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High-order integrator for sampling the invariant distribution

of a class of parabolic SPDEs with additive space-time noise.

Charles-Edouard Bréhier1 and Gilles Vilmart2

May 27, 2016

Abstract

We introduce a time-integrator to sample with high order of accuracy the invariant
distribution for a class of semilinear SPDEs driven by an additive space-time noise.
Combined with a postprocessor, the new method is a modification with negligible over-
head of the standard linearized implicit Euler-Maruyama method. We first provide an
analysis of the integrator when applied for SDEs (finite dimension), where we prove that
the method has order 2 for the approximation of the invariant distribution, instead of 1.
We then perform a stability analysis of the integrator in the semilinear SPDE context,
and we prove in a linear case that a higher order of convergence is achieved. Numerical
experiments, including the semilinear heat equation driven by space-time white noise,
confirm the theoretical findings and illustrate the efficiency of the approach.

Keywords: stochastic partial differential equations, postprocessor, invariant measure,
ergodicity, space-time white noise.

AMS subject classification (2010): 60H15, 60H35, 37M25

1 Introduction

We introduce an efficient integrator for the sampling of the invariant probability distribution
of a class of semilinear parabolic SPDEs with additive noise written as an abstract stochastic
evolution equation (in the sense of [11])

du(t) = (Au(t) + F (u(t))) dt+ dWQ(t), u(0) = u0. (1)

Its solution u(t) takes values in a separable infinite dimensional Hilbert space H, with
initial condition u0 (assumed deterministic for simplicity). We assume that −A is a positive
unbounded self-adjoint linear operator with an associated sequence of positive eigenvalues
0 < λ1 ≤ λ2 ≤ . . . and an associated complete orthonormal family of eigenvectors e1, e2, . . .
The coefficient F : H → H is a Lipschitz continuous nonlinearity, and it is assumed to
derive from a continuously differentiable potential function V : H → R, i.e. F = −DV .
Finally, we assume that

(

WQ(t)
)

t∈R+ is a Q-Wiener process on H defined on a probability
space (Ω,F ,P) fulfilling the usual conditions; the covariance operator Q : H → H is a
bounded, non-negative self-adjoint linear operator, such that Qei = qiei for some bounded
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sequence of real numbers (qi)i∈N∗ , where we use the notation N
∗ = {1, 2, 3, . . .}. We assume

the following trace condition:

s = sup
{

s ∈ (0, 1) : Trace
(

(−A)−1+sQ
)

< +∞
}

> 0. (2)

Then, there exists a unique mild solution of (1) on R
+ (see [11, Chapter 7]), i.e. anH-valued

continuous stochastic process
(

u(t)
)

t∈R+ which satisfies

u(t) = etAu0 +

∫ t

0
e(t−s)AF (u(s))ds+

∫ t

0
e(t−s)AdWQ(s). (3)

This abstract setting includes the stochastic semilinear heat equation where A = ∆ =
∑d

j=1
∂2

∂x2
j
in H = L2(D) for some open smooth bounded domain D ⊂ R

d,

∂u

∂t
(x, t) = ∆u(x, t) + f(u(x, t)) +

∂WQ

∂t
(x, t), (4)

with homogeneous Dirichlet boundary conditions on ∂D. In (4), the coefficient f : R → R

is a smooth, Lipschitz function; the associated Nemytskii coefficient F : u ∈ H 7→ f ◦u ∈ H
satisfies F (u) = −DV (u) for all u ∈ H, with V (u) = −

∫ 1
0 〈F (θu), u〉Hdθ.

If d = 1, one can consider space-time white noise in (4), (i.e. with the identity covariance
operator Q = I; this choice yields s = 1/2 in (2)). When d > 1, a nontrivial covariance
operatorQ 6= I is required, yielding noise which is white in time and colored in space. Notice
also that (2) is automatically satisfied with s = 1 for a trace-class noise with Trace(Q) <∞.

To study the long-time behavior of the process u, we make the additional assumption
that F in (1) is Lipschitz continuous with constant L > 0 such that L < λ1 = minp∈N∗ λp.
Then (see e.g. Section 8.6 in [10]) Eq. (1) admits a unique invariant distribution µ∞. This
means that for all (smooth and Lipschitz) test functions φ : H → R, and for all initial
conditions u0,

lim a. s.
T→∞

1

T

∫ T

0
φ(u(t))dt =

∫

H
φ(y)dµ∞(y),

where the notation lim a. s. means that the limit holds with probability 1. Moreover (see
e.g. Section 6.3 in [10]) u(t) converges in law to µ∞ exponentially fast in the following
sense: for all t > 0, and any test function φ,

∣

∣

∣

∣

Eφ(u(t))−
∫

H
φ(y)dµ∞(y)

∣

∣

∣

∣

≤ C(φ, u0)e
−(λ1−L)t (5)

where C(φ, u0) is independent of t. It is a standard approach to take advantage of the
estimate (5) to compute ergodic integrals of the form

∫

H φ(y)dµ∞(y). To do so, in practice
one needs to rely on a discretization of the evolution equation. We thus now present two
implicit-explicit time-discretization schemes.

Linearized implicit Euler method We first consider the simplest numerical scheme,
which is referred to as the linearized implicit Euler method in this article. Given a constant
timestep size h > 0, it is defined by vn+1 = vn + hAvn+1 + hF (vn) +

√
hξQn , equivalently

vn+1 = J1

(

vn + hF (vn) +
√
hξQn

)

, (6)
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where v0 = u(0) = u0, J1 = (I − hA)−1 and ξQn = h−1/2
(

WQ((n + 1)h) −WQ(nh)
)

. For
a fixed final time T > 0, it is known that the scheme (6) applied to (1) has weak order of
accuracy q for all q < s, i.e. it satisfies for all h small enough,

|E(φ(vn))− E(φ(u(tn)))| ≤ C(u0, φ, T )h
q, (7)

for all tn = nh ≤ T , where C(u0, φ, T ) is independent of n, h.
The weak order of accuracy (7) has been analyzed in [14] for (6) applied to the heat

equation in the case F = 0 and in [12] in the semilinear case; see also [39] for the case of
colored noise in dimension d > 1 and [23] where different techniques are used. Concerning
the approximation of the invariant distribution of the heat equation, it is proved in [4] that
for d = 1 and Q = I, one has for all time tn, similarly to (5), the exponential convergence
property

∣

∣

∣

∣

E(φ(vn))−
∫

H
φ(y)dµ∞(y)

∣

∣

∣

∣

≤ K(u0, φ)e
−λtn + C(φ)hr (8)

for all r < s with s = 1/2, where C(φ),K(u0, φ) are independent of n and h, and λ is
independent of φ, h, n. The proof is based on the analysis of the weak approximation using
the tools of [12] (expansion of the error using the backward Kolmogorov equation, Malliavin
calculus), with a proof that constants C(u0, φ, T ) in (7) can be chosen independent of the
final time T , in the spirit of [35].

New method The contribution of this paper is the introduction of a modification, de-
noted un, of the standard Euler scheme (6), together with a postprocessor, denoted un,
which permits to achieve the estimate (8) with the higher order r < s+ 1 instead of r < s,
when in (8) vn is replaced with un. Precisely, the postprocessed method is given by two
sequences

(

un
)

n≥0
and

(

un
)

n≥0
in H defined by

un+1 = J1

(

un + hF
(

un +
1

2

√
hJ2ξ

Q
n

)

+

√
2− 1

2

√
hJ2ξ

Q
n

)

+
3−

√
2

2

√
hJ2ξ

Q
n , (9)

un = un +
1

2

√
hJ3ξ

Q
n , (10)

where we introduce additional operators J2, J3 as follows:

J2 = (I − 3−
√
2

2
hA)−1, J3QJ

T
3 = (I − h

2
A)−1Q.

Note that J3 is not determined uniquely by the equation above: one may define J3 =
(I − h

2A)
−1/2, or use a Cholesky decomposition. We emphasize the importance of the

postprocessing operation (10): indeed, the order of convergence to the invariant distribution
µ∞ is not improved if in (8) vn is replaced with un, instead of un. Notice that the new
scheme (9)-(10) has a negligible overcost compared to (6). First, the postprocessor (10)
needs not to be computed at each time step, but it can be computed only once at the end of
each numerical trajectory. Second, computing J2ξ

Q
n at each timestep is the only additional

calculation. Third, we prove that the constant λ > 0 in (8) can be chosen with the same
size for both methods: thus in terms of cost (number of timesteps required to achieve a
given accuracy on the left-hand side of (8)), our new integrator performs better than the
standard scheme (6).
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The fact that the long-time weak order of accuracy r in (8) can be made strictly larger
than the short time accuracy q in (7) is not surprising: this is known for SDEs (i.e. in finite
dimension in the terminology of this paper), see [26, 24, 1, 38] in the context of Brownian
dynamics and [3, 2] in the context of Langevin dynamics, where integrators with low weak
order, typically q = 1 in (7), are shown to achieve a high order r > q over long times
(8) for sampling the invariant measure. Inspired by these recent advances, the popular
technique of processing for deterministic differential equations [8] was recently extended to
the stochastic context in [38], and serves as a crucial ingredient to derive the new method
proposed in this paper. In our context, this idea is to enhance the accuracy of the modified
numerical method un in (9) by applying a suitable change of variables un 7→ un defined in
(10).

Alternatively, note that high order integrators in the strong sense (approximation of the
trajectories instead of the distribution) for parabolic problems of the form (1) are proposed
in [22, 20, 21]; however these schemes belong to the class of exponential integrators, while
the method proposed in this paper avoids the computation of matrix exponentials. We also
mention another natural integrator for (1), which is the (stochastic) trapezoidal method
(also known as the Crank-Nicolson method),

un+1 = un +
h

2
A(un + un+1) + hF (un) +

√
hξQn . (11)

However, in contrast to (6), the scheme (11) is not L-stable, a desirable property for severely
stiff problems, already in the deterministic literature [15]. This makes exponential conver-
gence estimates of the form (8) not true in general for the scheme (11).

Finally, since the space H is infinite dimensional, a space discretization scheme is re-
quired in practice, e.g. finite differences or finite elements – see Section 4. In this article,
we only focus on the time-discretization issue. We mention [27] where a postprocessing
technique is applied to improve the spatial discretization in the strong sense.

Outline and main results This paper is organized as follows. In section 2, we explain
the derivation of a generalized nonlinear version of the integrator (9)-(10) in the context of
finite-dimensional SDEs, where many standard analysis tools are available compared to the
SPDE context. We prove that the new integrator has order 2 for the approximation of the
invariant distribution of nonlinear ergodic SDEs, instead of order 1 for the standard Euler
scheme. Section 3 is devoted to the analysis of the integrator (9)-(10) for the SPDEs (1):
we detail the abstract Hilbert space setting (Section 3.1), we show the stability and er-
godicity properties of the integrator (Section 3.2), we prove in a simplified linear case the
improved order of accuracy s+1 of the new method for SPDEs, in contast to the order s for
the standard Euler scheme (Section 3.3), and we show that the proposed scheme exhibits
the correct spatial regularity of the invariant distribution in terms of Sobolev-like spaces
(Section 3.4). Finally, Section 4 is dedicated to numerical experiments which confirm the
theoretical findings and illustrate the efficiency of the new method.
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2 New high order integrator: derivation and analysis in finite

dimension

In the context of SDEs in finite dimension N ∈ N
∗, we consider the more general case of a

nonlinear system of the form

dX(t) =
(

f1(X(t)) + f2(X(t))
)

dt+ σdWQ(t), X(0) = X0, (12)

with solution X(t) in R
N . The nonlinearities f1, f2 : RN → R

N are smooth and Lipschitz
functions such that f1(x) + f2(x) = f0(x) = −∇V0(x) for some potential function V0 :
R
N → R, where f1 is a term to be treated implicitly and f2 is a term to be treated

explicitly. The initial condition X0 is assumed deterministic for simplicity. We also define
the Q-Wiener processWQ(t) = Q1/2W (t) where Q now denotes a N×N symmetric positive
definite matrix and W (t) is a standard N -dimensional Wiener process, and σ > 0 is a fixed
constant.

We introduce the following new implicit-explicit scheme for sampling with high order
two the invariant measure of (12),

Xn+1 = Xn + hf1

(

Xn+1 +
−2 +

√
5

2
Jn,2σ

√
hξQn

)

+ hf2

(

Xn +
1

2
Jn,2σ

√
hξQn

)

+
(1−

√
2 +

√
5

2
J−1
n,1 +

1 +
√
2−

√
5

2

)

Jn,2σ
√
hξQn ,

Xn = Xn +
1

2
Jn,3σ

√
hξQn , (13)

where Jn,1, Jn,2, Jn,3 are given by

Jn,1 = (I − hf ′1(Xn))
−1, Jn,2 = (I − 3−

√
2

2
hf ′1(Xn))

−1, Jn,3QJ
T
n,3 = (I − h

2
f ′1(Xn))

−1.

We emphasize that the matrix inverses Jn,1, Jn,2, Jn,3 are used only in the notations to
define the scheme but should not be computed in practice. Indeed, in practical implementa-
tions, a LU decomposition should be used in place of computing matrix inverses. Moreover,
in the semilinear case (14), this decomposition needs to be done only once and may be used
for all further iterations.

Remark 2.1. After a spatial discretization with finite differences or finite elements of the
SPDE (1), in general one arrives at a system of stiff SDEs in R

N with large dimension N
of the form (12),

dX(t) = AX(t)dt+ f(X(t))dt+ σdWQ(t). (14)

where assume that f(x) = −∇V (x) for some V : RN → R. It corresponds to the special
case f1(x) = Ax where −A now denotes a N × N symmetric positive definite matrix. In
this case, the above scheme (13) simplifies to the integrator (9). Moreover, in the special
case f1 = 0, the method (13) reduces to

Xn+1 = Xn + hf

(

Xn +
1

2
σ
√
hξn

)

+ σ
√
hξn, Xn = Xn +

1

2
σ
√
hξn, (15)

a method which was first proposed in [24] and analyzed in [25], although it was constructed
in another manner using a non-Markovian formulation.
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For simplicity, we assume for the remaining of this section that Q = I is the identity
matrix, without loosing generality, applying the appropriate change of variable in (fixed)
finite dimension. Section 2.1 is devoted to a stability analysis in the case of an Ornstein-
Uhlenbeck process: we prove L-stability and exactness results, which play an important
role in the efficiency of the integrator for semilinear SPDEs. Section 2.2 contains details
on the construction of the method in order to satisfy the above properties and to achieve
order two of accuracy for sampling the invariant measure.

2.1 Stability analysis

For the study of the stability of stochastic integrators applied to stiff SDEs with additive
noise of the form (12), a widely used test problem is the following scalar SDE problem
(Ornstein-Uhlenbeck process)

dX = −λXdt+ σdW (t), (16)

where λ, σ > 0 are fixed constants. Notice that this test equation provides only a useful
insight but no rigorous general conclusion on the numerical long-time behaviour for nonlin-
ear problems with additive noise, see [6] and references therein. A rigorous analysis of the
proposed scheme in our semilinear SPDE context is presented in Section 3.2. Notice also
that other test equations are used in the literature in the case of multiplicative noise, see
[33, 19, 34, 7, 37, 32, 5]. Consider a one step method of the form

Xn+1 = A(z)Xn + B(z)
√
hσξn, z = −λh, (17)

where h is the stepsize, A(z),B(z) are analytic functions, ξn ∼ N (0, 1) are independent
Gaussian random variables. The SDE (16) is ergodic with the unique invariant measure

a Gaussian with mean zero and variance σ2

2λ , i.e with density ρ∞(x) =
√

λ
πσ2 exp(− λ

σ2x
2).

Indeed, for any initial condition X0 = x, the exact solution is a Gaussian random variable,
with limt→∞ E(X(t)) = 0 and limt→∞ E(|X(t)|2) = σ2

2λ . The second-order moment E(|Xn|2)
remains bounded as n → ∞ if |A(z)| < 1, which corresponds to the mean-square stability
condition. The condition |A(z)| ≤ 1 for all z with negative real part is called A-stability in
the deterministic literature [15]. This is a desirable property of numerical integrators for
stiff problems, because it permits to avoid a severe timestep size restriction. For |A(z)| < 1
(stability condition), we obtain

lim
n→∞

E(|Xn|2) =
σ2

2λ
R(z), where R(z) =

−2zB(z)2
1−A(z)2

. (18)

We see that the method is exact (for the approximation of the invariant distribution) if
and only if R(z) = 1 for all z; this is the case for instance for the trapezoidal method

(11), which is such that A(z) = 1+z/2
1−z/2 , B(z) = 1

1−z/2 . However, in addition to A-stability,

a desirable property of Runge-Kutta methods for very stiff problems is L-stability [15],
namely A(∞) = 0; this is not satisfied by the trapezoidal method, for which A(∞) = −1.
The following proposition states that for Runge-Kutta type methods, where A(z),B(z) are
rational functions, L-stability (i.e. A(∞) = 0) is incompatible with the exactness for the
invariant distribution, i.e. R(z) ≡ 1.

Proposition 2.2. Consider a method of the form (17) where A(z),B(z) are rational func-
tions. If the method samples exactly the invariant distribution of (16) (i.e. R(z) ≡ 1), then
|A(∞)| = 1.
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Proof. If A(z) is a rational function with |A(∞)| 6= 1, there exist a constant C ∈ R and an
odd integer k ∈ Z such that R(z) ∼ Czk for z → ∞, and thus R(z) 6≡ 1. �

However, as shown below, the above barrier for L-stable Runge-Kutta methods can be
circumvented by applying an appropriate postprocessor to (17) of the form

Xn = C(z)Xn +D(z)
√
hσξn, z = −λh. (19)

We will see that this feature serves as a crucial ingredient in Section 3 to achieve high order
in the SPDE case.

Proposition 2.3. The method (13) applied to the SDE test problem (16) with f1(x) =
−λx and f2(x) = 0 is such that the scheme Xn 7→ Xn+1 is L-stable and Xn is ex-
act for sampling the invariant measure, i.e. for all test functions φ and all timesteps h,
lim a. s.M→∞

1
M+1

∑M
n=0 φ(Xn) = limn→+∞ E(φ(Xn)) =

∫

R
φ(y)ρ∞(y)dy.

Proof. The method is L-stable because it has the same stability function A(z) = 1
1−z as

the linearized implicit Euler method (6). A calculation using the above notations yields

lim
n→∞

E(X
2
n) =

σ2

2λ
R(z), where R(z) = C(z)2R(z)− 2zD(z)2, (20)

with z = −λh and R(z) given by (18). Noting that A(z) = B(z) = (1− z)−1, C(z) =
1, D(z) = 1

2(1− z/2)−1/2, yields R(z) ≡ 1, which proves that the method is exact. �

Remark 2.4. Relaxing the assumption that the matrices A and Q commute, the scheme
(13) can be adapted to remain exact for sampling the invariant measure when applied to
the linear problem dX = AXdt + σQ1/2dW without nonlinearity (f1(x) = Ax, f2(x) = 0).
In fact, the definition of matrix J3 should be modified, and obtained solving a system of
Lyapunov equations.

2.2 Construction of the integrator (13)

We explain in this section how we construct method (13) with high order of accuracy for
the invariant measure by using the idea of postprocessing from [38]. Consider a system of
SDEs in R

N of the form

dX(t) = f0(X(t))dt+ σdW (t), X(0) = X0, (21)

where σ > 0 and
(

W (t)
)

t∈R+ is a standard d-dimensional Wiener process.

Assumption 2.5. We assume the following.

1. f0 is of class C∞, with bounded derivatives of any order, and there exists a potential
function V0 : R

N → R such that f0 = −∇V0;

2. there exist C, β > 0 such that for all x ∈ R
N , xT f0(x) ≤ −βxTx+ C.

7



Then, system (21) is ergodic with a unique invariant measure µ∞ (see e.g. [18]) given
by

µ∞(dy) = ρ(y)dy, with ρ(y) =
1

Z
exp(− 2

σ2
V0(y)).

Moreover the solution X(t) of (21) satisfies an exponential ergodicity property analogous
to (5).

The following theorem is the main result in [38] where postprocessed integrators for
SDEs are introduced. It permits to improve the accuracy of a method of weak order q
to order r = q + 1 for the invariant measure. Notice that this theorem remains valid for
general classes of SDEs with additive or multiplicative noise in multiple dimensions. The
error estimates in [38] rely on classical results from Talay and Tubaro [36] and Milstein [28]
based on the backward Kolmogorov equation (see also [29, Chap. 2.2, 2.3]). In this section,
we denote by C∞

P (RN ,R) the set of C∞ functions whose derivatives up to any order have
a polynomial growth. We denote by L the infinitesimal generator of (12) where we set
f0 = f1 + f2: for any test function φ ∈ C∞

P (RN ,R),

Lφ = f0 · ∇φ+
σ2

2
∆φ, (22)

where ∇φ denotes the gradient of φ and ∆φ the Laplacian of φ.

Theorem 2.6. [38, Theorem4.1] Under Assumption 2.5, let Xn be an ergodic numerical
solution of (21) with bounded moments of any order M ∈ N

∗, i.e.

E(‖Xn‖M ) ≤ CM (23)

for all n ≥ 0, where CM is independent of h, n. Assume further that the scheme has local
weak order q ≥ 1 i.e. it satisfies for all initial condition X0 = x and all h sufficiently small,

|E(φ(X1))− E(φ(X(h)))| ≤ C(x, φ)hq+1, (24)

for all φ ∈ C∞
P (RN ,R), where x 7→ C(x, φ) has a polynomial growth with respect to x.

Assume also that the numerical solution admits a weak Taylor series expansion of the
form

E(φ(X1)) = φ(x) + hA0φ(x) + h2A1φ(x) + . . . , (25)

for all φ ∈ C∞
P (RN ,R), where Ai : C∞

P (RN ,R) → C∞
P (RN ,R), i = 0, 1, 2, . . . are linear dif-

ferential operators with smooth coefficients. Let Gn denote independent and identically dis-
tributed random maps in R

N , independent of {Xj}j≤n, with Xn = Gn(Xn) having bounded
moments of any order, and satisfying a weak Taylor expansion of the form

E(φ(Gn(x))) = φ(x) + hqAqφ(x) +O(hq+1), (26)

for all φ ∈ C∞
P (RN ,R), where the constant in O has a polynomial growth with respect to x.

Assuming further
(Aq + [L,Aq])

∗ρ = 0,

where we use the commutator notation [A,B] = AB − BA. Then the postprocessor Xn =
Gn(Xn) yields an approximation of order r = q + 1 for the invariant measure,

∣

∣

∣

∣

∣

lim a. s.
M→∞

1

M + 1

M
∑

n=0

φ(Xn)−
∫

RN

φ(y)dµ∞(y)

∣

∣

∣

∣

∣

≤ C(φ)hq+1, (27)
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∣

∣

∣

∣

E(φ(Xn))−
∫

RN

φ(y)dµ∞(y)

∣

∣

∣

∣

≤ K(φ, x)e−λtn + C(φ)hq+1 (28)

for all φ ∈ C∞
P (RN ,R) with tn = nh, where λ,K(φ, x), C(φ) are independent of n and h

assumed small enough.

Remark 2.7. We emphasize that the boundedness of moment condition (23) can be easily
proved for Runge-Kutta type methods, such as the proposed method (13), following the
methodology of [28] (see also [29, Chap. 2.2]) using the global Lipschitz continuity of the
SDE fields. We also refer to [38] where this assumption is discussed in the context of
postprocessed integrators for SDEs. Notice also that the Lipschitz condition on the SDE
fields and the ergodicity assumption on the numerical method could be relaxed using the
concept of rejecting exploding trajectories, as introduced in [31], see also [30] in the context
of ergodic SDEs.

We are now in position to state the main result of this section. We show that the new
method (13) satisfies the assumptions of Theorem 2.6 with q = 1, and thus has order r = 2
of accuracy for the invariant measure of ergodic SDEs.

Theorem 2.8. Under Assumption 2.5, consider the method (13) with postprocessor Xn.
Assume that Xn is ergodic when applied to the system (12). Then Xn has order two of
accuracy for the invariant measure, precisely,

∣

∣

∣

∣

∣

lim a. s.
M→∞

1

M + 1

M
∑

k=0

φ(Xk)−
∫

RN

φ(y)dµ∞(y)

∣

∣

∣

∣

∣

≤ C(φ)h2 (29)

∣

∣

∣

∣

E(φ(Xn))−
∫

RN

φ(y)dµ∞(y)

∣

∣

∣

∣

≤ K(φ, x)e−λtn + C(φ)h2, (30)

for all φ ∈ C∞
P (RN ,R) with tn = nh, where λ,K(φ, x), C(φ) are independent of n and h

assumed small enough.

The proof of Theorem 2.8 relies on the following lemma where conditions of order two
of accuracy are derived for a perturbation for the linearized Euler method. The proof of
this lemma is postponed to the Appendix.

Lemma 2.9. Consider the following modification of the linearized Euler scheme for (12),

Yn+1 = Yn + hf1

(

Yn+1 + a1σ
√
hξn

)

+ hf2(Yn + a2σ
√
hξn) + (I + a3hf

′
1(Yn))σ

√
hξn

Y n = Yn + b1hf1(Y n) + b2hf2(Yn) + cσ
√
hξn. (31)

where a1, a2, a3, b1, b2, c are fixed real coefficients. If the following conditions hold,

a21 + 2a1 + b1 − c2 = 0, a1 + a3 +
1

4
+ b1 − c2 = 0, a22 + b2 − c2 = 0,

− 1

4
+ a2 + b2 − c2 = 0, (b2 − b1)[f2, f1] = 0, (32)

then, assuming the ergodicity of Yn in (31), the postprocessed scheme (31) satisfies the
assumptions of Theorem 2.6 with q = 1, and Y n has order two of accuracy for the invariant
measure, i.e. it satisfies (29),(30) (with Xn replaced by Y n).
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Note that the Lie bracket [f2, f1] = f ′2f1 − f ′1f2 involved in the second order conditions
(32) vanishes only when the flows associated to the fields f1, f2 commute, which is not true
in general. We thus impose b1 = b2. Still, the system (32) has infinitely many solutions.
Setting b1 = b2 = 0 for simplicity of the postprocessor, two solutions remain. Choosing the
solution which minimizes the absolute value of a1 and a3, we obtain the following choice of
coefficients for the order two scheme (31),

a1 = −a3 =
−2 +

√
5

2
, a2 = c =

1

2
, b1 = b2 = 0. (33)

Proof of Theorem 2.8. It is sufficient to prove that the method (13) satisfies the same ex-
pansions (25) and (26) with q = 1 as method (31),(33) (with the same differential operators
A0 = L, A1, and A1). Indeed, applying Theorem 2.6 with q = 1 to the scheme (13), we
deduce that method (13) also has second order of accuracy for the invariant measure, which
concludes the proof of Theorem 2.8.

To recover the scheme (13) from (31),(33), in the first line of (31) one has to replace ξn
with Jn,2ξn = (I +O(h))ξn in the arguments of f1, f2 and also to substitute I + a3hf

′
1(x)

with
(1−

√
2 +

√
5

2
J−1
n,1 +

1 +
√
2−

√
5

2

)

Jn,2 = I + a3hf
′
1(x) +O(h2);

in the second line of (31), one has to replace ξn with Jn,3ξn = (I + O(h))ξn. We obtain
that the difference between one step of (13) and one step of (31),(33) with initial condition
X0 = Y0 = x has the form X1 − Y1 = R(x)ξh5/2 + O(h3). Using E(ξ) = 0, we deduce
E(φ(X1))− E(φ(Y1)) = O(h3), while E(φ(X0))− E(φ(Y 0)) = O(h2). �

It can be seen from the proof of Theorem 2.8 that the operator Jn,2 in front of ξn and
the operator Jn,3 in the definition of the method (13) have no influence on its order two of
accuracy for the invariant measure in finite dimension. In infinite dimension, however, these
operators play an important role for the well-posedness, the stability and the accuracy of
the scheme in the SPDE case presented in Section 3.

3 Analysis in the SPDE case

3.1 Abstract setting and assumptions

The state space in the SPDE case is an infinite dimensional separable Hilbert space H, for
which we denote by 〈·, ·〉 the scalar product, and by | · | the associated norm. Consider the
linear operator A involved in the parabolic SPDE (1). Recall that we assume that −A is
an unbounded self-adjoint linear operator with eigenvalues 0 < λ1 ≤ . . . ≤ λp ≤ λp+1 ≤ . . .,
such that λp → +∞, when p→ +∞, and associated normalized eigenvectors ep (such that
Aep = −λpep), which form a complete orthonormal system in H.

For any s ∈ R
+, we classically define the unbounded linear operator (−A)s/2 from H to

H and its domain Hs ⊂ H as follows:

(−A)s/2u =
+∞
∑

p=1

〈u, ep〉λs/2p ep for all u ∈ Hs = {u ∈ H : |u|2s =
+∞
∑

p=1

|〈u, ep〉|2λsp < +∞}.
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We also define the bounded linear operator (−A)−s/2 and the semi-group
(

etA
)

t∈R+ , both
as linear operators from H to H by

(−A)−s/2u =
+∞
∑

p=1

〈u, ep〉λ−s/2
p ep, etAu =

+∞
∑

p=1

exp(−tλp)〈u, ep〉ep.

It is straightforward that for any t ∈ (0,+∞) we have etA ∈ L(H,H) – the space of bounded
linear operators from H to H, endowed with the norm denoted by ‖ · ‖ – with ‖etA‖ ≤
exp(−λ1t). Moreover, the following regularization property holds true: ‖(−A)s/2etA‖ ≤ Cs

ts/2

where C2
s = supr∈R+ exp(−2r)rs ∈ (0,+∞).

Covariance operator We assume that Q is a bounded, non-negative self-adjoint linear
operator from H to H, which satisfies Qep = qpep for any p ∈ N

∗, where the eigenvalues
(

qp
)

p∈N∗
form a bounded sequence of non-negative real numbers. We assume that condition

(2) is satisfied. The Q-Wiener process in (1) is then defined as follows: for any t ≥ 0,

WQ(t) =
+∞
∑

p=1

√
qpβp(t)ep, (34)

where
(

βp
)

p∈N∗
is a sequence of independent standard scalar Wiener processes on an un-

derlying probability space (Ω,F ,P).
Notice that the operators A and Q commute: AQu = QAu for any u ∈ H2. This

property is often assumed in the literature, and simplifies the analysis of the order of
convergence made in Section 3.3. Nevertheless several arguments (especially Proposition 3.1
and the results of Section 3.2) do not require this property; in particular, the scheme remains
well-defined in the non-commuting case.

Nonlinearity The nonlinear coefficient F is assumed to be a Lipschitz continuous func-
tion from H to H, with Lipschitz constant L satisfying the dissipation condition

L = sup
u1 6=u2∈H

|F (u1)− F (u2)|
|u1 − u2| < min

p∈N∗

λp = λ1. (35)

This condition ensures ergodicity of the continuous-time process (Proposition 3.1) and of its
time-discretized approximations (Proposition 3.3). A typical example of such a Lipschitz
function on H = L2(D) – where D is an open smooth bounded domain in R

d – is the
Nemytskii operator F : u 7→ f ◦ u, where f : R → R is a globally Lipschitz function.
Note that F = −DV is the derivative of the potential function V : L2(D) → R where
V (u) = −

∫ 1
0

∫

D u(x)f(θu(x))dxdθ.
Under the above hypotheses, and assuming the trace condition (2), the process

(

u(t)
)

t∈R+

takes values in Hs for any s < s, and we recall without proof the following result of expo-
nential convergence to a unique invariant distribution, see e.g. [10] for general results, and
[13, Section 3.1.1].

Proposition 3.1. Assume (2) and the above hypotheses. Then, the process
(

u(t)
)

t∈R+

solution of (1) admits a unique invariant probability distribution µ∞ on H. Moreover for
all s < s,

∫

H
|u|2sµ∞(du) < +∞,

11



and for all φ : H → R Lipschitz continuous, and all t > 0,

∣

∣

∣E
[

φ(u(t))
]

−
∫

H
φ(v)µ∞(dv)

∣

∣

∣ ≤ C(φ, u0)e
−(λ1−L)t,

where C(φ, u0) is independent of t.

Condition (35) is crucial for the proof of the uniqueness of the numerical invariant dis-
tributions established in the next section: we compare the solutions starting from different
initial conditions and driven with the same noise process, and show an exponential con-
traction similar to the result of Proposition 3.1. Notice that weaker conditions than (35)
are known in the literature (see e.g. [13] and references therein) to ensure the ergodicity
and the exponential convergence of (1) – for instance when F is bounded and Lipschitz
continuous with no size restriction on L.

3.2 Stability and ergodicity of the integrator for SPDEs

In this section, we prove the existence and uniqueness of invariant distributions for the
time-discretized processes defined by the numerical method, for any time-step size h > 0,
in a general setting. Notice that the results of this section do not require the gradient
assumption F = −DV . The results are analogous to classical results for the θ-method in
the context of stiff SDEs [6, Theorem 3.1] and for the linearized implicit Euler method (9)
in the context of SPDEs as studied e.g. in [4, Remark 4.8].

It is a key observation here to exploit that the sequence (un, un−1)n∈N defining the new
scheme (9),(10) is a Markov chain on the product space H × H. The initial condition
(u0, u−1) is given by u0 = u(0) = u0 and an arbitrary u−1 ∈ H which plays no role in the
dynamics, since (un+1, un) depends only on un and ξQn , not on un−1.

In the following proposition, we state uniform bounds – with respect to n ∈ N and
h ∈ (0, 1) – on first-order moments for the norm | · |s for s < s.

Proposition 3.2. Assume the hypotheses of Section 3.1 and consider the scheme (9),(10).
For all s ∈ [0, s), assuming u0 ∈ Hs, there exists a constant Cs ∈ (0,+∞) such that for all
h ∈ (0, 1),

sup
n∈N

E
∣

∣un
∣

∣

s
≤ Cs(1 + |u0|s), sup

n∈N
E
∣

∣un
∣

∣

s
≤ Cs(1 + |u0|s).

Proof. Thanks to (2), Trace
(

JiQJi
)

< +∞ for i ∈ {1, 2, 3}, and thus un and un are well-
defined in H for all n ∈ N. The contributions of the drift part and of the stochastic
perturbation are treated separately: we introduce the auxiliary process

(

ℓn
)

n∈N, as the
solution of the following equation

ℓn+1 = J1ℓn + σ
√
h
(

√
2− 1

2
J1 +

3−
√
2

2
I
)

J2ξ
Q
n ,

with ℓ0 = 0. Set dn = un − ℓn for all n ∈ N; then d0 = u0 and

dn+1 = J1dn + hJ1F (dn + ℓn +
1

2
J2σ

√
hξQn ).

The quantity ℓn satisfies for all n ∈ N
∗ the identity

ℓn = σ
√
h
(

√
2− 1

2
J1 +

3−
√
2

2
I
)

J2J
−1
1

n−1
∑

k=0

(

J1
)n−k

ξQk .
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Observe that
(

√
2−1
2 J1 +

3−
√
2

2 I
)

J2J
−1
1 is a bounded linear operator from Hs to Hs with

norm less than 2
3−

√
2
, for s ∈ [0, s). Since the Gaussian random variables

(

ξQk
)

k∈N are

independent, for all 0 ≤ s ≤ s,

E
∣

∣ℓn
∣

∣

2

s
≤ 2σ2h

3−
√
2

n−1
∑

k=0

E
∣

∣

(

J1
)n−k

ξQk
∣

∣

2

s
≤ 2σ2h

3−
√
2

+∞
∑

k=1

+∞
∑

p=1

qpλ
s
p

(1 + λph)2k

≤ 2σ2

3−
√
2

+∞
∑

p=1

qpλ
s−1
p

λph

(1 + λph)2 − 1
≤ σ2

3−
√
2
Trace

(

(−A)−1+sQ
)

.

Now thanks to (35), straightforward computations show that

E|dn| ≤
1 + hL

1 + λ1h
E|dn−1|+

h

1 + λ1h
|F (0)|+ Lh

1 + λ1h

(

E|ℓn−1|+ E
∣

∣

1

2
J2σ

√
hξQn−1

∣

∣

)

≤ (1 + hL)n

(1 + λ1h)n
|u0|+

|F (0)|
λ1 − L

+
L

λ1 − L

(

sup
k∈N

E|ℓk|+
1

3−
√
2
σ
(

Trace
(

(−A)−1Q
))1/2)

,

with (1+hL)
(1+λ1h)

≤ 1− λ1−L
1+λ1h

h ≤ exp
(

− (λ1−L)
1+λ1h

h
)

< 1.

As a consequence the claim follows for (un)n∈N in the case s = 0. In particular, for some
constant C ∈ (0,+∞) it comes that supn∈N E

∣

∣F (un + 1
2J2σ

√
hξQn )

∣

∣ < C(1 + |u0|).
The case s ∈ (0, s) is treated using the estimates of Lemma 3.2 in [4]: for n ∈ N

E
∣

∣dn
∣

∣

s
= E

∣

∣(−A)s/2(J1)nu0 + h

n−1
∑

k=0

(−A)s/2(J1)n−kF (uk +
1

2
J2σ

√
hξQk )

∣

∣

≤ 1

(1 + λ1h)n
|u0|s + hC(1 + u0|)

n
∑

k=1

( 1kh≤1

(kh)s/2
+ 1kh>1

Cs

(1 + λ1h)k−⌊1/h⌋
)

≤ Cs(1 + |u0|s).

Finally, for n ∈ N,

E
∣

∣

1

2
J3σ

√
hξQn

∣

∣

2

s
=
σ2h

4
Trace

(

(I − h

2
A)−1(−A)sQ

)

≤ σ2

2
Trace

(

(−A)−1+sQ
)

.

This concludes the proof, since un = un + 1
2J3σ

√
hξQn . �

We now state the following existence and uniqueness result for the invariant distribution
of the Markov chain

(

un, un−1

)

n∈N. We prove that the convergence is exponentially fast, in
contrast to the trapezoidal method (11) which is not L-stable and for which such exponential
estimate does not hold in general for stiff problems (even in finite dimension).

Proposition 3.3. Assume the hypotheses of Section 3.1. For any h ∈ (0, 1), the H ×H-
valued Markov chain

(

un, un−1

)

n∈N admits a unique invariant distribution Mh
∞ in H×H,

with marginals in H denoted by µh∞ and µh∞, respectively.
Moreover, the convergence of the distributions to equilibrium is exponentially fast: for

all Lipschitz test function ϕ : H → R, and all tn = nh,

∣

∣

∣Eϕ(un)−
∫

H
ϕdµh∞

∣

∣

∣+
∣

∣

∣Eϕ(un)−
∫

H
ϕdµh∞

∣

∣

∣ ≤ C(ϕ, |u0|) exp
(

−(λ1 − L)

1 + λ1h
tn

)

.

13



Proof. Existence. The semi-group
(

Pn
)

n∈N on H × H generated by the Markov chain
(

un, un−1

)

n∈N satisfies the Feller property: for any n ∈ N, for any bounded continuous test
function φ : H×H → R, the map (u0, u−1) 7→ Pnφ(u0, u−1) = Eφ(un, un−1) is continuous.
The claim then follows from the standard Krylov-Bogoliubov criterion (see Section 3.1 in
[10]): given an arbitrary initial condition (u0, u−1) ∈ H × H, if Mn denotes the law of
(un, un−1), then

•
(

1
n+1

∑n
k=0Mk

)

n∈N is a tight sequence of probability distributions on H × H – as
a consequence of Proposition 3.2 combined with the Markov inequality, and of the
observation that for any s ∈ (0, s) and any R > 0, the set {|u|s ≤ R, |u|s ≤ R} is a
compact subset of H×H.

• every subsequence limit point M is an invariant distribution for the semi-group.

Uniqueness. Consider two initial conditions u10, u
2
0 ∈ H, as well as u1−1, u

2
−1 ∈ H and

the associated processes
(

uin
)

n∈N and
(

uin
)

n∈N, for i = 1, 2, defined by (9), (10), and driven

by a unique noise process
(

ξQn
)

n∈N.
Then by Lipschitz continuity of F , and using the cancellations of several noise terms,

computations similar to those of the proof of Proposition 3.2 yield for any n ∈ N the almost
sure contraction property

∣

∣u1n − u2n
∣

∣ =
∣

∣u1n − u2n
∣

∣ ≤ 1 + Lh

1 + λ1h

∣

∣u1n−1 − u2n−1

∣

∣ ≤ exp

(

−(λ1 − L)

1 + λ1h
tn

)

∣

∣u10 − u20
∣

∣.

Finally, taking (u20, u
2
−1) random, independent of the noise process

(

ξQn
)

n∈N and distributed

according to an ergodic invariant distribution Mh
∞ gives the exponential convergence and

the uniqueness properties. �

3.3 Analysis of the order of convergence: a simplified linear case

It is shown in [4] (for d = 1 and s = 1/2, associated with space-time white noise Q = I), that
the standard linearized implicit Euler scheme (9) has order r = 1/2− ε for all ε ∈ (0, 1/2)
for the approximation of the invariant distribution µ∞ of (1). In this section, we show
that the postprocessed scheme has the improved order of convergence s+ 1− ε. Since the
techniques from Section 2 do not extend straightforwardly to the SPDE case, we only focus
on a simplified case, where the nonlinear coefficient F is replaced with a bounded linear
operator. Numerical experiments of Section 4 show that the higher order is preserved for
various examples of nonlinearities F .

In addition to the hypotheses of Section 3.1, assume that the coefficient F is given by
a linear mapping: for any u ∈ H, F (u) = Bu where B ∈ L(H) satisfies Bep = −bpep for all
p ∈ N

∗, with real eigenvalues bp ∈ (−λ1, λ1) (due to condition (35)):

du(t) = Au(t)dt+Bu(t)dt+ σdWQ(t) , u(0) = u0. (36)

In this situation, the components 〈u(t), ep〉 in the basis {ep}p∈N∗ of the solution
(

u(t)
)

t∈R+

of the SPDE (1) are independent Ornstein-Uhlenbeck processes. Similarly, the components
in the basis {ep}p∈N∗ of the discrete-time processes

(

vn
)

n∈N (resp.
(

un
)

n∈N, resp.
(

un
)

n∈N)
are also independent processes.
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As a consequence, explicit expressions for the invariant distributions µ∞, νh∞, µh∞ and
µh∞ are available: they are centered Gaussian probability measures on H,

µ∞ = N
(

0, Q∞
)

, Q∞ =
σ2

2
Q(−A−B)−1,

νh∞ = N
(

0, Qh
∞,ν

)

, Qh
∞,ν =

σ2

2
Q(−A−B)−1

(

I − h
A−B

2

)−1
,

µh∞ = N
(

0, Qh
∞
)

, µh∞ = N
(

0, Q
h
∞
)

.

The expressions for Qh
∞ and Q

h
∞ being more complicated are displayed in (40) below.

The following lemma is a key elementary tool in order to exhibit the order of convergence
as h→ 0 of the approximating measures towards µ∞.

Lemma 3.4. Let πj = N (0, Qj), j ∈ {1, 2} be two Gaussian probability distributions on
the Hilbert space H. Assume that for all p ∈ N

∗, j ∈ {1, 2} Qjep = qj,pep. Let ϕ ∈ C2(H,R)
satisfy that supv∈H ‖D2ϕ(v)‖ < +∞. Then

∣

∣

∣

∫

H
ϕdπ2 −

∫

H
ϕdπ1

∣

∣

∣
≤ supv∈H ‖D2ϕ(v)‖

2

+∞
∑

p=1

∣

∣q2,p − q1,p
∣

∣. (37)

Remark 3.5. Assume that q2,p ≥ q1,p. Then the above Lemma 3.4 yields optimal orders
of convergence. Indeed choosing the test function ϕopt(u) = exp(−|u|2), Lemma 9.5 in [23]
yields that

∫

H
ϕoptdπ1 −

∫

H
ϕoptdπ2 ≥

Trace
(

Q2 −Q1

)

exp
(

6Trace(Q2)
) .

This means that the quantity Trace
(

Q2 − Q1

)

also provides a lower bound for the error
between the invariant distributions π1 and π2.

Proof of Lemma 3.4. Let
(

γp
)

p∈N∗
and

(

δp
)

p∈N∗
be two independent sequences of i.i.d.

standard real valued Gaussian random variables, centered and with variance 1. Set Xj =
∑

p∈N∗

√
qj,pγpep, and Rj =

∑

p∈N∗

√

max
(

(−1)j(q1,p − q2,p), 0
)

δpep, for j ∈ {1, 2}. Observe

that Xj ∼ πj , and that X1 + R1 and X2 + R2 have the same Gaussian distribution. This
yields

∣

∣

∣

∫

H
ϕdπ2 −

∫

H
ϕdπ1

∣

∣

∣ =
∣

∣

∣E
[

ϕ(X2)
]

− E
[

ϕ(X1)
]

∣

∣

∣

=
∣

∣

∣E
[

ϕ(X2)
]

− E
[

ϕ(X2 +R2)
]

+ E
[

ϕ(X1 +R1)
]

− E
[

ϕ(X1)
]

∣

∣

∣

≤
∣

∣

∣
E
[

ϕ(X2 +R2)
]

− E
[

ϕ(X2)
]

− E
[

Dϕ(X2).R2

]

∣

∣

∣

+ E

∣

∣

∣

[

ϕ(X1 +R1)
]

− E
[

ϕ(X1)
]

− E
[

Dϕ(X1).R1

]

∣

∣

∣.

Indeed, E
[

Dϕ(Xj).Rj

]

= 0, because Xj and Rj are independent and E
[

Rj

]

= 0. Using a
second-order Taylor expansion, we deduce

∣

∣

∣

∫

H
ϕdπ2 −

∫

H
ϕdπ1

∣

∣

∣ ≤ supv∈H ‖D2ϕ(v)‖
2

(

E
∣

∣R1

∣

∣

2
+ E

∣

∣R2

∣

∣

2)
,

where we note E
∣

∣R1

∣

∣

2
+ E

∣

∣R2

∣

∣

2
=
∑+∞

p=1

∣

∣q2,p − q1,p
∣

∣. �
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We now explain how Lemma 3.4 permits to find the order of convergence of µh∞ to
µ∞. We define, for p ∈ N

∗, the component processes u·(p) and u·(p) by projecting on the
eigenvector ep: for any n ∈ N, un(p) = 〈un, ep〉, un−1(p) = 〈un−1, ep〉. Then (9),(10) applied
to (36) rewrites as a system of independent equations, decoupled with respect to p ∈ N

∗,

un+1(p) = A(−λph,−bph)un(p) + σ
√
h
√
qpB(−λph,−bph)ξn,p

un(p) = C(−λph)un(p) + σ
√
h
√
qpD(−λph)ξn,p,

(38)

where
√
qpξn,p = 〈ξQn , ep〉: thus

(

ξn,p
)

n∈N,p∈N∗
are independent standard Gaussian ran-

dom variables, and the rational functions A,B, C,D satisfy for any z ∈ (−∞, 0) and
β ∈ (−1,min(1, |z|)),

A(z, β) =
1 + β

1− z
B(z, β) = 1 + β

2 − 3−
√
2

2 z

(1− z)(1− 3−
√
2

2 z)
, C(z) = 1, D(z) =

1

2(1− z/2)1/2
.

(39)
Since for β ∈ (−1,min(1, |z|)) the stability condition |A(z, β)| < 1 is satisfied, straightfor-
ward computations yield

Qh
∞ep = lim

n→+∞
E|un(p)|2ep =

σ2qp
2(λp + bp)

R(−λph,−bph)ep

Q
h
∞ep = lim

n→+∞
E|un(p)|2ep =

σ2qp
2(λp + bp)

R(−λph,−bph)ep
(40)

where R(z, β) = −2(z+β)B(z,β)2
1−A(z,β)2

and

R(z, β) = C(z)2R(z, β)− 2(z + β)D(z)2 = 1 + βz
P1(z)β + P2(z)

(2 + β − z)P3(z)

with polynomial functions P1(z) = 10 − 4
√
2 − (11 − 6

√
2)z, P2(z) = 20 − 8

√
2 − (44 −

24
√
2)z + (11− 6

√
2)z2 and P3(z) = (2− z)(2− (3−

√
2)z)2.

The following estimate R(z, β) = 1+O(zβ) as z, β → 0 is crucial to obtain an improved
order for the convergence of µh∞ to µ∞ when h→ 0. It is not surprising because the scheme
samples exactly the invariant measure of (36) in both cases A = 0 or B = 0 (as already
shown in Proposition 2.3), equivalently R(z, 0) = R(0, β) = 1 for all z, β.

Lemma 3.6. For all z ≤ 0 and all β ∈ (−1,min(1, |z|)), we have

∣

∣1−R(z, β)
∣

∣ ≤ |zβ|(15− 6
√
2)

4(1− z)2
.

Proof. Observe that for all z ≤ 0, we have P2(z) ≥ P1(z) ≥ 0 and (2+β−z) > 0, P3(z) > 0.
Since (2 + β − z)−1 ≤ (1− z)−1, we obtain

∣

∣1−R(z, β)
∣

∣ ≤ |zβ|P1(z) + P2(z)

(1− z)P3(z)
.

The estimate then follows by observing that (1− z)P1(z)+P2(z)
P3(z)

is an increasing function of

z ≤ 0, with maximum at z = 0, given by P1(0)+P2(0)
P3(0)

= (15−6
√
2)

4 . �
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We are in position to state our main convergence result, which yields the order of
convergence r = s + 1 for any s < s for the invariant distribution with postprocessing µh∞.

Theorem 3.7. Consider the method (9)-(10) applied to (36). Let ϕ ∈ C2(H,R), such
that supv∈H ‖D2ϕ(v)‖ < +∞. For any s < s there exists Cs ∈ (0,+∞) such that for any
h ∈ (0, 1/L) we have

∣

∣

∣

∫

H
ϕdµ∞ −

∫

H
ϕdµh∞

∣

∣

∣ ≤ Cs sup
v∈H

‖D2ϕ(v)‖σ2h1+s. (41)

Moreover, if B = 0 (i.e. bp = 0 for all p ∈ N
∗) then the method is exact: µh∞ = µ∞.

Proof. Thanks to Lemma 3.4, it is sufficient to control

+∞
∑

p=1

∣

∣〈
(

Q∞ −Q
h
∞
)

ep, ep〉
∣

∣ =
+∞
∑

p=1

σ2qp
2(λp + bp)

|R(−λph,−bph)− 1|

≤ Cλ1σ
2
+∞
∑

p=1

qp|bp|
λp

λph
2

(1 + λph)2
≤ Cλ21σ

2
+∞
∑

p=1

qpλ
−1+s
p

(λph)
1−sh1+s

(1 + λph)2

≤ Csλ
2
1σ

2Trace
(

(−A)−1+sQ
)

h1+s,

which gives the order of convergence s+1 for all s < s. Moreover, it is clear that R(z, 0) = 1

for any z ≤ 0, so that if bp = 0 for all p ∈ N
∗ then Q

h
∞ = Q∞. �

Remark 3.8. We see in Lemma 3.6 that the error is zero if z = 0 or β = 0. This is related
to Proposition 2.3 which shows that the error of the postprocessed method is zero in the
linear case when β = 0. This feature permits to gain one power of h and thus one order of
accuracy in the proof above. In contrast, notice that the standard linearized implicit Euler
scheme has the lower order s for all s < s. Indeed, under the hypotheses of Theorem 3.7,
then for all h small enough, Q∞ −Qh

∞,ν is nonnegative and using Lemma 3.4 we only need
to control

Trace
(

Q∞ −Qh
∞,ν

)

=
σ2

2

+∞
∑

p=1

qp
λp + bp

(λp + bp)h

2 + λph+ bph

=
σ2hs

2

+∞
∑

p=1

qpλ
−1+s
p

λp
λp + bp

λp+bp
λs
p
h1−s

2 + λph+ bph

≤ σ2hs

2
CsTrace

(

(−A)−1+sQ
)

.

Thus for all s < s that there exists Cs ∈ (0,+∞) such that for all h small enough

∣

∣

∣

∫

H
ϕdµ∞ −

∫

H
ϕdνh∞

∣

∣

∣
≤ Cs sup

v∈H
‖D2ϕ(v)‖σ2hs. (42)

It is also possible to prove that the above Theorem 3.7 (resp. (42)) gives optimal order of
convergence, namely that (41) does not hold true for all h > 0 if s > s + 1 (resp. (42)
does not hold true for any h > 0 if s > s). This fact is also supported by the numerical
simulations of Figure 3 in Section 4.

17



3.4 Spatial regularity analysis

We show in this section that the postprocessed method yields a solution which has the same
regularity in space as the exact solution, in contrast to the standard linearized implicit Euler
method, which yields a solution that is too smooth. The action of the postprocessing thus
not only increases the order of the convergence, but also provides a qualitatively better
approximation with the correct regularity. For all Borel probability measure µ on H, we
define its regularity, denoted reg(µ) ∈ R∪{−∞,+∞}, by the supremum of s such that the
norm | · |s of Hs is square-integrable with respect to µ:

reg(µ) = sup{s ∈ R,

∫

H
|u|2sµ(du) <∞}. (43)

The interpretation in terms of random variables is the following. For a random vari-
able v with values in H, denoting Pv its probability law, we have the identity E(|v|2s) =
∫

H |u|2sPv(du) which is a finite quantity if s < reg(Pv) and +∞ if s > reg(Pv). Notice that
instead of quantifying the regularity in terms of the Sobolev space Hs, one could state sim-
ilar results in terms of Hölder regularity. We refer to [9] for such a study of the θ-method
applied to the stochastic heat equation with finite differences.

We focus for simplicity on the case F = 0, σ = 1, and with the initial condition u0 = 0,
but we emphasize that the extension to the general semilinear situation is straightforward,
the regularity being determined only by the stochastic terms in our setting. First, notice
that for the exact solution u(t), the regularity parameter is reg(Pu(t)) = reg(µ∞) = s for
all t > 0, (see also Proposition 3.1). Indeed, using (3), and the Itô formula yields

E|u(t)|2s =
+∞
∑

p=1

qp

2λ1−s
p

(

1− exp(−2λpt)
)

{

< +∞ if s < s

= +∞ if s > s
.

The following proposition shows that at the discrete-time level, the standard linearized
implicit Euler method vn in (6) and the method without processing un in (9) have the
regularity parameter s+ 1, whereas the postprocessor un in (10) has the correct regularity
parameter s.

Proposition 3.9. Consider (1) with F = 0, σ = 1, u0 = 0 and assume (2). Then, for
all h > 0 and all n ∈ N

∗, reg(Pvn) = reg(Pun) = reg(νh∞) = reg(µh∞) = s + 1, whereas
reg(Pun) = reg(µh∞) = s.

Proof. Inspecting the proof of Proposition 3.2, we have un = ℓn and for all s < s + 1, h >
0, n ∈ N

∗

E
∣

∣ℓn
∣

∣

2

s+1
≤ C

h

+∞
∑

p=1

qpλ
s
p

(λph)
2

(1 + λph)2 − 1
≤ C

h
Trace

(

(−A)s−1Q
)

;

this yields reg(Pun) = reg(µh∞) ≥ s + 1. The reverse inequality is obtained with a similar
lower bound. The proof for the standard linearized implicit Euler scheme vn is similar.
Now, adding the postprocessing, un = un + 1

2J3σ
√
hξQn , we obtain using the definition of

J3,

E
∣

∣J3σ
√
hξQn

∣

∣

2

s
= hTrace

(

(I − h

2
A)−1(−A)sQ

)

=
+∞
∑

p=1

qp

λ1−s
p

λph

1 + 1
2λph

{

< +∞ if s < s,

= +∞ if s > s.

The term 1
2J3σ

√
hξQn thus has exactly the same regularity s as the exact solution. This

concludes the proof of reg(Pun) = reg(µh∞) = s. �
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4 Numerical experiments

In this section, we compare numerically the performances of the new postprocessed method
(13) with the standard linearized implicit Euler method (6), and the trapezoidal method
(11), both in finite and infinite dimensions.

We consider first in Figure 1 the scalar nonlinear SDE (14) with dimension N = 1,
parameters A = −1, σ = 1 and the initial condition X(0) = 0. Taking f1(x) = Ax and
f2(x) = f(x) in (13), we consider the nonlinearities f(x) = −x−sin(x) and f(x) = −2x−x3,
respectively, and we compute the averages over 1010 independent trajectories with final
time T = 1 and compare for many time stepsizes the accuracy for E(exp(−X(T )2)) =
∫ +∞
−∞ exp(−x2)ρ(x)dx. The final time T = 1 is chosen large enough so that the equilibrium

is reached and the exponentially decaying term e−λT in (30) is negligible. In the left
picture of Figure 1 where the nonlinearity f(x) = −x − sin(x) is Lipschitz, we observe
as shown in Theorem 2.8 the expected order 2 of convergence for the new method, while
the standard methods exhibit order 1 of convergence (see the reference lines with slopes
1, 2). Although our analysis in Section 2.2 applies only to globally-Lipschitz vector fields,
we observe that the excellent performances of the new method persist also in the example
with the non-Lipschitz nonlinearity f(x) = −2x−x3 and the globally bounded test function
φ(x) = exp(−x2) (right picture of Figure 1).

We next consider a standard finite-difference approximation Uj(t) ≃ u(j∆x, t) of the
1D heat equation (4) with zero Dirichlet boundary conditions on a uniform grid with size
∆x = 1/(N + 1). This yields the following system of SDEs in dimension N ,

dX(t) =
1

∆x2











−2 1
1 −2 1

. . .
. . .

. . .

1 −2





















X1(t)
X2(t)

...
XN (t)











dt+











f(X1(t))
f(X2(t))

...
f(XN (t))











dt+
1√
∆x











dW 1(t)
dW 2(t)

...
dWN (t)











,

where W 1, . . . ,WN are independent one-dimensional standard Wiener processes.
Considering N = 100 grid points for the space discretization, we take the initial condi-

tion u(x, 0) = sin(2πx) and plot in Figure 2 a sample trajectory on the time interval (0, 1)
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Figure 1: Comparison of the new method (solid lines) with the standard linearized im-
plicit Euler method (dashed lines) and the trapezoidal method (dashed-dotted lines)
for the scalar SDE (14) (dimension N = 1) with A = −1, σ = 1, nonlinearity f(x).
Error for E(exp(−X(T )2)) at final time T = 1 versus the stepsize h, where 1/h =
8, 12, 16, 24, 32, 44, 64, 92, 128. Averages over 1010 samples.
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(a) Standard linearized Euler method, sample trajectory u(x, t) and corresponding profile at
final time t = 1.
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(b) New method with postprocessor, sample trajectory u(x, t) and corresponding profile at final
time t = 1.

Figure 2: Samples of realisation of the stochastic nonlinear heat equation (4) with f(u) =
−u− sin(u) using the standard linearized implicit Euler method and the new method with
postprocessor. With N = 100 space grid points and timestep size h = 1/100.

for the standard linearized implicit Euler method (6) and the new method with postproces-
sor Xn, using the same sets of generated random numbers for both methods. We observe
that the solution of the standard linearized implicit Euler method (Fig. 2(a)) is qualitatively
too smooth compared to the new method (Fig. 2(b)) with the postprocessor applied at each
timestep, which corroborates the statement of Proposition 3.9 in Section 3.4. Notice that
the trajectory for the new method without applying the postprocessor would look very
similar to that of the standard linearized implicit Euler method. The spatial regularity
observed in Figure 2(b) is the same as the one of a diffusion process driven by Brownian
motion, conditioned to be zero at initial and final times. This property is not surprising,
see [17, 16] for a study of the link between the law of a conditioned diffusion and invariant
distributions of SPDEs.

We finally plot in Figure 3 the error at final time T = 1 for the quantity E(exp(−‖u‖2L2(0,1)))

where we use the approximation ‖u‖2L2(0,1) ≃ ∆x
∑N

j=1(X
j)2. We use arbitrarily the initial

condition u(x, 0) = 0 and we compute the averages over 109 independent trajectories so
that the Monte-Carlo errors become negligible. The reference solution is computed using
the new method with stepsize h = 1/512. We consider respectively, the cases of various
nonlinearities f(u) = 0, f(u) = −u, f(u) = −u − sin(u), f(u) = −2u − u3. We observe
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Figure 3: Comparison of the new method (solid lines) with the standard linearized implicit
Euler method (dashed lines) and the trapezoidal method (dashed-dotted lines) for the
stochastic heat equation (4) with nonlinearity f(u) discretized in space with N = 100
grid points. Error for E(exp(−‖u(T )‖2)) at final time T = 1 versus the stepsize h, where
1/h = 8, 12, 16, 24, 32, 44, 64, 92, 128. Averages over 109 samples.

in all cases an order of convergence 1/2 for the standard linearized implicit Euler method,
while the trapezoidal method has order 1. In contrast to the standard linearized implicit
Euler method, the new method with postprocessor has a much better accuracy by a factor
15 − 250 in the range of stepsizes considered. It has a zero bias for f(u) = 0 and order
3/2 in the linear case f(u) = −u, as proved in Theorem 3.7. We observe that the order of
convergence persists in the nonlinear case f(u) = −u − sin(u), and the excellent accuracy
persists in the non-Lipschitz case f(u) = −2u − u3, although an order reduction can be
observed.
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Swiss National Science Foundation, Grant: No 200020-149871/1 and No 200020 144313/1,
respectively. The computations were performed at University of Geneva on the Baobab
cluster.

Appendix

Proof of Lemma 2.9. We consider the variant (31) of the linearized implicit Euler method.
A straightforward calculation yields the following weak expansion for all φ ∈ C∞

P (RN ,R),

E(φ(Y1)|Y0 = x) = φ(x) + hLφ(x) + h2A1φ(x) +O(h3), (44)
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where the constant symbolized by O is independent of h but depends on φ and depends on
x with a polynomial growth. Here, the fourth-order linear differential operator A1 is given
by1

A1φ =
1

2
φ′′(f0, f0) +

σ2

2

N
∑

i=1

φ′′′(ei, ei, f0) +
σ4

8

N
∑

i,j=1

φ(4)(ei, ei, ej , ej) + φ′f ′1f0

+
(

(a1 + 1)2
)σ2

2
φ′

N
∑

i=1

f ′′1 (ei, ei) +
(

a1 + 1 + a3

)

σ2
N
∑

i=1

φ′′(f ′1ei, ei)

+ a22
σ2

2
φ′

N
∑

i=1

f ′′2 (ei, ei) + a2σ
2

N
∑

i=1

φ′′(f ′2ei, ei)

where e1, . . . , eN denotes the canonical basis of RN .
For any ψ ∈ C∞

P (RN ,R), we denote 〈ψ〉 =
∫

RN ψ(y)µ∞(dy) =
∫

RN ψ(y)ρ(y)dy. By
integration by parts, and using the identity ∇ρ = 2

σ2 ρf0, we obtain,
〈

φ′′(f0, f0)
〉

=
〈

−φ′(f ′0f0 + (div f0)f0 +
2
σ2 ‖f0‖2f0)

〉

,
〈

σ2
∑

i φ
′′′(f0, ei, ei)

〉

=
〈

φ′(σ2
∑

i f
′′
0 (ei, ei) + 4f ′0f0 + 2(div f0)f0 +

4
σ2 ‖f0‖2f0)

〉

,
〈

σ2
∑

ij φ
(4)(ei, ei, ej , ej)

〉

= 〈−∑i 2φ
′′′(f0, ei, ei)〉 ,

〈

σ2
∑

i φ
′′(f ′1ei, ei)

〉

=
〈

−φ′(σ2∑i f
′′
1 (ei, ei) + 2f ′1f0)

〉

, (45)

see [1, 38] for examples of such calculations. Then

〈A1φ〉 =

〈

(

a21 + 2a1

)σ2

2
φ′

N
∑

i=1

f ′′1 (ei, ei) +
(1

4
+ a1 + a3

)

σ2
N
∑

i=1

φ′′(f ′1ei, ei)

+ a22
σ2

2
φ′

N
∑

i=1

f ′′2 (ei, ei) +
(

− 1

4
+ a2

)

σ2
N
∑

i=1

φ′′(f ′2ei, ei)

〉

We note that the postprocessor Yn 7→ Y n in (31) satisfies (26) with q = 1 and A1φ =

b1φ
′f1 + b2φ

′f2 + c2

2 σ
2∆φ.

[L,A1]φ = (b1 − b2)φ
′(f ′2f1 − f ′1f2)−

c2

2
σ2φ′

N
∑

i=1

f ′′0 (ei, ei)−c2σ2
N
∑

i=1

φ′′(f ′0ei, ei).

We deduce the following expression for
〈

A1φ+ [L,A1]φ
〉

, which is the key quantity to
compute in Theorem 2.6, Summing up, we obtain

〈

A1φ+ [L,A1]φ
〉

=
〈(

a21 + 2a1 + b1 − c2
)σ2

2
φ′

N
∑

i=1

f ′′1 (ei, ei) +
(

a1 + a3 +
1

4
+ b1 − c2

)

σ2
N
∑

i=1

φ′′(f ′1ei, ei)

+
(

a22 + b2 − c2
)σ2

2
φ′

N
∑

i=1

f ′′2 (ei, ei) +
(

− 1

4
+ a2 + b2 − c2

)

σ2
N
∑

i=1

φ′′(f ′2ei, ei)

1We denote φ′(x) : RN
→ R the first derivative of φ at point x ∈ R

N , φ′′(x) the second derivative (a
symmetric bilinear form on R

N
× R

N ), φ′′′(x) the third derivative (a symmetric bilinear form), etc.
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+ (b1 − b2)φ
′(f ′2f1 − f ′1f2)

〉

.

The above quantity is zero by assumption for all test function φ. This means (A1 +
[L,A1])

∗ρ = 0. Applying Theorem 2.6 with q = 1 to the scheme (31) then yields for Y n

in (31) a method of weak order two for the invariant measure. This concludes the proof of
Lemma 2.9. �
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