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Closed-forms of planar Kirchhoff elastic
rods: application to inverse geometry

By Olivier Roussel, Marc Renaud and Michel Täıx

CNRS, LAAS, Univ. de Toulouse, UPS, 7 avenue du Colonel Roche, F-31400 Toulouse, France

Abstract

In this paper, we address the problem of inverse geometry for Kirchhoff elastic rods.
Based on the explicit formulation of extremal curves in terms of elliptic functions, we
derive closed forms for rod shape and sensitivity in the planar case and we show how this
can be used efficiently in robotics applications. More specifically, a numerical optimization
approach is presented to solve the inverse geometry problem in the general 3-D case and
applied to the planar case using closed forms previously introduced.

1. Introduction

Consider an elastic rod manipulated by robotic grippers at its both extremities. It is
well known that the shape of the rod at equilibrium configurations correspond to min-
imal energy curves and that there exists a countable number of rod configurations for
given grippers placement. Bretl and McCarthy (2014) shown the configuration space for
Kirchhoff elastic rods is a 6-dimensional manifold which can be parametrized by one
single chart. This result has a lot of potential applications in motion planning such, for
example, in assembly and disassembly studies as investigated in Roussel et al. (2015a).

Borum et al. (2014) addressed the problem of state estimation for planar elastic rods,
where several markers have to be given to be able to retrieve the corresponding config-
uration of the rod. This paper can be seen as extension of this work by addressing the
problem of finding one of the rod quasi-static configurations that satisfy a given position
of only one marker of the rod.

In robotics, the task is usually defined by the end effector of the manipulator. The in-
verse geometry problem (also named inverse kinematics in the literature) for a kinematic
chain such a robotic manipulator arm consists in finding a configuration that satisfy a
given end effector position. General solutions for this problem are well known and in
some cases closed forms are available (e.g. for 6-R manipulators in Renaud (2006)). For
task-based motion planning problems, the inverse geometry must be typically computed
more than thousands of times and analytic solutions are critical as they can drastically
reduce the computational effort.

When solving the motion planning problem for robotic manipulator arms, deformable
cables are usually omitted and the resulting solution path might be inapplicable due to
cables constraints. These deformable objects are well studied in the mechanic literature
and accurate models are available. However, their integration usually requires finite ele-
ments schemes which involve a high computational cost. Assuming quasi-staticity, such
cables could be modeled by Kirchhoff elastic rods and the direct and inverse geometry
can be computed efficiently, especially in the planar case where, as we will show, closed
forms are available to compute rod direct model.

By analogy, this paper focus on the inverse geometry problem for a Kirchhoff elastic rod
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by only considering the position of the rod extremity. We investigate a general approach
for inverse geometry of 3-dimensional elastic rods based on numerical optimization. To
this end, we rely on computing both rod shape and sensitivity that can be done by solving
differential systems and implies using costly numerical integration schemes. Alternatively,
we give closed forms of rod shape and sensitivity in the planar case and show with
experiments this leads to an efficient approach to inverse geometry for planar rods.

Section 2 presents some already known results (see Biggs et al. (2007)) about closed
forms of extremal curves for equilibrium configurations, and by treating the planar case
as a special case of the 3-dimensional rod, we will derive explicit formulations for rod
shape and sensitivity in terms of elliptic functions. In section 3, we investigate approaches
based on numerical optimization to solve the inverse geometry problem and apply them
with analytic forms in the planar case presented in section 2.

2. Explicit formulation of planar elastic rods shape and sensitivity

2.1. General case of 3-D rods

Consider an inextensible, non-shearable and unit length linearly elastic rod. The shape
of the rod traces a curve that we will describe by the mapping q : [0, 1] → SE(3). The
position along the rod is parametrized by t ∈ [0, 1] and we will name ”base” and ”tip” of
the rod its extremity at t = 0 and t = 1 respectively. Let the mappings u1(t), u2(t), u3(t)
such that ui : [0, 1] → R be axial and bending rod strains respectively, and c1, c2, c3
be the constants that reflect its elasticity properties. As in Jurdjevic (2005), we say the
elastic rod is in static equilibrium in the sense of Kirchhoff if it locally minimizes the
elastic energy defined by

Eel =
1

2

∫ 1

0

3∑
i=1

ciu
2
i dt.

Without loss of generality, we will also assume that the base of the rod is held fixed at
the origin, i.e. q(0) = e where e is the identity element of SE(3). Under these assumptions,
we will denote by B the set of positions that the other extremity of the rod q(1) can reach.
As shown in Bretl and McCarthy (2014), the problem of static equilibrium of such rods
can be formulated as an optimal control problem by

minimize
q,u

1

2

∫ 1

0

3∑
i=1

ciu
2
i dt

subject to q̇ = q

(
3∑
i=1

uiXi +X4

)
q(0) = e, q(1) = b

(2.1)

for some b ∈ B and where

X1 =

[
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

]
X2 =

[
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

]
X3 =

[
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]
X4 =

[
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]
X5 =

[
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]
X6 =

[
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]
is a basis for se(3), the Lie algebra of SE(3). Note that when solving this optimal control
problem, the rod tip position b is not an input.

In these conditions, the Maximum Principle states that solutions to this optimal control
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problem are the projections of extremal curves defined on the cotangent bundle T ∗SE(3)
onto SE(3). Thanks to the Lie Group structure of SE(3), the Hamiltonian can be reduced
on the dual of the Lie algebra se(3)∗ and the corresponding (time-varying) Hamiltonian
vector fields µ : [0, 1]→ se(3)∗ can be expressed by

µ̇1 = µ3µ2

c3
− µ2µ3

c2
µ̇2 = µ6 + µ1µ3

c1
− µ1µ3

c3

µ̇3 = −µ5 + µ1µ2

c2
− µ1µ2

c1
µ̇4 = µ3µ5

c3
− µ2µ6

c2

µ̇5 = µ1µ6

c1
− µ3µ4

c3
µ̇6 = µ2µ4

c2
− µ1µ5

c1
.

(2.2)
where vector fields µ are related to controls ui by ui = c−1

i µi for i ∈ {1, 2, 3}. Let
A be the set homeomorphic to R6 and a ∈ A such that ai , µi(0), i ∈ {1, . . . , 6}.
It has been shown in Bretl and McCarthy (2014) that coordinates in A offer a global
parameterization to the set of static equilibrium configuration for the rod. In other words,
A offers a 6-dimensional configuration space for quasi-static 3-D elastic rods.

Assuming isotropy and normalized elasticity constants such that ci = 1 for i ∈ {1, 2, 3},
we have from (2.2) µ̇1 = 0. Then µ1 is a constant of motion with µ1 = a1 and

µ̇2 = µ6

µ̇3 = −µ5
µ̇4 = µ3µ5 − µ2µ6

µ̇5 = a1µ6 − µ3µ4

µ̇6 = µ2µ4 − a1µ5.
(2.3)

The curvature κ and the torsion τ of the curve can be expressed in terms of µ by

κ2 = µ2
2 + µ2

3 τ = µ1 −
µ2µ5 + µ3µ6

µ2
2 + µ2

3

and, as mentioned in Bretl and McCarthy (2014), (2.3) is equivalent to

2κ̈+ κ3 − 2κ(τ − λ1)2 = λ2κ κ2(τ − λ1) = λ3 (2.4)

where the constants of integration are given by

λ1 ,
a1
2

λ2 , a22 + a23 + 2a4 −
a21
2

λ3 ,
a1
2

(a22 + a23)− (a2a5 + a3a6).

Substituting equations in (2.4) and integrating, we obtain

κ̇2 +
1

4
κ4 + λ23κ

−2 − λ2
2
κ2 = λ4 (2.5)

where the constant of integration λ4 is given by

λ4 , a25 + a26 −
1

4
(a22 + a23)2 +

1

2
(a22 + a23)(a21 − 2a4)− a1(a2a5 + a3a6).

By making the change of variable υ = κ2, (2.5) transforms to

υ̇2 + υ3 − 2λ2υ
2 − 4λ4υ + 4λ23 = 0

As stated in Langer and Singer (1984), this equation is in the form υ̇2 = P (υ) with P a
cubic polynomial. Let −α1, α2, α3 be the zeros of the polynomial P (υ) such that

−α1 ≤ 0 ≤ α2 ≤ α3. (2.6)

.
The squared curvature υ can be expressed in terms of elliptic functions by

υ(t) = α3

(
1− n sn2

(
rt+ ϕ|m

))
(2.7)

where the parameter m, the characteristic n and r can be expressed from the polynomial
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zeros by

m =
α3 − α2

α3 + α1
n =

α3 − α2

α3
r =

1

2

√
α3 + α1

and with the phase ϕ such that a22 + a23 = α3

(
1− n sn2(ϕ|m)

)
. Note that from (2.6), we

have 0 ≤ m ≤ n ≤ 1.
As outlined in Jurdjevic (2005), it has been shown the Hamiltonian vector fields in

(2.3) is integrable and we have proved it can be expressed in the following form

µ2 = κ sinψ
µ3 = κ cosψ µ4 = 1

2 (λ2 +
a21
2 − υ)

µ5 = −κ̇ cosψ + κψ̇ sinψ

µ6 = κ̇ sinψ + κψ̇ cosψ.
(2.8)

where

ψ(t) = λ1t−
λ3
α3 r

(
Π
(
n, am

(
rt+ ϕ|m

)
|m
)
−Π

(
n, am

(
ϕ|m

)
|m
))

+ ψ (0)

with Π(n, u|m) the elliptic integral of the third kind and am(u|m) is the Jacobi amplitude.

2.2. Planar case

In motion planning, efficient computations of direct and inverse models are critical and
closed-forms can remarkably improve the computational effort. Although neither the

curve q(t) nor the rod sensitivity ∂q(t)
∂a can be explicitly expressed in the general 3-D

case, we will show in this section that closed forms can be obtained in the planar case.

2.2.1. Curvature and internal wrenches

Considering only planar curves q(t) in the xy-plane with q = (0, 0, θ, x, y, 0)T , Hamil-
tonian vector fields defined in (2.2) simplify to

µ̇1 = 0
µ̇2 = 0

µ̇3 = −µ5

µ̇4 = µ3µ5

µ̇5 = −µ3µ4

µ̇6 = 0.
(2.9)

Closed-forms of rod internal wrenches µ(t) defined in (2.8) reduce to

µ1 = 0
µ2 = 0

µ3 = κ
µ4 = − 1

2 (κ2 + λ2)
µ5 = −κ̇
µ6 = 0.

(2.10)

And constants of integration defined in (2.1) simplify to

λ1 = 0 λ2 = a23 + 2a4 λ3 = 0 λ4 = a25 − a23(
1

4
a23 + a4).

We retrieve the same results as we would have obtained by applying the same problem
formulation on the Lie Group SE(2) rather than SE(3). Therefore, in the rest of this
section we will restrict to solutions of (2.1) that are similar to trajectories on SE(2),
which are generated by the subset of initial conditions {a ∈ A : (a1, a2, a6) = (0, 0, 0)}.

In the following equations, when referring to an elliptic function pq, we will simplify
the notation pq(u|m) to pqu. Also, let Γ(t) , rt+ ϕ, Γ0 , Γ(0) and ε , sgn(a3).

We can distinguish three cases as outlined in Langer and Singer (1984) and Singer
(2007):
• Case I: λ4 > 0

κ(t) = ε
√
α3 cn Γ(t)

The curvature κ(t) oscillates between
√
α3 and −√α3 and the resulting curve q(t) is

called a ”wavelike” elastica.
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• Case II: λ4 < 0

κ(t) = ε
√
α3 dn Γ(t)

The curvature κ(t) is non-vanishing and the curve q(t) is called a ”orbit-like” elastica.
• Case III: λ4 = 0

κ(t) = ε
√
α3 sech Γ(t)

This corresponds to the borderline case where the curvature is non-periodic.

Note that curvature can be reduced to a unique formulation by assuming m ∈ [0,∞)
and applying the Jacobi’s real transformation (see Abramowitz and Stegun (1964) §16.11).

2.2.2. Rod shape q(t)

From the differential system defined in (2.1), it follows that

θ̇ = u3 ẋ = cos θ ẏ = cos θ.

Using (2.10), the integration of the curvature is given by

cos θ(t) = β1(0)β1(t) + 4β2(0)β2(t) sin θ(t) = 2 ε (β1(0)β2(t)− β2(0)β1(t))

x(t) = β1(0)

∫
β1(t) + 4β2(0)

∫
β2(t)

y(t) = 2 ε

(
β1(0)

∫
β2(t)− β2(0)

∫
β1(t)

)
.

(2.11)

The functions β1(t) and β2(t) can be explicitly given using Jacobi elliptic functions
and the elliptic integral of second kind E(u|m) in the three cases as follows
• Case I: λ4 > 0

β1(t) , 2 dn2 Γ(t)− 1 β2(t) ,
√
m sn Γ(t) dn Γ(t)∫

β1(t) =
2

r
(E (am Γ(t))− E (am Γ0))− t

∫
β2(t) = −1

r
(cn Γ(t)− cn Γ0)

• Case II: λ4 < 0

β1(t) , 1− 2 sn2 Γ(t) β2(t) , sn Γ(t) cn Γ(t)∫
β1(t) =

1

m

(
t (m− 2) +

2

r
(E (am Γ(t))− E (am Γ0))

) ∫
β2(t) = −1

r
(cn Γ(t)− cn Γ0)

• Case III: λ4 = 0

β1(t) , 2 sech2 Γ(t)− 1 β2(t) , sech Γ(t) tanh Γ(t)∫
β1(t) =

2

r
(tanh Γ(t)− tanh Γ0)− t

∫
β2(t) = −1

r
(sech Γ(t)− sech Γ0) .

2.2.3. Rod sensitivity

The elastic rod sensitivity is given by the 6-dimensional Jacobian matrix J(t, a) with
[J]ij = ∂qi

∂aj
in the 3-D case. As we consider only the planar case in this section, we will

only focus on the 3-dimensional block of J(t, a) for i, j ∈ {3, 4, 5}, i.e. ∂θ
∂aj

, ∂x
∂aj

and ∂y
∂aj

for j ∈ {3, 4, 5}. These can be obtained by differentiation of the explicit formulation of
the curve q(t) given in (2.11) and using that

∂θ

∂a
=
∂ sin θ

∂a
cos θ − ∂ cos θ

∂a
sin θ.
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The complete differentiation of the curve in terms of elliptic functions can be found in
Roussel et al. (2015b).

3. Inverse geometry

Although closed forms of rod shape can be obtained in the planar case only, there is no
explicit formulation of the inverse geometry problem considered in this paper. Alterna-
tively, we will present numerical approaches to tackle this problem.

3.1. A general numerical approach to inverse geometry

Sufficient conditions for optimality state that the curve q(t) obtained from initial condi-
tions a correspond to a stable equilibrium of the elastic rod if and only if the Jacobian
matrix J(t, a) is non-singular for any t ∈ (0, 1]. We will denote the set of initial conditions
that satisfy this property by Astable. Let Υ : A → B be the map that transforms initial
conditions to the rod tip position q(1) and which Jacobian matrix is J(1, a). If we denote
Υ|stable the restriction of Υ by

Υ|stable : Astable → Bstable

then by definition J(1, a) is non-singular and Υ|stable is a local diffeomorphism.
We can define now the general problem of inverse geometry for an elastic rod. Given a

position of the rod tip bdes ∈ Bstable, the problem of inverse geometry for an elastic rod
consists in finding one of the parameterization a∗ ∈ Astable that satisfies Υ|stable (a∗) =
bdes. Let now f by f(a) , Υ|stable(a)− bdes. The presented inverse geometry problem is
then equivalent to finding one of the zeros of the function f . This can be solved using
numerical optimization approaches such as Newton’s method as described in Nocedal
and Wright (2006). The principle consists in iteratively approximate a model Mk(pk) of
f(ak + pk) where pk ∈ A is the descent step at the iteration k and to deduce the step
pk for which Mk(pk) = 0. As f is also a local diffeomorphism, we can approximate it
linearly using Taylor’s theorem with

f(a+ p) = f(a) + J(1, a)p+O
(
‖p‖2

)
(3.1)

Using this model to compute the Newton’s step leads to pk = −αJ(1, ak)−1f(ak) for
any non-singular Jocabian J(1, ak), i.e. for ak ∈ Astable. The step length parameter α
is typically chosen in (0, 1]. Then, the solution a∗ can be iteratively approximated by
ak+1 = ak + pk for a given initial guess a0 ∈ Astable.

3.2. Experiments in the planar case using closed-forms

The numerical optimization scheme requires several evaluations of the function Υ(a) and
the Jacobian J(1, a). In Bretl and McCarthy (2014), solutions are expressed as non-
linear differential systems which can be solved through costly numerical integration. On
the other hand, in the case of planar rods, we derived in section 2.2 closed forms of Υ(a)
(equations (2.11) for t = 1) and J(1, a). We implemented both numerical and analytic
C++ approaches to compute these maps. The numerical integration was done with a
4-th order Runge-Kutta scheme and requires a sufficiently small time step to minimize
the integration error (time step of 10−4 for a relative error of 10−3). Consequently, in
the planar case Υ(a) and J(1, a) can be computed 102 to 103 faster with closed-forms.
Steps of the solving process based for the same rod tip placement bdes with three different
initial guesses a0 are illustrated in figure 1.

Experimental results for planar rods inverse geoemtry using analytical forms with
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Figure 1. Planar rod inverse geometry using Newton’s method. The same rod tip position bdes

is used with three different initial guesses a0, leading to different solutions a∗ corresponding to
”wavelike” configuration(top) or ”orbit-like” configurations (middle and bottom).

α Success (%) Unstability failure (%) Resolution time (µs) Number of iterations

1.0 81.5 ± 15.9 18.4 ± 15.9 71.2 ± 7.4 8.1 ± 0.8
0.9 86.9 ± 15.1 13 ± 15.1 92.2 ± 7 10.6 ± 0.8
0.7 92.8 ± 13.4 7.2 ± 13.3 130.7 ± 8.6 14.9 ± 0.8
0.5 95.7 ± 11.6 4.2 ± 11.5 197.9 ± 9.7 22.8 ± 1.1
0.3 97.3 ± 9.98 2.5 ± 9.9 361.7 ± 14.3 41.6 ± 1.6
0.2 97.4± 9.7 2.1 ± 9.3 564.8 ± 15.8 64.9 ± 1.9

Table 1. Results for inverse geometry in the planar case using analytic forms and Newton’s
method for various values of the length step α

Newton’s method are given in table 1. The solver was run on 1000 different values of
bbes, with 100 different values of the initial guess a0 and with various step length α.
The solver could fail either by reaching the maximum number of iterations (here fixed at
100) or by falling on an instability where the Jacobian matrix is singular. The stopping
criterion was set as an angular and position error of 1.e-6 on the desired tip position bdes.

These results reflect interesting aspects of the problem. First, a relatively low number
of iterations are required for high values of α with a good success ratio. This suggests a

low error in O
(
‖p‖2

)
in (3.1) so the choice of a linear approximation for the model is

sufficient. Consequently, using a line search to determine the appropriate value of α at
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each iteration could slightly reduce the total number of iterations but the computational
cost induced makes this approach inefficient.

As α decreases, the success ratio tends to 100%. This is due to the fact that smaller
steps performs better with non-linearities making the chance to fall on instability de-
creases, but at the cost of increasing the number of iterations. Reciprocally, we could
interpret that for high values of the step length α, the probability to reach the instability
region is getting higher as the problem tends to be highly non-linear when getting closer
to instability. This phenomena can be observed in figure 3.2 (bottom case) at the first
iterations and obviously depends on the stability of the initial guess a0. It has been shown
in Borum and Bretl (2015) that the space of stable initial conditions Astable is simply
connected and quasi star-shaped under a scaling transformation. This indicates that it
is always possible to find any solution a∗ for a given position bdes and from any initial
guess a0 avoiding degenerate cases by staying in Astable. In this direction, the descent
step pk should be adjusted to maximize the descent and getting as far as possible from
the instability region. From a general perspective, despite its simplicity the Newton’s
method offers sufficient results to be exploited in motion planning applications.

4. Conclusion and perspectives
In this paper, we have presented a general approach to address the problem of inverse
geometry for Kirchhoff elastic rods. By taking advantage of analytic forms of rod shape
and sensitivity in the planar case, we were able to solve efficiently this problem using
numerical optimization techniques. Although closed forms cannot be obtained for rod
shape and sensitivity in the 3-D case, we plan to use similar optimization schemes by using
both closed forms of extremal curves and numerically approximated shape and sensitivity
to obtain reasonable performances. Furthermore, even if preliminary experimental results
in the planar case are encouraging, a deeper investigation could improve the general
efficiency by considering the distance to instability. Also, we would like to extend the
problem addressed by promoting solutions that minimizes the total elastic energy.
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