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ARTICLE INFO ABSTRACT 
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We propose a modelling of phase segregations, inspired by image filtering, 

and dedicated to electrochemical systems. This original approach is 

compared to previous experimental results and enhanced with the 

concepts of 2D segregation and site percolation threshold. 

 

1. Introduction 

 

Since their discovery in 1946 [1,2], self-assembled monolayers (SAMs) have become an ideal system for the 

theoretical study of interfacial phenomena [3]. In the field of electrochemistry, there is clear evidence that 

electrochemical interfacial reactivity depends on the 2D distribution of electroactive sites adsorbed on a 

conducting solid surface. 

Random distribution and phase segregation have been discussed in literature but very few papers have 

proposed a modelling of non-random distributions. In electrochemistry, the electrostatic model of Smith and 

White [4], then refined by Yoneyama et al. [5] with inclusion of the potential-independent by ion pairing and 

triple-ion formation, provided an analytical expression for the interfacial potential distribution, predicting the 

current-voltage shape, explaining a broadening and shifts of formal potentials of voltammetric waves (CVs). 

However, electrostatic approaches, involving intricate mathematical treatments and only dedicated to 

random distribution, are difficult to use. Without an "as clear" physical approach, the lateral interaction model 

[6] has been extended to any spatial distribution by introducing the statistical parameter , that quantifies the 

local intersite interactions [7]. For a given distribution, this model enabled current-voltage behaviors to be 

simulated and allowed extracting characteristics parameters  p pE , i  and FWHM  of CVs. Unfortunately, 

because of its local nature, the parameter  do not allow to characterize the phase segregation as a whole. 

Here, we propose an original approach of phase segregations inspired by image filtering and we attempt to 

describe the concept of phase segregation by indicators from various scientific fields. 

 

2. Extended lateral interactions model 

 

To summarize previous works, the generalized lateral interactions model is defined according to the main 

following hypotheses [6,7,8,9,10]: 

 The electroactive centers are distributed on substrate with a unimodal statistical distribution. A 

parameter    , between 0 and 1, defined for a normalized surface coverage  , quantifies the 
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nearest redox neighbors of the electroactive centers. For a random distributed SAM,      , and 

when a phase segregation exist on the surface, ( )    . 

 The sum of normalized surface coverage 
O  and R

 of oxidized (O) and reduced (R) species is 

constant and equal to  , 

 The surface occupied by O is equal to the surface occupied by R, 

 The electrochemical rate constant 
sk  is independent of the coverage, 

 
OO RR ORa , a  and a  are the interaction constants between molecules of O and R. ija , independent of 

the potential and distribution, is positive for an attraction and negative for a repulsion. 

For 
sk  , CVs are fully reversible and the parameters as full width at half maximum (FWHM), peak 

potential  pE  and peak current  pi  are defined as: 

    '
p 0

RT
E E S

nF
                 (1) 

  
  

2 2
m

p

n F vA
i ,

RT 2 2 G

 
   

  
          (2) 

  
 

   
G 1 RT 3 2

FWHM 2ln 2 2 3 G
nF 2

    
        

 
        (3) 

 OO RR OR RR OOwith G a a 2a and S a a Gand S   2       

 

3. Numerical models 

 

A mixed SAM can numerically be approached by an n-by-n matrix (M) composed of pixels: a pixel "1" (P1) 

for a site occupied by a redox species and a pixel "0" (P0) for a non-electroactive species (i.e. a diluent). The 

ratio between the number of P1 (NP1) and the dimension of the matrix (i.e. n
2
) corresponds to the normalized 

surface coverage of electroactive species  (i.e. P1

2

N

n
  ) [10]. 

 

3.1. Generated numeric distributions 

 

To compute a set of images with different 2D distributions, we performed three operations. 

First, an n-by-n matrix (MRND) of pseudorandom uniform values is generated on the open interval (0,1). 

Second, the matrix MRND is convoluted once or several times with a 2-D digital filter [i.e. a median filter, a 

square or circular averaging filter (later called disk), a rotationally symmetric Gaussian low pass filter, a 

Savitzky-Golay filter... etc.] in order to generate an n-by-n filtered matrix (MFiltered) of smoothing values on the 

open interval (0,1) and centered to 0.5. 

Last, a set of binary matrix M is extracted from the filtered matrix by a basic binary thresholding, expressed 

as: 

 


 


Filtered1 if M (i, j) THRESHOLD
M i, j

0 otherwise
        (4) 

Note that: 
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 THRESHOLD parameter varies on the open interval (0,1), 

 A given threshold generates a binary matrix at a given P1/P0 ratio (i.e. a normalized surface 

coverage ), 

 Threshold =  only for a random matrix MRND, 

 All calculations, performed with MATLAB
®
, are stable, convergent and quasi-independent of 2-D 

filter, 

 The accuracy of results increases with the size of matrix and is high from n=1000. 

As shown on figure 1, a succession of two-dimensional normalized convolution increases the smoothing 

effect and the images suggest a phase segregation. Note that the fractal dimension, estimated from box-

counting method, of binary images does not depend on the number of convolutions for a given P1/P0 ratio, 

which means that the smoothing effect preserves the random character of binary matrix whatever the scale. 

 

3.2. Estimation of     parameter 

 

A dimensionless quantity , representative of the average number of lateral interactions per electroactive site 

is estimated by counting, for each P1 pixel, the P1 nearest neighbors, expressed as: 

 

M (i,j)×Nθ i j M =binary matrix for a givenP1/P0 ratioθ1 i j
(θ)= . with N  = number of nearest neighboursi jK M (i,j)Lattice θ K = 8Latticei j



   



 


    (5) 

 

Figure 2A represents variations of  parameter vs.  for successive two-dimensional normalized 

convolutions. 

We can notice that the variations of  vs.  cover the whole area where a phase segregation is expected (i.e. 

   ). As a reminder, the     area is inaccessible because there is nothing more random than a random 

distribution.

In addition, two successive convolutions with a 3-by-3 disk filter agree with the CNT distribution [7,10] and 

with experimental data [7] (Figure 2B). 

Based on a bayesian approach which assumes that unknown parameters (i.e. smoothing effect) come from 

known distributions (i.e. random distribution),  vs.  could be approximated to the probability cumulative 

density function of the beta distribution (BetaCDF), for 0 1  , expressed as: 

 
 

 

11

0
1

11

0

. 1

. 1

t t dt

t t dt






 














          (6) 

Figure 2C provides evidence of a good agreement between numerical and mathematical approaches. There 

is no clear physical or statistical interpretation of  and  parameters. Mathematically,  varies between the 

two boundaries (i.e. 0 for a full segregation and 1 for a random distribution). The radius of curvature mainly 

depends on , reflecting the strength of the phase segregation (Figure 2D). By contrast,  modifies the 

curvature of the asymptote at = 1. 
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3.3. Connected-component labelling approach 

 

To evaluate the behavior of clusters, we used the well-known connected-component labelling, an algorithmic 

application of graph theory dedicated to detect connected regions in binary digital images. This algorithm 

traverses the binary matrix, labelling the vertices based on the connectivity (4 or 8-connected) and relative 

values of their neighbors. 

For each binary matrix on a 4-connected connectivity, the numbers of clusters (NC) has been estimated 

versus . Note that a high number of clusters implies that their size is small and thus the number of clusters 

of a random distribution will always be higher than the one of a phase segregation, for a same value of . 

NC vs.  reaches to a maximum because the lower and upper limits are  CN 0 0   and  CN 1 1    

respectively and successive convolutions increase the size of clusters, while decreasing their number. The 

relative variation of number of clusters NC (i.e. 
 

 
P1 C

C

P1

N N
N

N
) versus  quantifies the clusters growth 

(Figure 3A). As expected, NC vs.  is a monotonic increasing curve in the semi-open interval (0,1), 

increasing with successive convolutions. 

In keeping with the Johnson-Mehl-Avrami-Kolmogorov formalism [11], dedicated to describe how solids 

transform from one phase (state of matter) to another at constant temperature, and the classical nucleation 

theory, NC vs.  could be approximated to a transformation "kinetic" (i.e. 
 





t
1

) of one phase (P0) 

from another (P1) by the growth of clusters and modelled by an Avrami equation [12], expressed as: 

  
     

   

n

CN 1 exp K
1

          (7) 

Figure 3B shows a good agreement between numerical data and equation 7. There is no clear physical 

interpretation of the Avrami constants K and n but it is recognized that n reflects the nature of the 

transformation (Figure 3C). 

As the connected-component labelling algorithm computes the numbers and the size of clusters of binary 

matrix, the variation of the largest clusters normalized to NP1 versus  allows estimating the site percolation 

threshold (i.e. the value from which all pixels P1 are interconnected) for a given number of loops (Figure 

3D). The threshold of random distribution agrees with the one of a square lattice (i.e. 0.593) [13] then it 

decreases with successive convolutions to reach a lower limit (i.e. 0.50). 

Beyond the threshold, all pixels P1 form only one phase whatever the distribution, which can play a crucial 

role on the charge transport on SAMs [14]. 

 

3.4. 2D segregation 

 

Attempting to develop a physical model is premature without a clear interpretation because the phase 

segregation is a large and complicated issue, governed, amongst others, by the interplay of coulombic 

repulsion, pairing ions and solvatation (for instance in electrochemical field, see reference [15]). Moreover, it 

is well-known that Ising spin models in physical field and random Markow fields (close to the Schelling 

model) in mathematical field involve very intricate mathematical treatments without analytical solution [16]. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

A solution, which has its origins in the information field, could be a statistical approach of the 2D segregation 

(S) according to the entropy (H) defined by Shannon [17], then refined by Kapur and Kesavan [16], 

expressed as: 

   
 

i j i j i jLatticeLattice

2
i j Lattice Lattice Lattice Lattice

i j

1 N 1 N K NK 11
S 1 H 1 ln ln

1 K 1 K 1 K 1 Kn ln 2

N = number of nearest neighbours of P0 and P1

with S 0 perfect blend of P0 andP1(i.e.

      
          

           

 



a

S 1 full segr

chessboard

egatio

)

n




  

   8 

As expected, S(0) and S(1) are equal to 1 and S vs.  reaches to a minimum value at  = 0.5, which 

increases with successive convolutions to converge towards S=1 (Figure 4A). Because equation 8 takes into 

account the 2D segregation of all pixels (i.e. P0 and P1) and because the successive convolutions preserve 

the random character of binary matrix, S vs.  is a symmetric curve. It is notable that the shape of S vs. , 

that can be approximated by a probability density function of the beta distribution (Figure 4B), is independent 

of successive convolutions (Figure 4C and 4D). Should it be related to the independence of the fractal 

dimension with the convolution? 

Contrary to generally accepted ideas, this entropic approach suggests that the 2D segregation (S>0) exists 

whatever the distribution, even to a random distribution therefore. 

 

4. Conclusion 

 

Based on this work, it appears possible to link the notion of local intersite interactions ( vs.  and, to date, 

only reachable by electrochemistry) to the concept of phase segregation (S vs. ) and thus, to estimate, via 

abacus (figures 2A and 4A respectively), the percentage of 2D segregation of a mixed SAM from 

electrochemical data. 

The connected-component labelling associated to the valuation of the site threshold percolation should 

enable to better understand the mechanisms of charge-transport on SAMs. 

We hope that this approach will provide tools to assist in establishing detailed structure-reactivity 

relationships for interfacial reactions on SAMs, especially on mixed SAMs. 
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Number of loops  = 20 %  = 50%  = 80 % 

0 

(random) 
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10 

   

100 

   

1000 

   
 

Figure 1: set of 5000-by-5000 binary matrix (10 x zoom - P0 = black color and P1 = white color) obtained 

with an 3-by-3 averaging filter (i.e. all elements equal to 1/9) 
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Figure 2: 

(A)  vs.  extracted from successive two-dimensional normalised convolution (0 to 500) of random matrix 
and 3-by-3 2-D disk filter. 

(B) FWHM vs.  for CNT distribution, two successive convolution of random matrix and 3-by-3 2-D disk filter 
and experimental extracted from figure 4 of reference 6 (see equation 3 for the relationship between FWHM 

and ). 

(C) Using the Levenberg–Marquardt algorithm,  was modelled by the probability cumulative density function 

of the beta distribution and the best fit was named Modelled. 

(D)  and  parameters extracted from the fitting of  vs.  and BetaCDF function. 
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Figure 3: 

(A) NClusters vs.  extracted from successive two-dimensional normalised convolution (0 to 500) of random 
matrix and 2-D disk filter. 

(B) Using the Levenberg–Marquardt algorithm, NClusters was modelled by the KJMA formalism and the best 

fit was named Modelled NClusters. 

(C) n and K parameters extracted from the fitting of NClusters vs.  and "Avrami" function. 

(D) Site percolation threshold vs. Number of loops. Insert: Normalised larger cluster vs.  extracted from 
successive two-dimensional normalised convolution (0 to 100) of random matrix and 2-D disk filter. 
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Figure 4:  

(A) S vs.  extracted from successive two-dimensional normalised convolutions (0 to 500) of random matrix 
and 2-D disk filter and compared to a random distribution. 
(B) Using the Levenberg–Marquardt algorithm, H (i.e. S = 1 - H) was modelled by the probability density 

function of the beta distribution  
 

 

11

1
11

0

1
BetaDF : S 1 k

t . 1 t dt





 
 

    
 

  
 



 and the best fit 

 
 
1/ 6

1
i.e. S 1 k . with 2
  

        
 

 was named SModelled. 

(C) 1-(1-S)/max(1-S) vs.  extracted from successive two-dimensional normalised convolutions (0 to 500) of 
random matrix and 2-D disk filter and compared to a random distribution. 

(D) { k , min(S) } vs. Number of loops extracted from figure 4A and from the fitting of S vs.  and BetaDF 
function. 
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Highlights:  

 

 

2D segregation on mixed SAM is modelled by image filtering and percolation theory. 

Local intersite interactions and 2D segregation are linked. 

2D segregation persists in a random distribution. 

The modelling agrees with experimental data. 

 

 


