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We propose a modelling of phase segregations, inspired by image filtering, and dedicated to electrochemical systems. This original approach is compared to previous experimental results and enhanced with the concepts of 2D segregation and site percolation threshold.

Introduction

Since their discovery in 1946 [START_REF] Bigelow | Films adsorbed from solution in nonpolar liquids[END_REF][START_REF] Nuzzo | Adsorption of bifunctional organic disulfides on gold surfaces[END_REF], self-assembled monolayers (SAMs) have become an ideal system for the theoretical study of interfacial phenomena [START_REF] Love | Self-assembled monolayers of thiolates on metals as a form of nanotechnology[END_REF]. In the field of electrochemistry, there is clear evidence that electrochemical interfacial reactivity depends on the 2D distribution of electroactive sites adsorbed on a conducting solid surface.

Random distribution and phase segregation have been discussed in literature but very few papers have proposed a modelling of non-random distributions. In electrochemistry, the electrostatic model of Smith and White [4], then refined by Yoneyama et al. [START_REF] Ohtani | Voltammetric Response Accompanied by Inclusion of Ion Pairs and Triple Ion Formation of Electrodes Coated with an Electroactive Monolayer Film[END_REF] with inclusion of the potential-independent by ion pairing and triple-ion formation, provided an analytical expression for the interfacial potential distribution, predicting the current-voltage shape, explaining a broadening and shifts of formal potentials of voltammetric waves (CVs).

However, electrostatic approaches, involving intricate mathematical treatments and only dedicated to random distribution, are difficult to use. Without an "as clear" physical approach, the lateral interaction model [START_REF] Laviron | Surface linear potential sweep voltammetry: Equation of the peaks for a reversible reaction when interactions between the adsorbed molecules are taken into account[END_REF] has been extended to any spatial distribution by introducing the statistical parameter , that quantifies the local intersite interactions [START_REF] Aleveque | Electroactive self-assembled monolayers: Laviron's interaction model extended to non-random distribution of redox centers[END_REF]. For a given distribution, this model enabled current-voltage behaviors to be simulated and allowed extracting characteristics parameters   pp E , i and FWHM of CVs. Unfortunately, because of its local nature, the parameter  do not allow to characterize the phase segregation as a whole.

Here, we propose an original approach of phase segregations inspired by image filtering and we attempt to describe the concept of phase segregation by indicators from various scientific fields.

Extended lateral interactions model

To summarize previous works, the generalized lateral interactions model is defined according to the main following hypotheses [START_REF] Laviron | Surface linear potential sweep voltammetry: Equation of the peaks for a reversible reaction when interactions between the adsorbed molecules are taken into account[END_REF][START_REF] Aleveque | Electroactive self-assembled monolayers: Laviron's interaction model extended to non-random distribution of redox centers[END_REF][START_REF] Laviron | General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[END_REF][START_REF] Laviron | General expression of the linear potential sweep voltammogram for a surface redox reaction with interactions between the adsorbed molecules: Applications to modified electrodes[END_REF][START_REF] Aleveque | Phase segregation on electroactive selfassembled monolayers: a numerical approach for describing lateral interactions between redox centers[END_REF]:

 The electroactive centers are distributed on substrate with a unimodal statistical distribution. A parameter    , between 0 and 1, defined for a normalized surface coverage  , quantifies the 
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Numerical models

A mixed SAM can numerically be approached by an n-by-n matrix (M) composed of pixels: a pixel "1" (P1)

for a site occupied by a redox species and a pixel "0" (P0) for a non-electroactive species (i.e. a diluent). The ratio between the number of P1 (N P1 ) and the dimension of the matrix (i.e. n

2 ) corresponds to the normalized surface coverage of electroactive species  (i.e.

P1 2

N n 

) [START_REF] Aleveque | Phase segregation on electroactive selfassembled monolayers: a numerical approach for describing lateral interactions between redox centers[END_REF].

Generated numeric distributions

To compute a set of images with different 2D distributions, we performed three operations.

First, an n-by-n matrix (M RND ) of pseudorandom uniform values is generated on the open interval (0,1).

Second, the matrix MRND is convoluted once or several times with a 2-D digital filter [i.e. a median filter, a square or circular averaging filter (later called disk), a rotationally symmetric Gaussian low pass filter, a Savitzky-Golay filter... etc.] in order to generate an n-by-n filtered matrix (M Filtered ) of smoothing values on the open interval (0,1) and centered to 0.5.

Last, a set of binary matrix M  is extracted from the filtered matrix by a basic binary thresholding, expressed as:

        Filtered 1 if M (i, j) THRESHOLD M i, j 0 otherwise (4)
Note that: As shown on figure 1, a succession of two-dimensional normalized convolution increases the smoothing effect and the images suggest a phase segregation. Note that the fractal dimension, estimated from boxcounting method, of binary images does not depend on the number of convolutions for a given P1/P0 ratio, which means that the smoothing effect preserves the random character of binary matrix whatever the scale.
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Estimation of    parameter

A dimensionless quantity , representative of the average number of lateral interactions per electroactive site is estimated by counting, for each P1 pixel, the P1 nearest neighbors, expressed as:

  M (i,j) × N θ i j M = binary matrix for a given P1/P0 ratio θ 1 ij (θ)= . with N = number of nearest neighbours ij K M (i,j) Lattice θ K = 8 Lattice ij           (5) 
Figure 2A represents variations of  parameter vs.  for successive two-dimensional normalized convolutions.

We can notice that the variations of  vs.  cover the whole area where a phase segregation is expected (i.e.

).

As a reminder, the    area is inaccessible because there is nothing more random than a random distribution.

In addition, two successive convolutions with a 3-by-3 disk filter agree with the CNT distribution [START_REF] Aleveque | Electroactive self-assembled monolayers: Laviron's interaction model extended to non-random distribution of redox centers[END_REF][START_REF] Aleveque | Phase segregation on electroactive selfassembled monolayers: a numerical approach for describing lateral interactions between redox centers[END_REF] and with experimental data [START_REF] Aleveque | Electroactive self-assembled monolayers: Laviron's interaction model extended to non-random distribution of redox centers[END_REF] (Figure 2B).

Based on a bayesian approach which assumes that unknown parameters (i.e. smoothing effect) come from known distributions (i.e. random distribution),  vs.  could be approximated to the probability cumulative density function of the beta distribution (BetaCDF), for 01    , expressed as:

      1 1 0 1 1 1 0 .1 .1 t t dt t t dt                (6) 
Figure 2C provides evidence of a good agreement between numerical and mathematical approaches. There is no clear physical or statistical interpretation of  and  parameters. Mathematically,  varies between the two boundaries (i.e. 0 for a full segregation and 1 for a random distribution). The radius of curvature mainly depends on , reflecting the strength of the phase segregation (Figure 2D). By contrast,  modifies the curvature of the asymptote at = 1.
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ACCEPTED MANUSCRIPT

Connected-component labelling approach

To evaluate the behavior of clusters, we used the well-known connected-component labelling, an algorithmic application of graph theory dedicated to detect connected regions in binary digital images. This algorithm traverses the binary matrix, labelling the vertices based on the connectivity (4 or 8-connected) and relative values of their neighbors.

For each binary matrix on a 4-connected connectivity, the numbers of clusters (N C ) has been estimated versus . Note that a high number of clusters implies that their size is small and thus the number of clusters of a random distribution will always be higher than the one of a phase segregation, for a same value of .

N C vs.  reaches to a maximum because the lower and upper limits are ) versus  quantifies the clusters growth (Figure 3A). As expected, N C vs.  is a monotonic increasing curve in the semi-open interval (0,1), increasing with successive convolutions.

  C N 0 0    and   C N 1 1   
In keeping with the Johnson-Mehl-Avrami-Kolmogorov formalism [START_REF] Johnson | Reaction kinetics in processes of nucleation and growth[END_REF], dedicated to describe how solids transform from one phase (state of matter) to another at constant temperature, and the classical nucleation theory, N C vs.  could be approximated to a transformation "kinetic" (i.e.

     t 1
) of one phase (P0) from another (P1) by the growth of clusters and modelled by an Avrami equation [START_REF] Avrami | Kinetics of Phase Change. I. General Theory[END_REF], expressed as:

             n C N 1 exp K 1 (7) 
Figure 3B shows a good agreement between numerical data and equation 7. There is no clear physical interpretation of the Avrami constants K and n but it is recognized that n reflects the nature of the transformation (Figure 3C).

As the connected-component labelling algorithm computes the numbers and the size of clusters of binary matrix, the variation of the largest clusters normalized to N P1 versus  allows estimating the site percolation threshold (i.e. the value from which all pixels P1 are interconnected) for a given number of loops (Figure 3D). The threshold of random distribution agrees with the one of a square lattice (i.e. 0.593) [START_REF] Djordjevic | Site percolation threshold for honeycomb and square lattices[END_REF] then it decreases with successive convolutions to reach a lower limit (i.e. 0.50).

Beyond the threshold, all pixels P1 form only one phase whatever the distribution, which can play a crucial role on the charge transport on SAMs [START_REF] Mathijssen | Monolayer coverage and channel length set the mobility in self-assembled monolayer field-effect transistors[END_REF].

2D segregation

Attempting to develop a physical model is premature without a clear interpretation because the phase segregation is a large and complicated issue, governed, amongst others, by the interplay of coulombic repulsion, pairing ions and solvatation (for instance in electrochemical field, see reference [START_REF] Costentin | Dimerization of electrochemically generated ion radicals: mechanisms and reactivity factors[END_REF]). Moreover, it is well-known that Ising spin models in physical field and random Markow fields (close to the Schelling model) in mathematical field involve very intricate mathematical treatments without analytical solution [START_REF] Kapur | Entropy Optimization Principles with Applications[END_REF].

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT

A solution, which has its origins in the information field, could be a statistical approach of the 2D segregation (S) according to the entropy (H) defined by Shannon [START_REF] Shannon | A Mathematical Theory of Communication[END_REF], then refined by Kapur and Kesavan [START_REF] Kapur | Entropy Optimization Principles with Applications[END_REF],

expressed as:

      i j i j i j Lattice Lattice 2 ij Lattice Lattice Lattice Lattice ij 1 N 1 N K N K1 1 S 1 H 1 ln ln 1 K 1 K 1 K 1 K n ln 2 N =
number of nearest neighbours of P0 and P1 with S 0 perfect blend of P0 and P1(i.e.

  
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As expected, S(0) and S(1) are equal to 1 and S vs.  reaches to a minimum value at  = 0.5, which increases with successive convolutions to converge towards S=1 (Figure 4A). Because equation 8 takes into account the 2D segregation of all pixels (i.e. P0 and P1) and because the successive convolutions preserve the random character of binary matrix, S vs.  is a symmetric curve. It is notable that the shape of S vs. , that can be approximated by a probability density function of the beta distribution (Figure 4B), is independent of successive convolutions (Figure 4C and4D). Should it be related to the independence of the fractal dimension with the convolution? Contrary to generally accepted ideas, this entropic approach suggests that the 2D segregation (S>0) exists whatever the distribution, even to a random distribution therefore.

Conclusion

Based on this work, it appears possible to link the notion of local intersite interactions ( vs.  and, to date, only reachable by electrochemistry) to the concept of phase segregation (S vs. ) and thus, to estimate, via abacus (figures 2A and 4A respectively), the percentage of 2D segregation of a mixed SAM from electrochemical data.

The connected-component labelling associated to the valuation of the site threshold percolation should enable to better understand the mechanisms of charge-transport on SAMs.

We hope that this approach will provide tools to assist in establishing detailed structure-reactivity relationships for interfacial reactions on SAMs, especially on mixed SAMs.

A C C E P T E D

M A N U S C R I P T



  R I P T ACCEPTED MANUSCRIPT THRESHOLD parameter varies on the open interval (0,1),  A given threshold generates a binary matrix at a given P1/P0 ratio (i.e. a normalized surface coverage ),  Threshold =  only for a random matrix M RND ,  All calculations, performed with MATLAB ® , are stable, convergent and quasi-independent of 2-D filter, The accuracy of results increases with the size of matrix and is high from n=1000.

  respectively and successive convolutions increase the size of clusters, while decreasing their number. The relative variation of number of clusters N C (i.e.
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