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1. Introduction

Motivation. Quantile density function, the derivative of the quantile function,
comes up in the study of lifetime and survival data. The expression for the
limiting variance of some nonparametric estimators of the quantile function
involves the quantile density function. Nonparametric estimators of the quantile
density function have been studied by Parzen (1979), Jones (1992) and Soni et
al. (2012). Most of these estimators underperform at the tails. Hence there is a
need to look at alternate estimators.

On the quantile function. Quantiles are often used for statistical modeling
and analysis of data. Measures based on quantiles are less influenced by outliers.
Hence they are particularly useful in the study of lifetime data and also for
studying heavy tailed distributions. Sometimes the distribution function of the
random variable of interest can not be expressed in a closed form. However, the
quantile function can be written in an explicit form, for example, Generalised
Lambda distribution (GLD) and Skew logistic distribution (see Gilchrist (2000)
and Karian and Dudewicz (2000)). Quantiles are useful in modeling data as sum
and product of two quantile functions is again a quantile.

The quantile function approach has been used in exploratory data analy-
sis, applied statistics, reliability and survival analysis (see, for example, Reid
(1981), Slud et al. (1984), Su and Wei (1993), Nair et al. (2008), Nair and
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Chesneau/Nonparametric estimation of a quantile density function 2

Sankaran (2009) and Sankaran and Nair (2009), Sankaran, Dewan and Sreedevi
(2015)). Soni, Dewan and Jain (2015a, 2015b) have developed multiple compar-
ison procedures for quantile functions. It has been used for hypothesis testing in
competing risks by Peng and Fine (2007), Jeong and Fine (2009) and Sankaran
et al. (2010).

Let X be a continuous random variable with cumulative density function
F(x), density function f(z) and hazard function r(x). The quantile function of
X is defined as

Q(x) = F~Y(z) = inf{y € R; F(y) >z}, z € [0,1].

It satisfies F(Q(x)) = x. Parzen (1979) and Jones (1992) defined g(z) = Q'(x)
as the quantile density function corresponding to quantile function Q(z). Dif-
ferentiating (1), we get

(@) = 7

g\xr) = )
f(Q(z))

Note that the sum of two quantile density functions is again a quantile density

function. This idea is useful in modeling data. Nair and Sankaran (2009) defined
the hazard quantile function

x € [0,1]. (1.1)

F(Q)) 1
R@) =rQ@) = 150wy ~ T=09@)

z € (0,1).
Hence g(x) appears in the expression for hazard quantile function and it would
be useful to study nonparametric estimators of this unknown quantile density
function.

Overview of previous works. Let X7, X5, ..., X,, be iid random variables
from distribution F(x) defined on a probability space (92, 4,P). Jones (1992)
suggested the following two smooth estimators of the quantile density function.

- 1
571 T)=———, X 0,1, 12
9" (x) 0w € [0,1] (1.2)

where f(z) is a kernel type density estimator of the form:

J(@) = nhl(n) ;K(xh_(ni(l)’

where h(n) is the bandwidth and K (.) an appropriate kernel function, and Q(x)
is the usual empirical estimator of Q(x).

To be more specific, the kernel K(.) is a real valued function satisfying the
following properties:

(i) K(u) >0 for all u € R,
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(i) [7 K(u)du=1,

(iii) K(.) has finite support,

(iv) K(.) is symmetric about zero,

(v) K(.) satisfies Lipschitz condition, that is, there exists a positive constant
C such that |K(u) — K(v)| < Clu —v|.

The bandwidth h(n) satisfies

(1) h(n) — 0 as n — oo,

(ii) nh(n) — oo as n — oo.

Another estimator of quantile density function given by Jones (1992) is

g2 (x) = iX<i>(Kh<n>($*i;1)’KM")(“’”*%))
=2

= Z(X(i) — X(i-1)) Kn(n) (m — 1)

- n
=2

- X Knmy(@— 1)+ X0)Kpoy(x),  x€[0,1],  (1.3)

where X ;) is the i""order statistic, i = 1,2,...,n.
Jones (1992) and Soni et al. (2012) showed that the performance of the esti-
mator of g(x) given by (1.2) is better that of the estimator given by (1.3).
Soni et al. (2012) proposed the following smooth estimator of the quantile
density function:

g Lot -y .
§S(a) = h(n)/o K(h(n))if@(t))dt, € [0,1], (1.4)

where K (.) is a kernel and h(n) is the bandwidth sequence satisfying conditions
listed above. Let us mention that (1.4) can be expressed as

n

X 1 1 Si t—ux
gs(x)zmzif(X(i))/s K(W)dt,

=1 i—1

where S; is the proportion of observations less than or equal to X(;, the ith

order statistic. Using the mean value theorem, for small S; — S;_1,

~S - 1 - Si — X 1
70 = 25 G ) ey

Contributions. In this paper, we explore a different approach by considering
estimators based on projects on a wavelet basis of the (crude) form:

§(@) = amem(x),  x€0,1],
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where G, denotes an estimator of the coefficient a,, = [ g(z)en(x)dz and
{em}m forms the wavelet basis. Such basis is of interest, thanks to its local-
ization in space and frequency properties. For the standard nonparametric esti-
mation problems in density, regression,. . . . wavelet estimators outperform kernel
estimators in representing discontinuities (edges, spikes,...). Basics on wavelet
estimation can be found in Hardle et al. (1998).

In this study, we develop two kinds of wavelet estimators for the quantile
density function g: a linear one based on simple projections and a nonlinear one
based on a hard thresholding rule. Our wavelet hard thresholding estimator has
the feature to be adaptive according to g(z). Let us mention that, due to the
choice of a,, considered, our estimators belong to the family of ”"warped wavelet
basis” estimators introduced by Kerkyacharian and Picard (2004) in another
statistical context - regression problem with random design. Under smoothness
assumptions on g(x), we determine the rates of convergence of the proposed
estimators under the L, risk. The rates of convergence obtained are those estab-
lished in the standard density estimation problem via wavelet hard thresholding
(see Hardle et al. (1998)). A simulation study is done to compare our estimators
to those proposed by Jones (1992) and Soni et al. (2012).

Paper organization. The rest of this paper is organized as follows. In the
next section, we present our wavelet estimators. The main theoretical results
are described in Section 3. Section 4 is devoted to the numerical performances
of our estimators. The proofs of the technical results appear in Sections 5. We
end with a concluding remark.

2. Wavelet estimators

Wavelet expansion. We define the spaces L, ([0, 1]), p > 1, by

L,([0,1]) = {h L10,1] > R; /[0 I < oo} .

For the purpose of the paper, we consider an orthonormal wavelet basis of
L2 ([0, 1]) associated with the initial wavelet functions ¢ and ) of the Daubechies
wavelets db2N, where N denotes a positive integer. The functions ¢ and ) are
compactly supported and continuously differentiable.

For any = € R,

Gin(x) = 22920 — k), yu(x) = 20/2)(2x — k).

Then, with an appropriate treatment at the boundaries, there exists an integer
T satisfying 27 > 2N such that, for any £ > 7, the system

W = {¢er; k€{0,....2° —1}; ¥ k€ {0,...,27 =1}, j > ¢}

is an orthonormal basis of Lo ([0, 1]).
For convenience, we suppose that X is compactly supported, say X;(Q2) =
[0, 1], and that F' is continuous and strictly monotone from [0, 1] to [0, 1].

imsart-generic ver. 2009/12/15 file: quantile_may-24.tex date: May 24, 2015



Chesneau/Nonparametric estimation of a quantile density function 5

Let us suppose that g € L2([0,1]). Hence, for any integer ¢ > 7, we have the
following wavelet expansion on W:

21 oo 291
g(x) = Z co ke k() + Z Z dj k). k(2), r € [0,1],
k=0 j=t k=0
where
cu= [ s@ondn  du= [ g@vad. @)
[0,1] 0,1]

All the technical details can be found in, e.g., Cohen et al. (1993) and Mallat
(2009). Note that our study can be extended for any interval of the form [a, b]
with a < b finite.

Wavelet coefficients estimators. The wavelet coefficients c; 3 and d; ; are
unknown and need to be estimated. Our approach is based on the following
remark: by the change of variable z = F'(y), we can rewrite c; , as

1
Cik = /[011] g(x)pjk(x)dr = /[071] m¢j7k($)d$ = | ojk(F(x))dx.

0,1

Similarly
dj = /[ () (2.2)
0,1

Since F' is unknown, we estimate it by the empirical estimator:
1 n
im

where 1 is the indicator function.
This leads the following integral estimator for c; :

Gk = bjn(F(x))dz. (2.3)
[0,1]

The analog estimator for d; j, is

djp = ¥ x(F(z))dz. (2.4)
[0,1]

Due to the composition of the element of the wavelet basis with F(z), &4
and dAjJC can be viewed as ”"warped wavelet basis” coefficient estimators. Such
estimators was introduced by Kerkyacharian and Picard (2004) in a regression
with random design framework. Improvements and modern developments can
be found in Chagny (2013a,b) for the same regression model, and Chagny and
Lacour (2015) for the relative density estimation problem (with trigonometric
basis).
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Chesneau/Nonparametric estimation of a quantile density function 6

Remark 2.1. Clearly, c; and d; are not unbiased estimators for c; and
dj1. However, using the dominated convergence theorem, one can prove that
they are asymptotically unbiased. Moreover, they satisfy power moments and
concentration inequalities. See Lemmas 5.1, 5.2, 5.3 and 5.4 below.

Based on ¢, (2.3) and d;; (2.4), we consider two kinds of wavelet estima-
tors for g(z): a linear wavelet estimator gy, (z) and a hard thresholding wavelet
estimator gy (), both defined below.

Linear wavelet estimator. We define the linear wavelet estimator §r,(x)
by

2901

gL(z) = Z éj07k¢j07k(z)a T € [Oa 1]) (25)

k=0

where jp is a positive integer chosen a posteriori (see Theorems 3.1 and 3.3).

Hard thresholding wavelet estimator. We define the hard thresholding
wavelet estimator gy (x) by

271 J1 291
g]—](l') = Z ér,k¢r,k(z) + Z Z dj,k]-{wj’k‘zﬁkj}q/}j,k(x)v T e [07 1]7 (26)
k=0 j=7 k=0

where ¢, and chJC are defined by (2.3) and (2.4), 1 is the indicator function,
Jj1 is a positive integer and A; represents a threshold. Both j; and A; will be
chosen a posteriori (see Theorems 3.2 and 3.4)

The construction of g (z) exploits the sparse nature of the wavelet decompo-
sition of g(x): only the wavelet coefficients d; ; with large magnitude contain the
main information (in terms of details) of g. Hence gy (x) aims to only estimate
the larger coeflicients, and to remove the other (or estimate it by 0). Further
aspects and explanation related to this selection techniques can be found in
Antoniadis (1997), Hérdle et al. (1998) and Vidakovic (1999).

As usual in wavelet estimation, we will suppose that the unknown function
g(x) belongs to Besov balls defined below.

Besov balls. Let M >0, s >0, r > 1 and ¢ > 1. For the sake of simplicity,
we say that g(z) belongs to the Besov ball B; (M) if there exists a constant
M* > 0 (depending on M) such that (2.1) satisfy

. 1/r q 1/q
oo 27 -1
Z 2j(s+1/2—1/7‘) Z |dk|T S]\4>¢<7
J=T k=0

with the usual modifications if r = co or ¢ = 0.

In this expression, s is a smoothness parameter and r and ¢ are norm param-
eters. Details on Besov balls can be found in Meyer (1992) and (Hérdle et al.,
1998, Chapter 9).
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3. Theoretical results
3.1. First results

This section is devoted to the study of performance of wavelet estimators §r,(x)
and gp (z).

Theorem 3.1 determines the rates of convergence attained by §r(x) under
the L,-risk over Besov balls.

Theorem 3.1. Let p > 1. Assume that g € Liax(r,2)([0,1]) N B} (M) with
s>1/r,r>1and g > 1. Set s, =min(s,s — 1/r +1/p) and let §r(x) be as in
(2.5) with jo being the integer such that

nl/(25*+4) < 2j0+1 S 2”1/(25*+4).

Then there exists a constant C > 0 such that
E (/ |9z (x) — g(z)|pdz> < Cpsep/(25.44)
[0,1]

The proof is based on statistical properties of ¢;; and dAjJC (see Lemmas 5.1
and 5.2), and technical bounds related to wavelet series and the L, norm. At
this stage, let us consider the rate of convergence n~5+?/(25++4) a5 a benchmark.
This aspect will be discuss later.

Theorem 3.2 explores the rates of convergence of §p(x) under the L,-risk
over Besov balls.

Theorem 3.2. Let p > 1 and gu be as in (2.6) with j1 being the integer

satisfying » »
n » n
— 271t < 2
(wtm) <2 =2(5m)

and A\; being the threshold:

= K202 /o [0 (3.1)

with K = sup,¢(o 1 [V ()]
Suppose that g € Liax(r,2)([0,1]) N By (M) with s > 1/r, r > 1 and ¢ > 1.
Then there exists a constant C > 0 such that

E ( /H () — g(zw’dz) < Con,

where
<1n(n) sp/(25+4) | for — rs>2(p—r),
o = <@ (s—1/r+1/p)p/(2s—2/r+4) | o e
n
<1H(Tn)) (s=1/r+1/p)p/(25—2/r+4) (In(n))®="/D+ for rs = 2(p— 7).
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The proof is based on statistical properties of ¢;; and chJC (see Lemmas 5.3
and 5.4), and a general result on the L, risk of the hard thresholding wavelet
estimator which can be proved by combining (Kerkyacharian and Picard, 2000,
Theorem 5.1) and (Chesneau, 2008, Theorem 4.2).

If we do a global comparison between the results of Theorems 3.1 and 3.2,
the rates of convergence achieved by gg(x) is better than the one achieved by
Jr.(x). However, in comparison to the standard density estimation problem, the
obtained rates of convergence in Theorems 3.1 and 3.2 are slower. To be more
specific,

e for the wavelet linear estimation, the standard (and optimal one in the
minimax sense) is n~**P/(25=+1) against n =P/ (25+4) in Theorem 3.1 (see
(Hardle et al., 1998, Section 10.2)).

e for the wavelet nonlinear estimation, the standard one is similar to ¢,
but with ”+1” instead of ”+4” in the exponent (see Delyon and Juditsky
(1996)).

The rest of the study proves that, under additional assumptions on g(z), the ob-
tained rates of convergence can be improved and be made equal to the standard
one.

3.2. Improved results but with an additional assumption

We now introduce the following Lipschitz(1/2) assumption:
(A) there exists a constant C, > 0 such that, for any (z,y) € [0,1]?,

lg(z) — g(y)| < Cur/]z —yl.

Theorems 3.3 and 3.4 below show that, under (A), one can construct more
efficients linear and hard thresholding wavelet estimators than those presented
in Theorems 3.1 and 3.2.

Theorem 3.3. Let p > 1. Suppose that (A) is satisfied and g € By (M)
with s > 1/r, v > 1 and ¢ > 1 such that min(s,s — 1/r + 1/p) > 1/2. Set
S« = min(s,s — 1/r 4+ 1/p) and gr.(x) be as in (2.5) with jo being the integer
such that

pl/@s-41) < gjo+l < op1/(2s.+1).

Then there exists a constant C' > 0 such that

E (/ lgr(z) — g(:z:)|pdac> < O~ s+P/ (25 1)
[0,1]

The proof is similar to the one of Theorem 3.1. The techniques involved in the
proof make use of statistical results on ¢;; and chJC derived by Kerkyacharian
and Picard (2004) for the regression function estimation. These statistical results
justify the consideration of (A) and a restriction on jo, i.e., 290 < /n/In(n).

imsart-generic ver. 2009/12/15 file: quantile_may-24.tex date: May 24, 2015



Chesneau/Nonparametric estimation of a quantile density function 9

Theorem 3.4. Letp > 1. Suppose that (A) is satisfied. Let gy (x) be (2.6) with
j1 being the integer satisfying

n » n
| —— < 2tt <2
In(n) < - In(n)’

and \; being the threshold:

>‘j =K 5 (32)

where K is a large enough constant (depending, among other, on Cy and ).
Suppose that g € By (M) with s > 1/r, r > 1 and q > 1. Then there exists a
constant C' > 0 such that

E ( /H () — g(m)lpdw> <cw,,

where
1 SP/(23+1)
( n(n) , for 2rs > (p—r),
_ n
n = 1 (s=1/r+1/p)p/(25—2/r+1)
(M) Cfor (nsp)ED,
n
where D = {(r,s,q) € [1,00) x (1/r,00) X [1,00); 1/2+1/r < s < (p —

/@), 1< (p - 2)/(2(s - 1/r) +1)}.

The proof uses arguments similar to those in Theorem 3.2. Again, the main
originality is the use of new statistical results on ¢;; and cij,  derived to results
proved by Kerkyacharian and Picard (2004).

Let us remark that ¥, correspond to the standard rate of convergence for
the standard density problem via the hard thresholding wavelet method (see
Delyon and Juditsky (1996)).

The next section explores the numerical performances of our wavelet estima-
tors and compare them with the estimators developed by Jones (1992) and Soni
et al. (2012).

4. Simulation Study

We consider performance of linear wavelets estimator gz, (x) and the hard thresh-
olding wavelets estimator g, (z) presented in Section 3 and compare them with
a linear wavelet estimator after local linear smoothing proposed by Ramirez and
Vidakovic (2010). The new smooth linear wavelet estimator has been adapted
from Fan (1992, 1993). Chesneau et al. (2012, 2014), Shirazi et al. (2012, 2013)
and Abbaszadeh et al. (2012, 2013) showed that the performances of this version
of wavelet estimators perform better in different applications.
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In this section we consider the mean integrated square error (MISE) of the
smooth linear estimator for Beta distributions and Generalized Lambda Dis-
tributions (GLD). It is easy to see when parameters in beta distribution were
chosen from (0,1) the corresponding quantile density satisfies all conditions re-
quired to prove the results. On the otherhand GLD has four different parameters,
i.€., A1, A2, A3 and \g. The parameters A\; and )y are, respectively, location and
scale parameters, while A3 and A4 determine the skewness and kurtosis of the
GLD(A1, A2, Az, \4), see Karian and Dudewicz (2000). Freimer et al. (1988, sec-
tion 3) noted that GLD is very rich in the variety of density and tail shapes. It
contains unimodal, U-shaped, J-shaped and monotone probability density func-
tions. These can be symmetric or asymmetric and their tails can be smooth,
abrupt, or truncated, and long, medium or short depending on the choice of
parameters. Karian and Dudewicz (2000, page 43) show that when A3 > 0 and
A4 > 0 the support of GLD is [Ay — 1/A2, A1 + 1/X2]. On the other hand, it
is easy to see from the closed form of the quantile function of GLD that when
Az > 1 and Ay > 1, we have g € Ly([0,1]).

In this section we compare the performance of our proposed wavelet based
estimators with two competitors ¢7'(x) and §°(x) given by (1.2) and (1.4),
respectively. Integrals in wavelets coefficients estimators introduced in (2.3) and
(2.4) have been approximated by Simpson’s rule. Following Soni et al. (2012) the
kernel function chosen is Triangular, k(x) = (1—|x|)1{4/<1}, and the bandwidth
is h(n) = 0.15.

Figures 1, 2 and 3 show the results of simulation for the Generalized Lambda
Distributions : GLD(0,7,7,7), GLD(0.5,1,2,6) and the Beta distribution : Beta
(0.5, 0.5), respectively. The black curve is the true quantile density function,
the blue line is the linear wavelet estimator, the red line is threshold wavelet
estimator, the green line is smooth version of our estimator (SL), the yellow
line is Jones’ estimator and the magenta line is Soni-Dewan-Jain’s estimator
(SDJ). From these two figures we conclude that the smooth version of the pro-
posed wavelet estimators is closer to the unknown quantile density function as
compared to other four estimators we have studied.

Tables 1, 2 and 3 show mean square errors (MSEs) for different choices of fixed
x € [0,1] and different bandwidth parameters : h,, = 0.15,0.19,0.25. We calcu-
late the MSE of these estimators by generating 500 samples from GLD(0,7,7,7),
GLD(0.5,1,2,6) and Beta (0.5,0.5), respectively. The sample size is n = 200.
Table 4 shows the estimation of MISE for GLDs for four different choices of
parameters and Beta(0.5, 0.5). The results in this Table 4 are based on 500
replications and sample size n = 200 and n = 500.

From Figures and Tables we conclude that

(i) our wavelet based estimator perform well in estimation of unknown quantile
density. The performance of smooth version of linear wavelet estimator
works the best.

(i) while the competitors of (1.2) and (1.4) suffer from boundary effect, wavelet
estimators peform well in the tails.

(iii) in majority of the cases, the MSEs for smooth version of wavelet estimator
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Estimation of quantile density GLD(0.5,1,2,6),n=200
8 T T T T T T T

Fic 1. Estimation of quantile density. The black curve is the true GLD,the blue line is linear
wavelet estimator, the red line is threshold wavelet estimator,the green line is smooth version
of our estimator, the yellow line is Jones’ estimator and the magenta line is Soni-Dewan-
Jain’s estimator.

are smaller than those of competitors.

(iv) the MSEs and MISE decrease as the sample size increases.

(v) the MSEs are bigger for x closed to the tails.

(vi) the MISE of smooth version of wavelet estimators are smaller than the
MISE of the competitors.
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Estimation of quantile density GLD(0,7,7,7),n=200
16 T T T T T T

F1a 2. Estimation of quantile density. The black curve is the true GLD,the blue line is linear
wavelet estimator, the red line is threshold wavelet estimator, the green line is smooth version

of our estimator, the yellow line is Jones’ estimator and the magenta line is Soni-Dewan-
Jain’s estimator.
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Estimation of quantile density Beta(0.5,0.5),n=200
3 T T T T T T T

Fic 3. Estimation of quantile density. The black curve is the true Beta (0.5,0.5),the blue
line is linear wavelet estimator, the red line is threshold wavelet estimator, the green line is
smooth version of our estimator, the yellow line is Jones’ estimator and the magenta line is
Soni-Dewan-Jain’s estimator.
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Table 1 MSEs (Standard Deviation) based on 500 replications and n=200, GLD(0,7,7,7)
h(n)
X estimate 0.15 0.19 0.25
0.01 SL 0.0581(0.0425) 0.0741(0.0391) 0.1084(0.0375)
Jones 0.3120(0.0349) 0.1223(0.0337) 0.1648(0.0229)
SDJ 0.4556(0.0339) 0.5246(0.0189) 0.5338(0.0116)
0.1045 SL 0.0021(0.0029) 0.0026(0.0031) 0.0048(0.0041)
Jones 0.0524(0.0125) 0.0426(0.0087) 0.0261(0.0054)
SDJ 0.0408(0.0099) 0.0492(0.0068) 0.0480(0.0043)
0.2040 SL 0.0022(0.0015) 0.0035(0.0017) 0.0045(0.0020)
Jones 0.0014(0.0007) 0.0001(0.0001) 0.0030(0.0009)
SDJ 0.0008(0.0006) 0.0003(0.0003) 0.0044(0.0011)
0.4030 SL 0.0028(0.0014) 0.0068(0.0019) 0.0151(0.0025)
Jones 0.0218(0.0014) 0.0340(0.0016) 0.0587(0.0019)
SDJ 0.0220(0.0015) 0.0344(0.0017) 0.0596(0.0020)
0.6020 SL 0.0038(0.0017) 0.0081(0.0022) 0.0165(0.0024)
Jones 0.0212(0.0014) 0.0333(0.0016) 0.0578(0.0018)
SDJ 0.0214(0.0015) 0.0337(0.0017) 0.0587(0.0020)
0.8010 SL 0.0039(0.0018) 0.0049(0.0017) 0.0053(0.0018)
Jones 0.0020(0.0009) 0.0002(0.0002) 0.0021(0.0007)
SDJ 0.0013(0.008) 0.0001(0.0002) 0.0032(0.0009)
0.9005 SL 0.0023(0.0034) 0.0031(0.0039) 0.0055(0.0044)
Jones 0.0563(0.0141) 0.0476(0.0102) 0.0304(0.0058)
SDJ 0.0478(0.0108) 0.0572(0.0076) 0.0558(0.0046)
0.99 SL 0.782(0.0534) 0.0877(0.0464) 0.1155(0.0370)
Jones 0.0324(0.0374) 0.1275(0.0376) 0.1667(0.0240)
SDJ 0.4416(0.0365) 0.5134(0.0200) 0.5240(0.0121)
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Table 2 MSEs (Standard Deviation) based on 500 replications and n=200, GLD(0.5,1,2,6)
h(n)
X estimate 0.15 0.19 0.25
0.01 SL 1.5244(1.4414) 1.9204(1.4104) 2.5767(1.3743)
Jones 9.1864(21.656) 10.467(22.298) 10.115(20.877)
SDJ 9.4850(2.2242) 10.418(1.7664) 11.719(1.4807)
0.1045 SL 0.1027(0.1373) 0.1263(0.1635) 0.1595(0.1787)
Jones 0.9224(1.8540) 0.6914(1.2891) 0.4624(0.9149)
SDJ 0.1396(0.1615) 0.3028(0.2442) 0.7100(0.2998)
0.2040 SL 0.0609(0.0633) 0.0904(0.0727) 0.1278(0.0897)
Jones 0.2605(0.3657) 0.2045(0.3190) 0.1622(0.2456)
SDJ 0.0767(0.1019) 0.0536(0.0748) 0.0556(0.0595)
0.4030 SL 0.0682(0.0601) 0.1515(0.0758) 0.2929(0.0776)
Jones 0.0387(0.0638) 0.0322(0.0579) 0.0253(0.0460)
SDJ 0.0261(0.0405) 0.0313(0.0473) 0.0437(0.0513)
0.6020 SL 0.0165(0.0219) 0.0296(0.0263) 0.0580(0.0324)
Jones 0.0358(0.0548) 0.0293(0.0442) 0.0222(0.0423)
SDJ 0.0205(0.0270) 0.0173(0.0248) 0.0145(0.0234)
0.8010 SL 0.0127(0.0176) 0.0127(0.0176) 0.0134(0.0190)
Jones 0.0829(0.1376) 0.0566(0.0882) 0.0358(0.0540)
SDJ 0.0287(0.0361) 0.0183(0.0249) 0.0107(0.0147)
0.9005 SL 0.0478(0.0615) 0.0527(0.0672) 0.0553(0.0673)
Jones 0.0853(1403) 0.0600(0.0858) 0.0405(0.0953)
SDJ 0.0365(0.0499) 0.0431(0.0549) 0.0785(0.0634)
0.99 SL 0.1761(0.2068) 0.1566(0.1840) 0.1333(0.1587)
Jones 2.2551(2.7919) 2.2150(2.9676) 0.4694(2.3519)
SDJ 0.5055(0.2449) 0.5793(0.2201) 0.6505(0.1897)
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Table 3 MSEs (Standard Deviation) based on 500 replications and n=200, Beta(0.5,0.5)
h(n)
X estimate 0.15 0.19 0.25
0.01 SL 0.0477(0.0678) 0.0665(0.0816) 0.1253(0.1202)
Jones 0.7728(2429) 0.9684(0.2820) 1.2762(0.3435)
SDJ 0.1847(0.0532) 0.2204(0.0577) 0.2780(0.0649)
0.1045 SL 0.0231(0.0357) 0.0255(0.0399) 0.0414(0.0556)
Jones 0.0937(0.0580) 0.1663(0.0792) 0.3074(0.1169)
SDJ 0.0860(0.0619) 0.1083(0.0660) 0.1403(0.0700)
0.2040 SL 0.0142(0.0190) 0.0128(0.0174) 0.0125(0.0174)
Jones 0.0332(0.0409) 0.0175(0.0278) 0.0114(0.0197)
SDJ 0.0193(0.0252) 0.0151(0.0247) 0.0253(0.0347)
0.4030 SL 0.0288(0.0291) 0.0516(0.0309) 0.0912(0.0287)
Jones 0.0738(0.0412) 0.0471(0.0591) 0.0421(0.0565)
SDJ 0.0350(0.0446) 0.0342(0.0396) 0.0416(0.0403)
0.6020 SL 0.0365(0.0352) 0.0571(0.0338) 0.0999(0.0364)
Jones 0.0646(0.0888) 0.0502(0.0616) 0.0478(0.0663)
SDJ 0.0364(0.0457) 0.0317(0.0379) 0.0385(0.0405)
0.8010 SL 0.0169(0.0218) 0.0157(0.0212) 0.0151(0.0207)
Jones 0.0319(0.0507) 0.0132(0.0175) 0.0113(0.0178)
SDJ 0.0195(0.0297) 0.0176(0.0255) 0.0289(0.0333)
0.9005 SL 0.0136(0.0240) 0.0170(0.0250) 0.0210(0.0277)
Jones 0.1110(0.0618) 0.1994(0.0862) 0.3351(0.1155)
SDJ 0.0989(0.0658) 0.1308(0.0693) 0.1538(0.0643)
0.99 SL 0.0218(0.0367) 0.0386(0.0521) 0.0684(0.0628)
Jones 0.7654(0.2416) 0.9902(0.2863) 0.2495(0.2813)
SDJ 0.2062(0.0585) 0.2484(0.0633) 0.2954(0.0603)
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TABLE 1
MISE for different estimators based on 500 replications

Estimator GLD(0,7,7,7) GLD(0.5,2,1.5,1.5) | GLD(0.1.5,1.5,1.5) GLD(0.5,1,2,6) Beta(0.5,0.5)

n=200 n=500 n=200 n=500 n=200 n=500 n=200 n=>500 n=200 n=500
SL 0.0078 | 0.0067 | 0.0101 0.0050 0.0189 0.0093 0.1149 | 0.0886 | 0.0252 | 0.0167
Jones 0.0268 0.0273 0.0648 0.0521 0.1088 0.0797 0.4718 0.2798 0.1259 0.1011
SDJ 0.0512 0.0530 0.0127 0.0064 0.0256 0.0127 0.3758 0.3343 0.0604 0.0459

5. Proofs

5.1. Auxziliary results

The following lemmas show several statistical properties (moments and concen-

tration inequalities) of the estimators ¢; 5 (2.3) and d;; (2.4). The proofs or

appropriate references are given in the next sub-section.

Lemma 5.1. Let p > 1, ¢ be defined by (2.3) and J]k be defined by (2.4).

Then

e there exists a constant C > 0 such that

1
E((éjyk - ijk)Qp) S CQBJP—.

o there exists a constant C > 0 such that

. 1
E(dy — di)) < O

npbP

npbP

Lemma 5.2. Let p > 1, chJC be defined by (2.4) and A; be defined by (3.1).

] In(n)\?
P (|dj — sl = 3) <2 <#) _

Lemma 5.3. Suppose that (A) is satisfied. Let p > 1, j such that 27 <
n/1n(n), é;, be defined by (2.3) and d; i be defined by (2.4). Then

Then

o there exists a constant C > 0 such that

R 1
E((Cng — Cj7k)2p) < Cﬁ

o there exists a constant C > 0 such that

. 1
E((dj — djx)) < C—.
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Lemma 5.4. Suppose that (A) is satisfied. Let p > 1, j such that 27 <
v/n/In(n), d; i be defined by (2.4) and \; be defined by (3.2). Then

ZENg

n

P (|Czj,k —dji| 2 )\j) <2 (

In the rest of the paper, we use C to denote positive constants whose value
may change from line to line.

5.2. Proofs of the auxiliary results

Proof of Lemma 5.1. Note that (¢;x(x)) = 2%/2¢/(27x — k) and K =

SUP,eo,1] [#'(2)| < co. The mean value theorem gives, for any (z,y) € [0, 1],

g x(2) — djn(y)] < 292K |z — y.

Therefore

ik — cil = |/[0 . (¢j1k(ﬁ(z)) - ¢]—,k(F(z))) dx

IN

/[0 | 6s(E @) P

IN

02%/2 /[0 : |F(z) — F(z)|dz. (5.1)

Using the Holder inequality and the Fubini theorem, we have

C2PPE ( /[O . B (z) — F(x)|dx>

Co3ip ( /M E ((F(z) - F(x))%) d:c) .

The Rosenthal inequality (see Rosenthal (1970)) yields

E((&,x — ¢j1)")

IN

IN

E ((F(2) - F()*)
- c <<1 ~FIP P+ PO - FE) (F(:c)(le(zW)
< o
Hence

1
E((&jx — cjx)?P) < 0233175_
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Working with 1 instead of ¢, we show that

. 1
E((dj — djx)*) < C297—.

The proof of Lemma 5.1 is complete. 0O

Proof of Lemma 5.2. By (5.1) with ¢ instead of ¢, we obtain

\djs. — dji|

IN

K259/ /[O . \F(z) — F(x)|da

IN

K2%/2 sup |F(x) - F(x)],
z€[0,1]

with K = sup,co,1) [/ (2)]. It follows from the Dvoretzky-Kiefer-Wolfowitz in-
equality (see Dvoretzkyet al. (1959)) and the definition of A; (3.1) that

. A;
P (Idayk —djk| = gj)

) . 1 , |

< P(K2%/2 sup |F(z) — F(z)| > =K2%/2,/2py/ In(n)

z€[0,1] 2 n

N 1
< B s (P - F) 2 2y

ZE[O,l] 2 n
/1 ’ 1 1 P
< 2exp|-2n <\/E M) :2_§2(n(n)) .
2 n np n
This ends the proof of Lemma 5.2. 0O

Proof of Lemmas 5.3 and 5.4. By the change of variable z = Q(y), let us
observe that

dAjyk - dj,k = /[0 . (T/JJ,k(F(SC)) — 1/)],1@(F(:E))) dx
= DU () = ¢jn(x) ) g(x)da,
Jo )

with
N 1 <
Ulx) = — 1. <21, U; = F(X;).
(x) =~ Z; {Ui<a} (X3)
Then the proofs of Lemmas 5.3 and 5.4 follow from the technical part of (Kerky-
acharian and Picard, 2004, Subsection 9.2.2. pages 1093 - 1098) with ”¢” instead

of 7 f(G=1)” Let us mention that for the validity of results we need to suppose
(A) and a restriction on j considered in our study, i.e., 27 < /n/In(n). 0
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5.3. Proofs of the main results

Proof of Theorem 3.1. We expand g on the wavelet basis W as

2701 o 27-1
2) =Y Corbion(@) + > Y djnthin(x)
k=0 Jj=Jjo k=0
where ¢j, = f[o 11 9(@)Bjo i (x)da and dj j, = fo 1) 9(@) ) (w)dr. Hence
270 _1 oo 29-1
gr(z) —g(z) = Z (6307 — Cjo,k ¢J07 Z Z d; 1kw.71
k=0 Jj=jo k=0

Using the inequality: |z + y|P < 2P~ 1(|z|P + |y|P), (z,y) € R?, we obtain

E </ |9 () — g(w)lpdw> <27YF +Q), (5.2)
[0,1]

where
290 1 P
F=E / > (Ciok = Ciok)bjo k()| da

0.1 1=

and
co 29-1 P
= [ |2 diwvisto| e
0.1 |i=j, k=0

Using a L, norm result on wavelet series (see (Hérdle et al., 1998, Proposition
8.3)), Lemma 5.1 and the Cauchy-Schwarz inequality, we obtain

270 1
C20®/2D N E (12, 1 — ¢y il?)
k=0
270 1
C2do(p/2-1) Z (E ((éjo,k - Cjoyk)Qp))l/Q
k=0

F

IN

IN

IN

(5.3)

9430 )p/2

C290(p/2=1)9jo93jor/2 _~ _ _ (7 (
np/2 n

On the other hand, using g € B} (M) and proceeding as in (Donoho et al.,
1996, eq (24)), we have immediately

G < 02770%+P, (5.4)

It follows from (5.2), (5.3), (5.4) and the definition of j, that

: </[0,1] 191(x) — 9($)|pd:c> <c <<2:
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This ends the proof of Theorem 3.1.
O

Proof of Theorem 3.2. Theorem 3.2 is a consequence of Theorem 5.1 below
with v = 3/2 and Lemmas 5.1 and 5.2 above.

Theorem 5.1. Let h € L2([0,1]) be an unknown function to be estimated from
n observations and consider its wavelet decomposition. Let ¢; 1 and d; . be esti-
mators of these wavelet coefficients c; i, and d; j, respectively. We suppose that

there exist three constants v > 0, C > 0 and v > 0 such that the following
inequalities hold:

Moments inequalities: for any j > 7 such that 27 < n and k € {0,...,27 —

1}7

E (6 — ¢j0)) < C22¥P (ln(_n))p

n

and

E ((dj,k - dj,k)2p) < 02279P (M)p

n

Concentration inequality: for any j > 7 such that 29 < n/In(n) and k €

{0,...,27 — 1},
P <|‘jj,k —djrl = gQVj hl(Tn)> <C <1n(Tn)>”.
Let us define the hard thresholding wavelet estimator of h by
271 1 29-1
h(z) = ];) Cr e () +FZT ];) djykl{wj’k‘mw@}%k(z), z €[0,1],

where j1 is the integer satisfying

1/(2041) 1/(2v+1)
_n < 9iitl « 9 n )
In(n) ~— \Un(n)

Suppose that h € Bﬁyq(M) with s >0, r > 1 and q > 1. Then there exists a
constant C' > 0 such that

E </[0,1] |h($) — h($)|pd$> < C(_)n,ua
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where
1 sp/(2s+2v+1)
( n7(1n) , for rs>w+1/2)(p—r),
1 (s—=1/r+1/p)p/(2s—2/r+2v+1)
On,y = (# : for  rs<(w+4+1/2)(p—r),

(ln(n))(pf’”/q)ﬂ for rs=w+1/2)(p—r).

(M) (s=1/r+1/p)p/(2s—2/r+2v+1)
n

The general of form of Theorem 5.1 can be proved using arguments similar to
(Kerkyacharian and Picard, 2000, Theorem 5.1) for a bound of the L,-risk and
(Chesneau, 2008, Theorem 4.2) for the determination of the rates of convergence.

O

Proofs of Theorem 3.3. The proof follows step by step the one of Theo-
rem 3.1 with the use of Lemma 5.3 instead of Lemma 5.1. Thanks to the new
definition of jy, we finally obtain

9o p/2 )
E / g (x) — g(a)|Pdz | < C (_) 49 dossp | < Opm8+P/(2841)
(0,1] n

Proofs of Theorem 3.4. The proof follows the one of Theorem 3.2 with the
used of Lemmas 5.3 and 5.4 instead of Lemmas 5.1 and 5.2, and an adjustment
on the rates of convergence as in (Kerkyacharian and Picard, 2004, Proposition
2). This minor modification is due to our definition of j;.

O

O

6. Conclusions

We have proposed wavelet based estimators for the quantile density function
enjoying nice theoretical and practical properties. For the choice of parameters
considered, there is significant improvement in the tails - especially for very
small and very large values of the quantiles. We have used empirical estimator
of the distribution function for estimating the wavelet coefficients. One could
possibly use other smooth estimators of the distribution function, say the kernel
type estimator, and define another class of estimators.
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