Souad Bezzaoucha 
email: souad.bezzaoucha@u-bordeaux.fr
  
Benoît Marx 
email: benoit.marx@univ-lorraine.fr
  
Didier Maquin 
email: didier.maquin@univ-lorraine.fr
  
José Ragot 
email: jose.ragot@univ-lorraine.fr
  
State constrained tracking control for nonlinear systems

Keywords: Tracking control, nonlinear systems, constrained input, perfect and approximate state tracking

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Overview of linear model reference tracking control

Considering a plant represented by a linear model

ẋ(t) = Ax(t) + Bu(t), x ∈ R n x , u ∈ R n u y(t) = Cx(t), y ∈ R n y (1) 
and a linear reference model

ẋr (t) = A r x r (t) + B r u r (t), x r ∈ R n x , u r ∈ R n u y r (t) = Cx r (t) (2) 
representing the desired dynamics of the plant, model reference tracking control consists in determining a feedback law u(t) to achieve dynamic matching between the controlled plant ( 1) and the desired model reference [START_REF] Guo | Multivariable MRAC with state feedback for output tracking[END_REF]. More precisely, the goal is that the state variables of the plant x(t) (or its output y(t)) will closely follow the state variables (or the output) of the model reference x r (t) (or y r (t)).

In the available literature, the reader may distinguish three main approaches that will be presented and discussed hereafter: perfect, approximate and iterative state tracking.

Perfect state tracking

In the first approach, the well known Erzbergers perfect model matching conditions [START_REF] Erzberger | Analysis and design of model following control systems by state space techniques[END_REF] allow to achieve a null tracking error. Namely, under some structural conditions on the models (1) and [START_REF] Guo | Multivariable MRAC with state feedback for output tracking[END_REF], it establishes the existence of a state feedback controller ensuring that the plant and the model reference states behave similarly. Unfortunately, these conditions are restrictive matching equations which can only be satisfied for system matrices with great structural similarities, e.g. in the canonical form [START_REF] Guo | Multivariable MRAC with state feedback for output tracking[END_REF]. Note that one of the main issues for this approach concerns the controller structure. Two procedures may be distinguished. In the first procedure, the controller structure choice is firstly fixed and then the structural matching conditions and the appropriate gains of the controller are deduced. In [START_REF] Curran | Equicontrollability and the model-following problem[END_REF], [START_REF] Sastry | Adaptive control: Stability, Convergence and Robustness[END_REF], [START_REF] Khalil | Nonlinear Systems[END_REF] and [START_REF] Tao | Adaptive Control Design and Analysis[END_REF] for example, a particular state feedback for state tracking is given by:

u(t) = Kx(t) + K r u r (t), K ∈ R n u ×n x , K r ∈ R n u ×n u (3) 
where K and K r are constant parameter matrices so that the plant state vector x(t) can track a reference state vector x r (t) generated from [START_REF] Guo | Multivariable MRAC with state feedback for output tracking[END_REF]. Such a control design leads to: ẋ(t) = (A + BK)x(t) + BK r u(t) y(t) = Cx(t), y ∈ R n y (4)

The comparison between ( 4) and ( 2) can be made from two points of view, whether the tracking is limited to the steady state or is also sought during the transient.

For the steady state tracking, one obtains the following sufficient matching conditions:

(A + BK) -1 BK r = A -1 r B r (5) 
A particular solution of ( 5) is given by [START_REF] Cvetkovic-Ilic | Re-nnd solutions of the matrix equation AXB = C[END_REF]:

( K r K ) = B + PQ + (6) 
with

P = AA -1 r B r , Q = I -A -1 r B r (7) 
and the consistency condition:

BB + PQ + Q = P (8) 
The perfect state matching between (2) and (4), even during the transient, is obtained if there exists K and K r such that A + BK = A r and BK r = B r . This needs the following rank constraints to be fulfilled

rank(B) = rank([B|A r -A]) rank(B) = rank([B|B r ]) (9) 
The gains K and K r are then given by:

K r = B + B r K = B + (A r -A) (10) 
with B + a suitable pseudo-inverse matrix of the full column rank B matrix. It is also important to highlight the fact that fixing the structure of the controller (3) will not necessarily lead to a solution. In fact, the choice of an inadequate structure may cause some controllability problems, which confirms the importance of the adopted control structure. In [START_REF] Patton | Fault-tolerant control systems: The 1997 situation[END_REF], the model and controller structures were fixed and the gains were given the basic form corresponding to a PI controller u(t) = Kx r (t) + K r u r (t) + K e t 0 (y r (τ)y(τ))dτ with an asymptotically stable output tracking error. Imposing the same control gain over the time range may also be subject to criticism. This is why an adaptive control law with updated matrices K(t) and K r (t) is presented in [START_REF] Guo | Multivariable MRAC with state feedback for output tracking[END_REF] and [START_REF] Yang | Model reference adaptive control of a nonsmooth dynamical system[END_REF]. In [START_REF] Joshi | Direct adaptive control using an adaptive reference model[END_REF], the authors' aim was to design an adaptive control law ensuring the closed-loop signal boundedness and asymptotic state tracking despite uncertainties. The second procedure tends to achieve a null tracking error without a pre-requisited structure for the control law nor an assignment of error dynamics. In [START_REF] Nie | Fault estimation and MRC-based active FTC[END_REF] for example, the adopted approach was to deduce the control structure from the state tracking error e(t) = x(t)x r (t) and its dynamics deduced from ( 1) and ( 2) as follows ė(t) = A r e(t)

+ (A -A r )x(t) + Bu(t) -B r u r (t) (11) 
In order that (11) reduces to ė(t) = Ãe(t), where à is a prescribed stable matrix, the input control u(t) should be designed such that

(A -Ã)x + ( Ã -A r )x r + Bu -B r u r is null.

Approximate state tracking

As seen previously, perfect state tracking needs to respect strong constraints due to rank conditions ((9) for example). Therefore, in many situations, only approximate state tracking can be obtained, where the goal is to minimize the discrepancy between x and x r (or y and y r ). For example if [START_REF] Nie | Fault estimation and MRC-based active FTC[END_REF] cannot be reduced to ė(t) = Ãe(t), it is nevertheless possible to find a control u(t) minimizing x(t) = (A -Ã)x(t) + ( Ã -A r )x r (t) + Bu(t) -B r u r (t) or the transfer from u to x. Approximate state tracking is based on the quadratic optimal control theory and can be applied to arbitrary systems and always yields a feedback configuration which minimizes a quadratic function of the tracking error between the system state and the model reference [START_REF] Erzberger | Analysis and design of model following control systems by state space techniques[END_REF], [START_REF] Tseng | Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model[END_REF], [START_REF] Tong | Fuzzy robust tracking control for uncertain nonlinear systems[END_REF]. Although the quadratic optimal control approach provides a generic framework to design reference tracking controllers, it may be necessary to pay a particular attention to the choice of the weighting matrices of the cost function [START_REF] Erzberger | Analysis and design of model following control systems by state space techniques[END_REF] in order to obtain satisfactory trajectory tracking. The considered tracking criterion may be expressed in the following terms:

t f 0 e T (t)Qe(t)dt ≤ η 2 t f 0 u T (t)u(t)dt ( 12 
)
where Q is a positive definite weighting matrix and η the prescribed attenuation level. The matrix Q is chosen accordingly to the state components for which some specific tracking is desired. In [START_REF] Tseng | Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model[END_REF], the upper bound of the L 2 gain from u(t) to e(t) given by η √ λ (Q)

(where λ (Q) denotes the largest eigenvalue of the matrix Q) quantifies the effect of the reference input on the weighted tracking error. Obviously, the objective is to maximize the attenuation level

√ λ (Q) η .
Another point of the optimal control theory that may be subject to criticism is the fact that the linear quadratic regulator synthesis leads to determine a constant feedback gain.

A key point in this approach is the time horizon, which may be either finite and sliding or infinite. In the later case, the L 2 norm of the tracking error is minimized and in the former case, the aim is to minimize the tracking error on a finite sliding horizon. This procedure, known as the Model Predictive Control (also referred as the moving or receding horizon control), consists in solving an optimal control problem, over an horizon of finite length, at each time instant. With a discrete representation, it results in computing a control input sequence at time k, that minimizes, on a time horizon, a criterion mixing the control cost and the tracking error [START_REF] Nikolaou | Model predictive controllers: A critical synthesis of theory and industrial needs[END_REF]:

Φ k = k+N-1 ∑ i=k ||x i+1 -x r,i+1 || 2 Q + η 2 ||u i || 2 (13) 
The common feature of all MPC approaches is to solve, at each sampling time k, a finite horizon optimal control problem by considering the current state as the initial state. Then, only the first element of the computed control sequence is applied and the same problem procedure is repeated at the next sampling times [START_REF] Balandat | Constrained robust optimal trajectory tracking: Model predictive control approaches[END_REF].

In the two previous control strategies, the length N of the considered time horizon may affect the transient behavior of the closed-loop system and deserves a particular attention. In fact, for all the tracking methods listed above, the asymptotic behavior is well addressed and the tracking error is ensured to tend to zero in the steady state. An interesting improvement for the controller performance is to consider as well the transient behavior of the tracking error. In [START_REF] Stepanyan | Transient performance and asymptotic tracking with filtering robust adaptive control[END_REF], the controller is based, not only on the tracking error, but also on its integral in order to achieve transient performance for input and output signals. The control algorithm internally generates a low pass filter, thus preventing high frequency oscillations for the large adaptation rate for a class of MIMO uncertain nonlinear systems. In [START_REF] Stepanyan | MRAC revisited: guaranteed performance with reference model modification[END_REF], the control architecture of the adaptive law is not modified, but it is proposed to feed back the reference model with the tracking error signal. It is also important to highlight that these studies are founded on the frequency domain framework.

Iterative state tracking

The third approach refers to the Iterative Learning Control (ILC). The ILC is conducted along both time domain and repetitive trials or iterations and it may be resumed by the following procedure. At the k th iteration, a control u k (t) is applied:

ẋk (t) = Ax k (t) + Bu k (t) ẋr (t) = A r x r (t) + B r u r (t) (14) 
At the next iteration, the control law is adapted as follows:

u k+1 (t) = u k (t) + L ėk (t) e k (t) = x r (t) -x k (t) (15) 
In the ILC approach, the previous control sequence is used to compute the next one and thus improve the tracking performance as k increases by an appropriate choice of the gain L (see [START_REF] Yu | Model reference parametric adaptive iterative learning control[END_REF], [START_REF] Chen | An improvement on the transient response of tracking for the sampled-data system based on an improved PD-type iterative learning control[END_REF] and the references therein). Despite its efficiency, the disadvantage of this method in comparison with the ones listed previously, is that the control is generally made off-line, in a finite time interval and supposing that all the data are available. Moreover this approach is mainly devoted to periodic systems. However, there are some recent works dedicated to robust predictive ILC [START_REF] Phan | Robustification of iterative learning control and repetitive control by averaging[END_REF] and allowing on-line implementation [START_REF] Pipatpaibul | Application of online Iterative Learning Tracking control for quadrotors UAVs[END_REF].

Overview of nonlinear model reference tracking control

In this section, a focus is made on model reference tracking for nonlinear systems, like exact feedback linearization, sliding mode and adaptive control. The feedback linearization technique has been introduced to deal with nonlinear systems [START_REF] Chen | Robust tracking enhancement of robot systems including motor dynamics : a fuzzy-based dynamic game approach[END_REF]. However, the control algorithm is somewhat complicated, the stability of the controller is not guaranteed for non-minimum phase systems and its application to complex nonlinear systems is tedious. In [START_REF] Isidori | Output regulation of nonlinear systems[END_REF], nonlinear output regulation problem has been formulated and solved by designing a dynamic controller such that the closed-loop system is stable and the tracking error approaches zero asymptotically. Though the Isidori-Byrnes theory is precise and sophisticated, it requires many assumptions. Moreover, in order to synthesize a numerical solution, one has to solve the nonlinear regulator equation described by a system of nonlinear partial differential equations, which is difficult to solve as in the Hamilton-Jacobi-Bellman equation [START_REF] Shimizu | Tracking control of general nonlinear systems by a direct gradient descent method[END_REF]. The sliding mode control (SMC) presents the advantage of the robustness to uncertainties [START_REF] Wang | Fuzzy control design for the trajectory tracking on uncertain nonlinear system[END_REF], [START_REF] Hu | Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle[END_REF]. An output feedback SMC scheme for tracking uncertain nonlinear plants was adopted in [START_REF] Yan | A model reference robust control with unknown high frequency gain[END_REF]. It is an extension of [START_REF] Yan | Variable structure model reference adaptive control for systems with unknown high frequency gain[END_REF] and is based on a switching algorithm based on a monitoring function for the output tracking error. In [START_REF] Yan | Variable structure model reference adaptive control for systems with unknown high frequency gain[END_REF] and [START_REF] Yan | A model reference robust control with unknown high frequency gain[END_REF], only relative degree one plants were considered. In this case, despite the proved efficiency of the SMC, it appears that the controller is too sensitive to the chattering phenomenon. A solution would be to consider higher order sliding mode control for MIMO nonlinear systems [START_REF] Edwards | On the development of discontinuous observers[END_REF], [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF], [START_REF] Fridman | Higher Order Sliding Modes[END_REF], but due to the non-applicability of Lyapunov's direct method, very few results have been presented (see [START_REF] Hsu | Sliding mode control of uncertain nonlinear systems with arbitrary relative degree and unknown control direction[END_REF]). The Nonlinear Model Predictive Control, or NMPC, is an extension of the MPC cited previously. It is characterized by the use of nonlinear system models in the prediction [START_REF] Grüne | Nonlinear Model Predictive Control[END_REF], [START_REF] Alessio | A survey on explicit model predictive control[END_REF]. As in linear MPC, NMPC requires the iterative solution of optimal control problems on a finite prediction horizon. While these problems are convex in linear MPC, in NMPC they are not convex anymore. This is challenging for both NMPC stability theory and numerical solution [START_REF] Allgower | Nonlinear Model Predictive Control[END_REF], [START_REF] Allgower | Assessment and Future Directions of Nonlinear Model Predictive Control[END_REF].

The T-S case

Among the several structures of nonlinear models envisaged in tracking control, a focus is made on the Takagi-Sugeno models that are considered in the present paper. The T-S modeling is known to be an efficient way to tackle the problems of nonlinear estimation and control. Originally introduced by [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF], the T-S representation allows to exactly describe nonlinear systems, provided that the nonlinearities are bounded. This is reasonable since state variables as well as parameters of physical systems are bounded, and so is the input of the system which may be assumed to be stable, at least in closed-loop (see [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF] and the references therein). Despite an abundant literature on the T-S models, few authors have dealt with the tracking problem. One can refer to some works concerned with state or output feedback with H ∞ performances [START_REF] Taniguchi | A new PDC fuzzy reference models[END_REF], [START_REF] Tseng | Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model[END_REF], [START_REF] Qiu | Static output feedback H ∞ control of continuous-time T-S fuzzy affine systems via piecewise Lyapunov functions[END_REF], [START_REF] Qiu | Fuzzy model based piecewise networke nonlinear systems[END_REF] and [START_REF] Mansouri | Output feedback LMI tracking control conditions with H ∞ criterion for uncertain and disturbed T-S models[END_REF]. The tracking control is based on the state or output Parallel Distributed Compensation (PDC) structure to minimize the L 2 gain of the tracking error and the controller computation is expressed as an LMI problem [START_REF] Tseng | Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model[END_REF], [START_REF] Mansouri | Output feedback LMI tracking control conditions with H ∞ criterion for uncertain and disturbed T-S models[END_REF]. However, in the cited references, a referred "suitable" choice for the reference model is made without any explanations nor details. The last remark motivated the present study. In fact, either for the linear case or the nonlinear one, few works detail the influence of the reference model choice, which is not a trivial task. In [START_REF] Nie | Fault estimation and MRC-based active FTC[END_REF] for example, the authors referred to the Erzberger's conditions, but with no further explanations. For these reasons, in the proposed work, a focus is made not only on the control design procedure, but also on the tracking (matching) conditions.

Paper outline

The paper is organized as follows. In section 2, the structural conditions to achieve exact state tracking are introduced in the T-S case. These conditions are an extension of the well known Erzberger's conditions. As in the linear case, the objective is to achieve a null tracking error. Section 3 deals with the tracking criterion choice. After a short analysis, a quadratic optimal control for T-S model is introduced. As an improvement of this technique, the T-S MPC is presented in section 4. Section 5 is devoted to the tracking problem under input control constraints. In each section appropriate examples are presented. Finally, section 6 summarizes the obtained results.

Exact state tracking conditions for T-S systems

Model and objective

Let us consider the following discrete T-S model [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF]:

x k+1 = A k x k + B k u k (16) 
where x k ∈ R n x and u k ∈ R n u with:

A k = r ∑ i=1 µ i,k (ξ k )A i B k = r ∑ i=1 µ i,k (ξ k )B i (17) 
where the weighting functions µ i,k (ξ k ) depend on the so-called premise variable ξ k which may be a state, input, or output combination. These weighting functions satisfy the following convex sum property:

0 ≤ µ i,k (ξ k ) ≤ 1, r ∑ i=1 µ i,k (ξ k ) = 1 ( 18 
)
The considered linear reference model is the following:

x r,k+1 = A r x r,k + B r, u r,k (19) 
where x r,k ∈ R n x and u r,k ∈ R n u .

Remark 1. For the sake of simplicity, the model reference is chosen to be linear, but the extension to a nonlinear model defined by a T-S system (namely, with A r,k and B r,k instead of A r and B r ) can readily be done.

The ideal tracking objective is to adjust, at each instant k, the control u k in such a way that the system state x k follows the reference model state x r,k with a null tracking error. The idea is to find, as for the first strategy (section 1), the appropriate structural conditions, but also an analytical expression for the control law.

If the ideal tracking is not reachable, some compromises need to be defined such as, for example, the tracking of a subset of the states.

In order to achieve the tracking objective, the following control law with timevarying gains K k and K r,k is considered:

u k = K k x k + K r,k u r,k (20) 
Substituting ( 20) into ( 16), the closed-loop system is:

x k+1 = (A k + B k K k ) x k + B k K r,k u r,k (21) 
The matching conditions for the reference model and the system are then obtained by comparing the closed-loop system [START_REF] Pipatpaibul | Application of online Iterative Learning Tracking control for quadrotors UAVs[END_REF] and the reference model [START_REF] Chen | An improvement on the transient response of tracking for the sampled-data system based on an improved PD-type iterative learning control[END_REF]. The perfect transient tracking conditions are given by:

A k + B k K k = A r B k K r,k = B r (22) 
In order to find the gain K k and K r,k solution of ( 22), the following rank conditions have to be fulfilled:

rank(B k ) = rank([B k |A r -A k ]) rank(B k ) = rank([B k |B r ]) (23) 
If conditions [START_REF] Isidori | Output regulation of nonlinear systems[END_REF] are fulfilled, then at each sampling time, the gains K k and K r,k are given by:

K r,k = B + k B r K k = B + k (A r -A k ) (24) 
with B + k a suitable pseudo-inverse matrix of the full column rank B k matrix. Note that in order to satisfy the matching conditions [START_REF] Isidori | Output regulation of nonlinear systems[END_REF], from definitions (17), since the system matrices A k and B k depend on the time, a possible sufficient condition, but not the only one, is to consider the matrices A i , B i and A r , B r in the following canonical form:

A i = A 0 A i , A r = A 0 A r B i = 0 n x -n u b i , B r = 0 n x -n u b r (25) 
with A 0 a matrix of dimension (n xn u ) × n x , A i and A r matrices of dimensions n u × n x . b i and b r are of dimension n u × n u . The structure ( 25) is equivalent to express that:

1. the (n xn u ) first rows of the matrices A i are equal to the (n xn u ) first rows of the matrix A r 2. the (n xn u ) first rows of the matrices B i are null 3. the (n xn u ) first rows of the matrix B r are null allowing to fully satisfy the rank conditions [START_REF] Isidori | Output regulation of nonlinear systems[END_REF]. It is important to note that the matching conditions ( 23) between the reference model and the system depend on the choice of the control law. It means that these conditions have to be adapted when changing the structure of the control law.

Numerical example

To illustrate the above conditions, let us consider the electro-mechanical model of a motor, with a time varying parameter. The system model is given by the following equations:

u(t) = e(t) + R(p(t))i(t) + L di(t) dt J dΩ(t) dt = C m (t) -C r (t) (26) 
with u(t) the voltage, i(t) the current, e(t) = K e ω(t) the induced EMF with ω(t) the rotation speed. C m (t) and C r (t) are respectively the electromechanical and load torque (C m (t) = K m i(t) and C r (t) = f ω(t)). The inductance L, the inertia J and the parameters K m , K c and f are constant.

Taking into account the operating conditions (motor aging, temperature, etc) the resistance is considered to be time varying and bounded: R(p(t

)) ∈ [R 1 R 2 ]
, where p(t) is a known external parameter.

Including the angular position θ (t), the electro-mechanical model is given by the following state representation:

d dt   θ (t) ω(t) i(t)   =   0 1 0 0 -f J K m J 0 -K e L -R(p k ) L     θ (t) ω(t) i(t)   +   0 0 1 L   u(t) (27) 
For the sampling time T , the discretized form of ( 27) is given by:

  θ k+1 ω k+1 i k+1   =   1 T 0 0 1 -T f J T K m J 0 -T K e L 1 -T R(p) L     θ k ω k i k   +   0 0 T L   u k (28) 
Defining the weighting functions by:

µ 1,k = R 2 -R(p k ) R 2 -R 1 , µ 2,k = R(p k ) -R 1 R 2 -R 1 ( 29 
)
the following sub-models are obtained (see [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF] for procedure details):

A 1 =   1 T 0 0 1 -T f J T K m J 0 -T K e L 1 -T R 1 L   , B 1 =   0 0 T L   A 2 =   1 T 0 0 1 -T f J T K m J 0 -T K e L 1 -T R 2 L   , B 2 =   0 0 T L   (30) 
The considered reference model is chosen with different value of the resistance and inductance, denoted R r and L r :

x r,k+1 =   1 T 0 0 1 -T f J T K m J 0 -T K e L r 1 -T R r L r   x r,k +   0 0 T L r   u r,k (31) 
One can easily ensures that the tracking conditions ( 23) are fulfilled:

rank(B k ) = rank([B k |A r -A k ]) = 1 rank(B k ) = rank([B k |B r ]) = 1 ( 32 
)
Applying the tracking control law [START_REF] Phan | Robustification of iterative learning control and repetitive control by averaging[END_REF] with [START_REF] Shimizu | Tracking control of general nonlinear systems by a direct gradient descent method[END_REF], the system and model reference states are depicted in figure 1 (respectively noted x i and x ir , i = 1, . . . , 3). From the depicted figures, one can see that the control tracking is efficient for all the three states under the specified structural conditions. Remark 2. If the premise variables ξ k of the weighting functions µ i,k depend on the input u k , the control law (20) will be of the form u k = F(u k ), since A k and B k are input depending [START_REF] Stepanyan | MRAC revisited: guaranteed performance with reference model modification[END_REF]. A solution may be given by an iterative algorithm with the following recurrence:

u ( j+1) k = (B ( j) k ) T B ( j) k -1 B ( j) k T (A r -A ( j) k ) x k (33) with B ( j) k = r ∑ i=1 µ i,k (u ( j) k )B i , A ( j) k 
= r ∑ i=1 µ i,k (u ( j) 
k )A i , j = 0, . . . , N with N the number of iterations and u 0 k the input initialization (may be taken as u r,k for example).

Remark 3. The convergence proof of the proposed iterative algorithm can be locally ensured [START_REF] Axelsson | Iterative Solution Methods[END_REF], [START_REF] Kelley | Iterative Methods for Linear and Nonlinear Equations[END_REF]. But since it is not our study object, the reader may refer to the cited work for more explanations.

Approximate state tracking for T-S systems

This section concerns the optimal control with the introduction of the MPC for T-S models If the needed structural conditions for exact state tracking [START_REF] Isidori | Output regulation of nonlinear systems[END_REF] are not satisfied by the system and reference models, there is a need for an approximate tracking control with less conservative conditions. Instead of ensuring equal state trajectory of the system and reference, the aim should be to minimize the discrepancy between them. The so-called quadratic optimal control for T-S models aims at minimizing a function of the tracking error. As an consequence, the optimization ensures a compromise between the tracking of the different state components.

Control law design

At each time instant k, the objective is to minimize the following criterion which is the norm of the tracking error:

Φ k (u k ) = B k u k -x r,k+1 + A k x k 2 W ( 34 
)
where W is a positive definite weighting matrix chosen accordingly to the state components for which some specific tracking is desired. The control tracking law is then given by:

u k = (B T k W B k ) -1 B T k W (x r,k+1 -A k x k ) (35) 
where the matrices A k and B k have been already defined in [START_REF] Stepanyan | MRAC revisited: guaranteed performance with reference model modification[END_REF].

Remark 4. When the premise variables ξ k depend on the control as explained previously (remark 2), the control law ( 35) can be iteratively computed by: u

( j+1) k = ((B ( j) k ) T W B ( j) k ) -1 (B ( j) k ) T W (x r,k+1 -A ( j) k x k ) (36) 
for j = 0, . . . , N with B

( j) k = r ∑ i=1 µ i,k (u ( j) k )B i , A ( j) k = r ∑ i=1 µ i,k (u ( j) k )A i .

Numerical examples 3.2.1. Control independent premise variables

Let us consider a simplified vehicle lateral dynamic model studied in [START_REF] Varrier | Robust fault detection for uncertain unknown inputs LPV systems[END_REF] and represented in figure 2. The system dynamics are given by:

β (t) Ψ(t) =   -c aV +c aH mν(t) l H c aH -L V c aV mν 2 (t) -1 l H c aH -l V c aV I z l 2 H c aH +l 2 V c aV I z ν(t)   β (t) Ψ(t) + c aV mν(t) l V c aV I z u L (t) (37 
) where β denotes the side slip angle, Ψ the yaw rate, u L the relative steering wheel angle and ν the speed of the vehicle.

Ψ(t) β(t) v(t) u L (t)
Figure 2: Vehicle lateral dynamic system m = 1621Kg corresponds to the vehicle total mass, l V = 1.15m is the distance from the center of gravity (C.G.) to front axle, I H = 1.38m is the distance from C.G. to rear axle, I z = 1975Kgm 2 is the moment of inertia about the vertical axis, c aV = 57117Nrad -1 is the front axle tire cornering stiffness and c aH = 81396Nrad -1 is the rear axle tire cornering stiffness. For small variations of the speed around ν 0 , the discretized model is then given by:

β k+1 Ψk+1 =   1 -1.71( 1 ν 0 -ρ k ν 2 0 ) 0.58( 1 ν 2 0 -2ρ k ν 3 0 ) -0.02 0.47 1 -2.33( 1 ν 0 -ρ k ν 2 0 )   β k Ψk + 0.7( 1 ν 0 -ρ k ν 2 0 ) 0.67 u Lk ( 38 
)
where the parameter ρ k = δ ν k is time-varying and bounded

ρ k ∈ [ρ 1 , ρ 2 ].
Following the same procedure as for the previous example, a T-S model with two sub-models is obtained. One can verify that the exact tracking conditions ( 23) are not fulfilled. Then, a quadratic optimal control is chosen and is implemented. The weighting matrix is chosen as diag(1, 1). The system and reference model states are depicted in figure 3 (respectively noted x i and x ir , i = 1, 2). From the depicted figures, one can see that the control tracking is efficient (especially for the second state) although the structural conditions are not fulfilled. 

Control dependent premise variables

Let us now consider the following illustrative example where the premise variables are control dependent. The system and reference model are defined by:

A r =   0.2 0.5 0 -0.2 0.99 -0.1 0 0 0.2   , B r =   -0.3 0 1 0.11 0 1   A 1 =   0 0.5 0 -0.2 1.19 -0.1 0 0 0.1   , B 1 =   0.2 0.5 1.5 0.61 0.5 1.5   A 2 =   0.6 0.5 0 -0.2 1.09 -0.1 0 0 1.1   , B 2 =   -0.8 -0.5 0.5 -0.39 -0.5 0.5   (39) 
The weighting functions are control dependent and given by:

µ 1,k = 1 + 2 tanh(u 1,k ) 2 µ 2,k = 1 -µ 1,k (40) 
From [START_REF] Taniguchi | A new PDC fuzzy reference models[END_REF], one can verify that the exact tracking conditions [START_REF] Isidori | Output regulation of nonlinear systems[END_REF] are not fulfilled. Then, a quadratic optimal control is chosen and the iterative solution (36) is implemented.

First, the objective is to ensure a good tracking of the second and third state components. Consequently, the weighting matrix is chosen as diag(0.01, 1, 1), implying a relaxation of the tracking of the first state component. The system and reference model states are depicted in figure 4 (respectively noted x i and x ir , i = 1, . . . , 3). From the depicted figures, one can see that the control tracking is Secondly, if the main objective is an accurate tracking of x 1r by x 1 , one should set the weighting matrix as W = diag(0.1, 0.01, 0.01). The system and model reference states are displayed on figure 5 and it can be seen that the first state tracking has been improved when the second and third states tracking have been deteriorated.

Remark 5. The proposed quadratic method consists in calculating and minimizing the tracking error at each sampling instant k. Another way to consider the problem, is to minimize the norm of the tracking error on an infinite time horizon t → ∞ with an L 2 attenuation [START_REF] Bezzaoucha | Model reference tracking control for nonlinear systems described by Takagi-Sugeno structure[END_REF].

Toward the Model Predictive Control for T-S models

Minimizing the weighted state tracking error on a finite sliding horizon, instead of doing it at a given sampling time as in [START_REF] Alessio | A survey on explicit model predictive control[END_REF], allows to take into account the known state trajectory of the reference model and to have an anticipation effect of the tracking control. This leads to the extension of the MPC to state tracking control of T-S model. Roughly speaking, the procedure for T-S models is the same as for the conventional MPC. However, some difficulties occur when the premise variables depend on the control.

Premise variables independent of the input

Using the state equations ( 16) and [START_REF] Stepanyan | MRAC revisited: guaranteed performance with reference model modification[END_REF], it follows at time k + m + 1

x k+m+1 = A k+m x k+m + B k+m u k+m = m ∏ i=0 A k+i x k + m ∑ i=0 m ∏ j=i+1 A k+ j B k+i u k+i (41) 
Gathering the states on the time horizon

[k : k + p + 1], (41) becomes 
:

x k,p = A k,p x k + B k,p u k,p , x k,p ∈ R n(p+1) (42) 
with:

x k,p =      x k+1 x k+2 . . . x k+p+1      , A k,p =        A k A k+1 A k . . . p ∏ i=0 A k+p-i        , u k,p =      u k u k+1 . . . u k+p      B k,p =        B k 0 . . . 0 A k+1 B k B k+1 . . . 0 . . . . . . . . . . . . p-1 ∏ i=0 A k+p-i B k p-2 ∏ i=0 A k+p-i B k+1 . . . B k+p        (43) 
To ensure the reference model tracking on the time horizon [k : k + p + 1], the control u k,p is adjusted in order to minimize the criterion:

Φ k,p (u k,p ) = x r,k,p -A k,p x k -B k,p u k,p 2 W (44) 
with x r,k,p = x T r,k+1 x T r,k+2 . . . x T r,k+p+1

T ∈ R n(p+1) and where W is a weighting matrix. This leads to:

u k,p = (B T k,p W B k,p ) -1 B T k,p W (x r,k,p -A k,p x k ) (45) 
where only the first computed value of the input is applied to the system at the k th sampling time

u k = I n u 0 . . . 0 ūk,p (46) 
At the next sampling time, the horizon is shifted and the criterion Φ k+1,p is optimized in order to obtain and apply the control u k+1 .

Extension to control dependent premise variables

Since the weighting functions µ i,k of the T-S model that appear in the matrices A k,p and B k,p (43) may depend on the control ūk,p , the analytical solution [START_REF] Varrier | Robust fault detection for uncertain unknown inputs LPV systems[END_REF] needs to be slightly adapted, as follows:

1. define a threshold δ , a time window width p and set k = 0. seen that the anticipation introduced by the MPC approach improves the tracking.

for the time horizon

In order to quantify this improvement, let us consider the following criterion for each state:

φ i = N ∑ k=0 |x r,k,i -x k,i |, i = 1, . . . , n x ( 50 
)
where i is the component number of a vector, N is the simulation horizon and x k,i is obtained from non predictive control. The criteria Φ ip are analogously defined with x k,i obtained with MPC. Finally, the performance gain τ i due to MPC is obtained from τ i = 100 φ i -φ ip φ i . For the considered example, the following improvement is obtained (for each state): τ 1 = 12.3%, τ 2 = 31.2%, and τ 3 = 30.1%.

In order to highlight the influence of the time horizon length p on the tracking performances, the improvement of φ i , namely τ i , is computed for different time horizons defined by p ∈ {2, 3, 4, 5}. The results are gathered in table 1.

One can conclude, for the presented example, that a horizon of length p = 3 gives the best results. From the obtained results, it is important to highlight the contribution of the horizon length in the predictive control performances. A too short, as well as a too long horizon may not give the best expected results depending also on the dynamic characteristic of the reference on this time horizon. A compromise is then needed. To quantify the best horizon length, a comparative p = 2 p = 3 p = 4 p = 5 study as the one presented may be a good solution.

τ

Model Predictive Control for T-S systems with saturated control

In this section, the MPC for T-S systems with control saturation is considered. The tracking objective is maintained, even if each control component of the control input is upper and lower bounded. The objective is to show that, to some extent, the predictive aspect of the control will allow to compensate the saturation effect. Taking into account the control bounds in the control computing allows to anticipate and counteract the saturation effect and thus, improve the reference tracking.

Proposed strategy

The adopted strategy is the following:

1. On a given horizon of length p, synthesize the nominal control ensuring the tracking without considering the saturation constraints (equation ( 45) or (48) depending on whether or not the weighting functions depend on the control input) 2. Detect the components of the control u k,p that will exceed the saturation levels (n sM and n sm components for respectively the upper and lower limits). Define then two constraint matrices denoted F 1 ∈ R n u (p+1)×n sM and F 2 ∈ R n u (p+1)×n sm . All the entries of F 1 i j are null except one entry by column equal to 1 where F i j = 1 indicates that the j th upper saturation phenomenon on the time horizon [k : k + p] affects the th component of u k+m , where i = mn u + . Same construction goes for the matrix F 2 .

3. Modify the control depending on the previous equality constraints represented by the matrix F = F 1 F 2 . Knowing which inputs must be modified due to the saturation, the new criterion to minimize takes into consideration the control constraints with help of the Lagrange's parameter λ :

Φ = x r,k+p+1 -A k+p x k -B k+p u k,p 2 W +λ T (F T u k,p -U) (51) 
where the matrices A k+p , B k+p and u k,p have been already defined in (43), x r,k+p+1 corresponds to the gathering of the reference state on the considered horizon, U = U T max U T min T , where U max ∈ R n sM ×1 with U max,i = u max for i = 1, . . . , n sM and U min ∈ R n sm ×1 with U min, j = u min for j = 1, . . . , n sm . 4. Test the new control obtained after minimizing Φ, if some control input components still exceed the saturation levels, then go to step (3).

Let us now explicit the control expression in step 3 of the strategy. Derivating Φ (51), the optimality equations with respect to u k,p and λ give:

B T k,p W (B k,p u k,p + A k,p x k -x r,k,p+1 ) + Fλ = 0 F T u k,p -U = 0 (52) or equivalently        u k,p = (B T k,p W B k,p ) -1 ×(B k,p W (x r,k,p+1 ) -A k+p x k -Fλ ) λ = (F T (B T k,p W B k,p ) -1 F) -1 (F T (B T k,p W B k,p ) -1 ×B T k,p W (x r,k,p+1 -A k,p x k ) -U) (53) 
Recall that without constraints, the control input is given by:

u 0 k,p = (B T k,p W B k,p ) -1 B T k,p W (x r,k,p+1 -A k,p x(k)) (54) 
thus (53) becomes:

u k,p = u 0 k,p -(B T k,p W B k,p ) -1 Fλ ) λ = (F T (B T k,p W B k,p ) -1 F) -1 (F T u 0 k,p -U) (55) 
allowing to express the control

     u k,p = (I -Q -1 k,p F(F T Q -1 k,p F) -1 F T )u 0 k,p +Q -1 k,p F(F T Q -1 k,p F) -1 U Q k,p = B T k,p W B k,p (56) 
Remark 6. As in the previous section, if the weighting functions depend on the control input, the control law (56) may be computed iteratively.

Illustrative example

Let us consider the following example:

A r = 0.8 0.4 -0.2 0.4 , B r = 0 0.2 A 1 = 0.8 0.4 -0.3 0.9 , B 1 = 0 0.17 The weighting functions are control dependent and given by:

µ 1,k = 1 + 2 tanh(u k ) 2 µ 2,k = 1 -µ 1,k (58) 
The considered saturation is defined as u min = -1 and u max = 0.5. The simulations were done for different lengths of the prediction horizons p.

In order to quantify the improvement obtained with the proposed approach, the tracking errors between the reference model and the saturated system are compared with an without taking into account the saturation when computing the MPC law.

Let us define the criteria where φ i,s corresponds to the nominal saturated control (without considering the saturation in the control synthesis) and φ i,sc for the control law considering the saturation constraint, i.e. the proposed approach (56). The comparative criterion for each state variable between the two strategies is τ i = 100 φ i,s -φ i,sc φ i,s . For the considered example, the obtained results are given in table 2 where different values of the prediction horizon are considered.

One can conclude, for the presented example, that a horizon of length p = 3 gives the best results. Figure 7 represents the state trajectories when the nominal control is applied without saturation (x n ), when the nominal control is saturated (x s ) and when the proposed MPC law is applied with saturation (x sc ). Figure 8 depicts the control input with and without saturation. One can observe from the obtained results, that the tracking objective is significantly improved (36% for the first state and 21% for the second). 

Conclusion

In this paper, reference model tracking for nonlinear T-S models was considered. Structural conditions for perfect state tracking were established. When these conditions cannot be satisfied, relaxed solutions were proposed, based on quadratic optimal control. The Model Predictive Control for finite time horizon was developed and extended to the case of saturated control inputs. A first perspective for the present work is to generalize the matching conditions and the structure proposed in section 2 for a general control structure law and establish the relation between the reference model (A r , B r ) and the system matrices (A i , B i ). During the study, a strong correlation between the time horizon length and the model reference dynamics was pointed, in fact, a second interesting perspective will be to present a choice criterion that optimizes the time horizon length according to the model reference dynamics.
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Table 1 :

 1 Improvement gains for different horizon lengths

	1 10.2% 12.3% 11.5% 12.5%
	τ 2 27.4% 31.2% 27.4% 28.5%
	τ 3 25.4% 30.1% 25.4% 27.6%

  8% 36.4% 29.5% 24.6% τ 2 16.8% 21.2% 16.0% 13.7%

Table 2 :

 2 Improvement gains for different horizon lengths

( j) k,p

k,p and u

k,p || < δ , then go to step 3, else apply the k th control input defined by

6. k ← k + 1 and go to step 2.

Numerical example

Let us consider the same example [START_REF] Taniguchi | A new PDC fuzzy reference models[END_REF] as in the previous section with the weighting matrix W = diag(0.01, 1, 1). The MPC is performed for three steps forward (p = 2). Implementing the algorithm (47), the results represented on figure 6 are obtained.

Comparing the results displayed on figure 6, with those on figure 4, it can be