estimation of quantile density function[END_REF] observed that the competitors 

Proofs of the auxiliary results

Proof of Lemma 5.1. Note that (φ j,k (

x)) = 2 3j/2 φ (2 j x -k) and K = sup x∈[0,1] |φ (x)| < ∞.
The mean value theorem gives, for any (x, y)

∈ [0, 1] 2 , |φ j,k (x) -φ j,k (y)| ≤ 2 3j/2 K|x -y|. Therefore |ĉ j,k -c j,k | = [0,1] φ j,k ( F (x)) -φ j,k (F (x)) dx ≤ [0,1] |φ j,k ( F (x)) -φ j,k (F (x))|dx ≤ C2 3j/2 [0,1] | F (x) -F (x)|dx. (5.1)
Using the Hölder inequality and the Fubini theorem, we have

225 E((ĉ j,k -c j,k ) 2p ) ≤ C2 3jp E   [0,1] | F (x) -F (x)|dx 2p   ≤ C2 3jp [0,1] E ( F (x) -F (x)) 2p dx .
The Rosenthal inequality (see [START_REF] Rosenthal | On the subspaces of L p (p ≥ 2) spanned by sequences of independent random variables[END_REF]) yields

E ( F (x)) -F (x)) 2p ≤ C (1 -F (x)) 2p F (x) + (F (x)) 2p (1 -F (x)) n 2p-1 + (F (x)(1 -F (x))) p n p ≤ C 1 n p . Hence E((ĉ j,k -c j,k ) 2p ) ≤ C2 3jp 1 n p .
Working with ψ instead of φ, we show that

E(( dj,k -d j,k ) 2p ) ≤ C2 3jp 1 n p .
The proof of Lemma 5.1 is complete.

Proof of Lemma 5.2. By (5.1) with ψ instead of φ, we obtain

230 | dj,k -d j,k | ≤ K2 3j/2 [0,1] | F (x) -F (x)|dx ≤ K2 3j/2 sup x∈[0,1] | F (x) -F (x)|, with K = sup x∈[0,1] |ψ (x)|.
It follows from the Massart version of the Dvoretzky-Kiefer-Wolfowitz inequality (see [START_REF] Dvoretzky | Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator[END_REF] and [START_REF] Massart | The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality[END_REF]) and the definition of λ j (3.1) that

P | dj,k -d j,k | ≥ λ j 2 ≤ P K2 3j/2 sup x∈[0,1] | F (x) -F (x)| ≥ 1 2 K2 3j/2 2p ln(n) n ≤ P sup x∈[0,1] | F (x) -F (x)| ≥ p 2 ln(n) n ≤ 2 exp   -2n p 2 ln(n) n 2   = 2 1 n p .
This ends the proof of Lemma 5.2.

Proof of Lemmas 5. ). Let us mention that for the validity of results we need to suppose (A) and a restriction on j is considered in our study, i.e., 2 j ≤ n/ ln(n).

Proofs of the main results

Proof of Theorem 3.1. We expand g on the wavelet basis W as g(x) = On the other hand, using g ∈ B s r,q (M ) and proceeding as in [14, eq. ( 24)], we have immediately G ≤ C2 -j0s * p .

(5.4) It follows from (5.2), (5.3), (5.4) and the definition of j 0 that

E [0,1] |ĝ L (x) -g(x)| p dx ≤ C 2 4j0 n p/2
+ 2 -j0s * p ≤ Cn -s * p/(2s * +4) .

This ends the proof of Theorem 3.1.

The general form of Theorem 5.1 can be proved using arguments similar to Theorem 5.1 of [START_REF] Kerkyacharian | Thresholding algorithms, maxisets and well concentrated bases (with discussion and a rejoinder by the authors[END_REF] for a bound of the L p -risk and Theorem 4.2 of [START_REF] Chesneau | Wavelet estimation via block thresholding : a minimax study under L p risk[END_REF] for the determination of the rates of convergence.

Proof of Theorem 3. 

  we conclude that the smooth version of the proposed wavelet estimators is closer to the unknown 0 density GLD(0.5,1,2,6),n=200

Figure 2 :

 2 Figure2: Estimation of quantile density. The black curve is the true GLD, the blue dotted line is linear wavelet estimator, ĝL (x), the red dashed dot line is threshold wavelet estimator, ĝH (x), the green dashed line is smooth version of our estimator, ĝLS (x), the yellow line with circles is Jones' estimator, ĝj1 (x), and the magenta line with crosses is ĝS (x).

3

  Estimation of quantile density Beta(0.5,0.5),n=200

Figure 3 :

 3 Figure3: Estimation of quantile density. The black curve is the true Beta (0.5,0.5), the blue dotted line is linear wavelet estimator, ĝL (x), the red dashed dot line is threshold wavelet estimator, ĝH (x), the green dashed line is smooth version of our estimator, ĝLS (x), the yellow line with circles is Jones' estimator, ĝj1 (x), and the magenta line with crosses is ĝS (x).
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 1314 and (1.6) suffer from boundary effect. (iii) in majority of cases, the MSEs for the smooth version of the wavelet estimator are smaller than those of the competitors. (iv) the MSEs and MISEs decrease as the sample size increases. (v) the MSEs are bigger for x close to the tails. 200 (vi) the MISEs of smooth version of wavelet estimators are smaller than the MISEs of the competitors.

3 and 5 . 4 .

 54 By the change of variablex = Q(y), let us observe that dj,k -d j,k = [0,1] ψ j,k ( F (x)) -ψ j,k (F (x)) dx = [0,1] ψ j,k ( Û (x)) -ψ j,k (x) g(x)dx, U i = F (X i ).Then the proofs of Lemmas 5.3 and 5.4 follow from the technical part of [26, Subsection 9.2.2. 235 pages 1093 -1098] with g instead of f (G -1

2 j 0 - 1 k=0c2 j - 1 k=0d2 j 0 - 1 k=0E2 j 0 - 1 k=0E 2 ≤

 11112 j0,k φ j0,k (x) + ∞ j=j0 j,k ψ j,k (x), where c j0,k = [0,1] g(x)φ j0,k (x)dx and d j,k = [0,1] g(x)ψ j,k (x)dx. Hence ĝL (x) -g(x) = 2 j 0 -1 k=0 (ĉ j0,k -c j0,k )φ j0,k (x)k ψ j,k (x).Using the inequality : |x + y| p ≤ 2 p-1 (|x| p + |y| p ), (x, y) ∈ R 2 , we obtainE [0,1] |ĝ L (x) -g(x)| p dx ≤ 2 p-1 (F + G), ,k -c j0,k )φ j0,k (x) k ψ j,k (x) p dx.Using a L p norm result on wavelet series (see[START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF] Proposition 8.3]), the Cauchy-Schwarz in-240 equality and Lemma 5.1, we obtainF ≤ C2 j0(p/2-1) (|ĉ j0,k -c j0,k | p )≤ C2 j0(p/2-1) (ĉ j0,k -c j0,k ) 2p 1/C2 j0(p/2-1) 2 j0 2 3j0p/2 1 n p/2 = C

3 .j0 n p/ 2 + 2 -

 322 The proof follows step by step the one of Theorem 3.1 with the use of Lemma 5.3 instead of Lemma 5.1. Thanks to the new definition of j 0 , we finally obtainE [0,1] |ĝ L (x) -g(x)| p dx ≤ C 2 j0s * p ≤ Cn -s * p/(2s * +1) .Proof of Theorem 3.4. The proof follows along the lines of that of Theorem 3.2 with the use of Lemmas 5.3 and 5.4 instead of Lemmas 5.1 and 5.2, and an adjustment on the rates of convergence as in[START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] Proposition 2]. This minor modification is due to our definition of j 1 .

Table 1 :

 1 MISE for different estimators based on 500 replications

	Estimator	GLD(0,7,7,7)	GLD(0.5,2,1.5,1.5) GLD(0.1.5,1.5,1.5)	GLD(0.5,1,2,6)	Beta(0.5,0.5)
		n=200	n=500	n=200	n=500	n=200	n=500	n=200	n=500	n=200	n=500
	ĝLS (x)	0.0078 0.0067 0.0101 0.0050 0.0189 0.0093 0.1149 0.0886 0.0252 0.0167
	ĝj1 (x)	0.0268	0.0273	0.0648	0.0521	0.1088	0.0797	0.4718	0.2798	0.1259	0.1011
	ĝS (x)	0.0512	0.0530	0.0127	0.0064	0.0256	0.0127	0.3758	0.3343	0.0604	0.0459
	quantile density function as compared to the other four estimators we have studied.		

Table 2

 2 MSEs (Standard Deviation) based on 500 replications and n=200, GLD(0.5,1,2,6)

	h(n)

Table 3

 3 MSEs (Standard Deviation) based on 500 replications and n=200, Beta(0.5,0.5)

	h(n)

Table 4

 4 

		MSEs (Standard Deviation) based on 500 replications and n=200, GLD(0,7,7,7)
				h(n)	
	x	estimate	0.15	0.19	0.25
	0.01	ĝLS (x)	0.0581(0.0425)	0.0741(0.0391)	0.1084(0.0375)
		ĝj1(x)	0.3120(0.0349)	0.1223(0.0337)	0.1648(0.0229)
		ĝS (x)	0.4556(0.0339)	0.5246(0.0189)	0.5338(0.0116)
	0.1045	ĝLS (x)	0.0021(0.0029)	0.0026(0.0031)	0.0048(0.0041)
		ĝj1(x)	0.0524(0.0125)	0.0426(0.0087)	0.0261(0.0054)
		ĝS (x)	0.0408(0.0099)	0.0492(0.0068)	0.0480(0.0043)
	0.2040	ĝLS (x)	0.0022(0.0015)	0.0035(0.0017)	0.0045(0.0020)
		ĝj1(x)	0.0014(0.0007)	0.0001(0.0001)	0.0030(0.0009)
		ĝS (x)	0.0008(0.0006)	0.0003(0.0003)	0.0044(0.0011)
	0.4030	ĝLS (x)	0.0028(0.0014)	0.0068(0.0019)	0.0151(0.0025)
		ĝj1(x)	0.0218(0.0014)	0.0340(0.0016)	0.0587(0.0019)
		ĝS (x)	0.0220(0.0015)	0.0344(0.0017)	0.0596(0.0020)
	0.6020	ĝLS (x)	0.0038(0.0017)	0.0081(0.0022)	0.0165(0.0024)
		ĝj1(x)	0.0212(0.0014)	0.0333(0.0016)	0.0578(0.0018)
		ĝS (x)	0.0214(0.0015)	0.0337(0.0017)	0.0587(0.0020)
	0.8010	ĝLS (x)	0.0039(0.0018)	0.0049(0.0017)	0.0053(0.0018)
		ĝj1(x)	0.0020(0.0009)	0.0002(0.0002)	0.0021(0.0007)
		ĝS (x)	0.0013(0.008)	0.0001(0.0002)	0.0032(0.0009)
	0.9005	ĝLS (x)	0.0023(0.0034)	0.0031(0.0039)	0.0055(0.0044)
		ĝj1(x)	0.0563(0.0141)	0.0476(0.0102)	0.0304(0.0058)
		ĝS (x)	0.0478(0.0108)	0.0572(0.0076)	0.0558(0.0046)
	0.99	ĝLS (x)	0.782(0.0534)	0.0877(0.0464)	0.1155(0.0370)
		ĝj1(x)	0.0324(0.0374)	0.1275(0.0376)	0.1667(0.0240)
		ĝS (x)	0.4416(0.0365)	0.5134(0.0200)	0.5240(0.0121)
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Proofs

Auxiliary results

The following lemmas show several statistical properties (moments and concentration inequalities) of the estimators ĉj,k and dj,k given in (2.4) and (2.5), respectively. The proofs or appropriate references are given in the next sub-section.

Lemma 5.1. Let p ≥ 1, ĉj,k be defined by (2.4) and dj,k be defined by (2.5). Then

• there exists a constant C > 0 such that

• there exists a constant C > 0 such that

Lemma 5.2. Let p ≥ 1, dj,k be defined by (2.5) and λ j be defined by (3.1). Then

Lemma 5.3. Suppose that (A) is satisfied. Let p ≥ 1, j such that 2 j ≤ n/ ln(n), ĉj,k be defined by (2.4) and dj,k be defined by (2.5). Then

• there exists a constant C > 0 such that

• there exists a constant C > 0 such that

Lemma 5.4. Suppose that (A) is satisfied. Let p ≥ 1, j such that 2 j ≤ n/ ln(n), dj,k be defined by (2.5) and λ j be defined by (3.2). Then

In the rest of the paper, we use C to denote positive constants whose value may change from line to line.

Proof of Theorem 3.2. Theorem 3.2 is a consequence of Theorem 5.1 below with ν = 3/2 and Lemmas 5.1 and 5.2 above.

Theorem 5.1. Let h ∈ L 2 ([0, 1]) be an unknown function to be estimated from n observations and consider its wavelet decomposition. Let ĉj,k and dj,k be estimators of these wavelet coefficients c j,k and d j,k respectively. We suppose that there exist three constants ν > 0, C > 0 and κ > 0 such that 250 the following inequalities hold :

Moments inequalities : for any j ≥ τ such that 2 j ≤ n and k ∈ {0, . . . , 2 j -1},

Concentration inequality : for any j ≥ τ such that 2 j ≤ n/ ln(n) and k ∈ {0, . . . , 2 j -1},

Let us define the hard thresholding wavelet estimator of h by ĥ(x) =

where j 1 is the integer satisfying

.

Suppose that h ∈ B s r,q (M ) with s > 0, r ≥ 1 and q ≥ 1. Then there exists a constant C > 0 such that

, for rs > (ν + 1/2)(p -r), ln(n) n (ln(n)) (p-r/q)+ , for rs = (ν + 1/2)(p -r).