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The standard model for the dynamics of a fragmented density-dependent population is built from several local logistic models coupled by migrations. First introduced in the 1970s and used in innumerable articles, this standard model applied to a two-patch situation has never been completely analyzed. Here, we complete this analysis and we delineate the conditions under which fragmentation associated to dispersal is either beneficial or detrimental to total population abundance. Therefore, this is a contribution to the SLOSS question. Importantly, we also show that, depending on the underlying mechanism, there is no unique way to generalize the logistic model to a patchy situation. In many cases, the standard model is not the correct generalization. We analyze several alternative models and compare their predictions. Finally, we emphasize the shortcomings of the logistic model when written in the r-K parameterization and we explain why Verhulst's original polynomial expression is to be preferred.

Introduction

The theoretical literature on spatially-distributed population dynamics is huge and we will make no attempt to review it. Instead, we will focus on some problems with the basic models that are used as the building blocks of this body of theory. Indeed, we have found that even the simplest and most ancient model still contained unresolved aspects and that unsupported generalizations were common. More precisely, we will explore the details of various ways to generalize the logistic model to a two-patch situation, i.e., the simplest way to describe the dynamics of a spatially-distributed, density-dependent population. The standard model commonly used in this situation has never been completely analyzed. We will complete this analysis and we will delineate the conditions under which fragmentation can either be beneficial or detrimental to total population abundance. More importantly, we will show that this standard mutipatch logistic model is, in many cases, an incorrect description of the dynamics of a fragmented density-dependent population.

Assume that some population N follows the logistic model when growing in a uniform environment:

dN dt = rN 1 - N K . (1) 
This model assumes perfect mixing of the population. For modelling the dynamics of the same species in a patchy environment, it is widely accepted to assume that each subpopulation in each patch follows a local logistic law and that the various patches are coupled by migrations. Taking the case of two patches as a simple example, the following model describes logistic growth in two patches linked symmetrically by migration:

     dN 1 dt = r 1 N 1 1 -N 1 K 1 + β (N 2 -N 1 ), dN 2 dt = r 2 N 2 1 -N 2 K 2 + β (N 1 -N 2 ), (2) 
where N i is the population abundance in patch i and β N i is the emigration flow from patch i to the other patch (β ≥ 0). The parameters r i and K i are respectively the intrinsic growth rate and the carrying capacity in patch i. This model was first studied by [START_REF] Freedman | Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator[END_REF], later by DeAngelis et al. (1979) and [START_REF] Holt | Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution[END_REF], and a graphical presentation was given by Hanski (1999, pp. 43-46) in his reference book on metapopulations. More recently, DeAngelis and Zhang (2014) have brought new developments.

We denote by N * 1 and N * 2 the population abundances at equilibrium. With no loss of generality, we assume that patch 1 has the lower carrying capacity (i.e., K 1 ≤ K 2 ). In isolation (β = 0), each population equilibrates at its local carrying capacity: N * i = K i . A well-known result is that, in the presence of dispersal (β > 0), the total equilibrium population, N * T = N * 1 + N * 2 , is generally different from the sum of the carrying capacities K 1 + K 2 . [START_REF] Freedman | Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator[END_REF] have shown that, in the case of perfect mixing (β → ∞), both patch populations tend to equal values and that the total equilibrium population tends to:

N * T = K 1 + K 2 + (K 1 -K 2 ) r 1 K 2 -r 2 K 1 r 1 K 2 + r 2 K 1 , in the limit β → ∞. (3) 
[Note that this expression contained typos in Freedman and Waltman (1977, their equation 3.3) that were only partially corrected by [START_REF] Holt | Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution[END_REF].] Depending on the sign of the numerator present in equation [START_REF] Freedman | Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator[END_REF], dispersal can either be beneficial or detrimental with respect to the total carrying capacity. Thus, if r 1 K 2 < r 2 K 1 (with K 1 < K 2 ), we will have

N * T > K 1 + K 2 , if β is sufficiently large. ( 4 
)
This spectacular result, somewhat paradoxical, has been widely discussed and has led to speculations about the general virtues of patchiness and dispersal, for example in the context of the conservation ecology question of whether a single large refuge is better or worse than several small ones (the SLOSS debate; see, e.g., [START_REF] Hanski | Metapopulation Ecology[END_REF]. [START_REF] Freedman | Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator[END_REF] only contrasted the situations of perfect isolation and perfect mixing; they did not study the effect of intermediate values of the dispersal parameter β . This effect was studied in the recent paper of DeAngelis and Zhang (2014), but only in the special case r 1 /K 1 = r 2 /K 2 .

In the present paper, we will bring two contributions. Firstly, in Section 2 and Appendix A, we will present the analysis of model [START_REF] Deangelis | Effects of dispersal in a nonuniform environment on population dynamics and competition: a patch model approach[END_REF] in the full parameter space. We will show how the effects of dispersal β and of the r i /K i ratios combine and we will determine the exact conditions under which N * T > K 1 + K 2 (see Proposition 2). These results have importance in those cases in which model ( 2) is a relevant description of logistic growth in a patchy environment.

Our second contribution will be to question the general validity of system (2) for modelling a patchy logistic population, using several simple examples. The logistic model is often justified on phenomenological grounds. However, it can also be derived from mechanistic considerations. Depending on the mechanism being considered, we will show that the correct generalization to a patchy situation is not necessarily represented by model [START_REF] Deangelis | Effects of dispersal in a nonuniform environment on population dynamics and competition: a patch model approach[END_REF] and that the equilibrium total population can be different from that predicted by this model. More precisely, we will show in Section 3 (with Appendix B) and in Section 4 (with Appendix C) that the patch coupling ( 2) is incorrect in models in which logistic growth is due to resource exploitation, while it is correct in a model in which logistic growth arises from agonistic inter-individual interactions (see Section 5).

Theoretical analysis of the standard two-patch logistic model

In this section, we summarize some of the properties of the standard model [START_REF] Deangelis | Effects of dispersal in a nonuniform environment on population dynamics and competition: a patch model approach[END_REF]. Formal proofs are given in the Mathematical Appendix A.

As already mentioned in the Introduction, with no dispersal (β = 0), each patch equilibrates at its own carrying capacity and the total equilibrium number of individuals is just the sum of the carrying capacities:

N * T = K 1 + K 2 .
This remains true with dispersal (β > 0) if the two carrying capacities are identical. However, if the carrying capacities are not identical (K 1 < K 2 ), the equilibrium densities are such that

K 1 < N * 1 < N * 2 < K 2 , (5) 
meaning that, in general, N * T = K 1 + K 2 (see Proposition 2 in the Appendix A). In particular, the total equilibrium population N * T can be greater than the sum of the carrying capacities. In the Introduction, we mentioned Freedman and Waltman's result in the case of perfect mixing (β → ∞) (eqs. [START_REF] Freedman | Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator[END_REF][START_REF] Gabriel | Paradoxes in the logistic equation?[END_REF]. This can also occur with imperfect mixing as, for example, if r 1 /K 1 < r 2 /K 2 (with K 1 < K 2 ). In this case, as shown in the Appendix A, [START_REF] Poggiale | Global production increased by spatial heterogeneity in a population dynamics model[END_REF].

N * T > K 1 + K 2 , as soon as β > 0. ( 6 
) 3 Note that, if migration is asymmetric (β 1 = β 2 ), then it is possible to have N * T > K 1 +K 2 even in the case K 1 = K 2
The Appendix A gives the full mathematical analysis of the equilibrium properties of the coupled logistic model [START_REF] Deangelis | Effects of dispersal in a nonuniform environment on population dynamics and competition: a patch model approach[END_REF]. The main qualitative results are summarized by Figure 1. Depending on the inequalities between r 1 and r 2 , and between r 1 /K 1 and r 2 /K 2 , three different domains must be considered in the parameter space r 1 × r 2 . We define J 0 by the condition r 2 /K 2 ≥ r 1 /K 1 , J 2 by the condition r 2 ≤ r 1 , and J 1 by the condition [START_REF] Deangelis | Effects of dispersal in a nonuniform environment on population dynamics and competition: a patch model approach[END_REF]. In J 0 , patchiness has a beneficial effect on total carrying capacity. This effect is detrimental in J 2 . In J 1 , the effect is beneficial for lower values of the migration coefficient β and detrimental for the higher values. Note that, because of the assumption K 1 ≤ K 2 , the two oblique lines cannot be reversed. See text in Section 2 for additional explanations.

r 2 /K 2 < r 1 /K 1 and r 2 > r 1 . 0 J 0 J 1 J 2 r 1 r 2 r 2 = r 1 r 2 /K 2 = r 1 /K 1 Figure 1: Qualitative properties of model
The effect of patchiness and migration is different in the three domains. In J 0 , this effect is beneficial: N * T is always greater than K 1 + K 2 . In J 2 , the opposite is true: patchiness is detrimental since N * T is always smaller than K 1 + K 2 . In J 1 , the effect of patchiness depends on the migration rate: it is beneficial at lower values of the migration coefficient β while this effect becomes detrimental at high values. This is illustrated by Figure 2, in which the total equilibrium abundance N * T is plotted as a function of the migration rate β . Depending on the choice of parameter values (given in Table 1), this figure shows three different example patterns, belonging respectively to J 0 , J 2 , and J 1 . 2a is an example response in J 0 : as soon as there is some migration (β > 0), the global carrying capacity N * T is greater than

r 1 K 1 r 2 K 2 dN * T dβ (0) N * T (+∞) Figure 2a 0.5 0.5 2 1 0.75>0 1.67 > K 1 + K 2 Figure 2b 1 0.5 0.8 2 -0.375 < 0 1.5 < K 1 + K 2 Figure 2c 1 0.5 2 1.5 0.5 > 0 1.8 < K 1 + K 2 Figure
K 1 + K 2 .
In Figure 2b, we show an example response in J 2 : the total equilibrium population N * T is always lower than (a) (b) (c)

N * T (β ) N * T (β ) N * T (β ) K 1 + K 2 K 1 + K 2 K 1 + K 2 β β β
Figure 2: Total equilibrium population of model ( 2) as a function of migration: N * T (β ). The horizontal dotted line is K 1 + K 2 . Depending on the parameter values (given in Table 1), three different patterns can be obtained, corresponding to the three domains of 2c shows a response in the intermediate domain J 1 , in which the lower values of the migration rate have a beneficial effect while this effect becomes detrimental at high values.

K 1 + K 2 . Finally, Figure

Mechanism 1: Logistic growth induced by resource consumption

Having given in Section 2 the full analysis of the two-patch logistic model (2), we now turn to the second contribution of this paper, i.e., the correct way to build patch models derived from mechanistic considerations. For the first mechanism, we take the example of a population of bacteria consuming a substrate in a batch culture. This process occurs on a fast time scale, on which bacterial mortality can be ignored. Assuming perfect mixing of both the substrate and the population, this situation is modelled by:

     dR dt = -a R N, dN dt = ε a R N, (7) 
where R is the substrate concentration, N the bacterial density, a the so-called "searching efficiency" of the mass-action interaction, and ε the conversion coefficient.

We have:

d(εR + N) dt = 0
and thus εR(t) + N(t) = εR(0) + N(0) = M. Substituting (M -N) to εR in the second equation of [START_REF] Holt | Predation, apparent competition, and the structure of prey communities[END_REF], one gets:

dN dt = aN(M -N), (8) 
which is equivalent to the logistic equation [START_REF] Deangelis | Persistence and stability of seed-dispersed species in a patchy environment[END_REF] with K = M and r = aM. This equation, derived from [START_REF] Holt | Predation, apparent competition, and the structure of prey communities[END_REF], has long ago been shown to give an excellent empirical description of the dynamics of a batch culture of micro-organisms (e.g., [START_REF] Pearl | The growth of populations[END_REF].

Consider now two coupled batch reactors, with the same bacteria and substrate, and differing only in the initial conditions. Denote by R 1 , N 1 , R 2 , and N 2 the population sizes of substrate and bacteria in reactors 1 and 2 respectively. Let M 1 = εR 1 (0)+N 1 (0) and M 2 = εR 2 (0) + N 2 (0). If we assume linear dispersal between the two patches and if we ignore the consumption mechanism that led to the equation [START_REF] Holt | Spatial heterogeneity, indirect interactions, and the coexistence of prey species[END_REF], it is tempting to model the coupled reactors by coupling the corresponding reduced equations [START_REF] Holt | Spatial heterogeneity, indirect interactions, and the coexistence of prey species[END_REF] with the addition of migrations:

     dN 1 dt = aN 1 (M 1 -N 1 ) + β (N 2 -N 1 ), dN 2 dt = aN 2 (M 2 -N 2 ) + β (N 1 -N 2 ). (9) 
We said in the previous section (and proved in the Mathematical Appendix A) that, if we denote by (N * 1 , N * 2 ) the equilibrium of ( 9), then

N * 1 + N * 2 > M 1 + M 2 (10) 
as soon as β > 0 and

M 1 = M 2 .
Despite its perfect mathematical derivation, this result is false for the coupling of the two reactors. The correct description in this case must be done by modelling the consumption mechanism [START_REF] Holt | Predation, apparent competition, and the structure of prey communities[END_REF] in the two patches with possibly different dispersal rates for the substrate (α) and for the bacteria (β ):

                     dR 1 dt = -a R 1 N 1 + α(R 2 -R 1 )
,

dR 2 dt = -a R 2 N 2 + α(R 1 -R 2 ), dN 1 dt = ε a R 1 N 1 + β (N 2 -N 1 ), dN 2 dt = ε a R 2 N 2 + β (N 1 -N 2 ). (11) 
Adding the four equations, one gets:

d(εR 1 + εR 2 + N 1 + N 2 ) dt = 0,
which means:

εR 1 (t) + εR 2 (t) + N 1 (t) + N 2 (t) = εR 1 (0) + εR 2 (0) + N 1 (0) + N 2 (0) = M 1 + M 2 .
Therefore, we always have, including at equilibrium:

N 1 (t) + N 2 (t) ≤ M 1 + M 2 because the quantity R 1 (t) + R 2 (t) must be positive! Since at equilibrium R * 1 = R * 2 = 0, we conclude that N * 1 + N * 2 = M 1 + M 2 ,
in contradiction with the result (10) obtained when coupling the reduced logistic models [START_REF] Holt | Spatial heterogeneity, indirect interactions, and the coexistence of prey species[END_REF]. This is completely independent of the value of α, the substrate dispersal rate. The flaw in obtaining the wrong inequality [START_REF] Kuno | Some strange properties of the logistic equation defined with r and K: inherent defects or artifacts?[END_REF] was that it was derived on the basis of the reduced model ( 9), itself derived from the first integral εR(t) + N(t) = εR(0) + N(0) of ( 7), which is no longer a first integral of the full system (11).

Mechanism 2: Logistic growth induced by MacArthur's reduction

The second mechanistic derivation of logistic growth that we consider is that of [START_REF] Macarthur | Species packing and what interspecies competition minimizes[END_REF][START_REF] Macarthur | Species packing and competitive equilibrium for many species[END_REF]. Consider the following model for resource-consumer dynamics:

     dR dt = s 1 - R L -a N R, dN dt = ε(a w R -q)N, ( 12 
)
where R is the population density of the resource (prey), N is the population density of the consumer (predator), a is the searching efficiency (as in Section 3), w is the weight (caloric value) of the resource, q is the metabolic rate for maintenance of the consumer, and ε is a proportionality constant governing the biochemical conversion of resource R into consumer N. The resource is assumed to follow logistic growth with parameters s and L when the consumer is not present. For the sake of simplicity, we denote b = aw.

The system ( 12) is a standard model built for a biotic resource with logistic intrinsic dynamics and a consumer with Lotka-Volterra functional response. It has been used in a very large number of articles that generalized it to multi-patch and/or to multi-species situations. The model is more appropriate than the mechanism of Section 3 when the resource can reproduce with its own dynamics and when the consumer has some loss term (e.g., due to basal metabolism or mortality).

MacArthur's contribution was to make the crucial assumption that the conversion coefficient ε was small. Taking advantage of the separation of time scales, the "quasisteady state" of the resource can be calculated from the (fast) first equation in [START_REF] Macarthur | Species packing and what interspecies competition minimizes[END_REF] and be used to replace R in the second equation. The quasi-steady state R, that is, the solution of the algebraic equation s (1 -R/L)a N = 0, is given by

R = L 1 - a s N
and substituting it into the second equation in [START_REF] Macarthur | Species packing and what interspecies competition minimizes[END_REF] gives:

dN dt = ε bL -q - ab s LN N, (13) 
which is once more the logistic equation ( 1) with intrinsic growth rate and carrying capacity

r = ε(bL -q), K = s a bL -q bL .
Note that the above reduction method was recently generalized to other types of resource-consumer systems by [START_REF] Reynolds | When can a single-species, densitydependent model capture the dynamics of a consumer-resource system[END_REF].

Let us now consider two patches and assume some migration between the two. If we model this situation directly with MacArthur's reduced logistic form (13), we have:

     dN 1 dt = ε 1 b 1 L 1 -q 1 -a 1 b 1 s 1 L 1 N 1 N 1 + β (N 2 -N 1 ), dN 2 dt = ε 2 b 2 L 2 -q 2 -a 2 b 2 s 2 L 2 N 2 N 2 + β (N 1 -N 2 ). (14) 
The population in each patch follows logistic growth with intrinsic growth rates

r 1 = ε 1 (b 1 L 1 -q 1 ), r 2 = ε 2 (b 2 L 2 -q 2 ), (15) 
and carrying capacities

K 1 = s 1 a 1 b 1 L 1 -q 1 b 1 L 1 , K 2 = s 2 a 2 b 2 L 2 -q 2 b 2 L 2 . ( 16 
)
With no migration (β = 0), each patch equilibrates at its respective carrying capacity and the total number of individuals present at equilibrium is just the sum of the carrying capacities,

N * T = K 1 + K 2 . Let us denote by (N * 1 , N * 2 )
the positive (and globally stable) equilibrium of ( 14). We will compare the total population N * T = N * 1 + N * 2 with the total population obtained for the complete two-patch extension of [START_REF] Macarthur | Species packing and what interspecies competition minimizes[END_REF], which is:

                       dR 1 dt = s 1 1 - R 1 L 1 -a 1 N 1 R 1 + α(R 2 -R 1 ), dR 2 dt = s 2 1 - R 2 L 2 -a 2 N 2 R 2 + α(R 1 -R 2 ), dN 1 dt = ε 1 (b 1 R 1 -q 1 )N 1 + β (N 2 -N 1 ), dN 2 dt = ε 2 (b 2 R 2 -q 2 )N 2 + β (N 1 -N 2 ). (17) 
The term α(R 2 -R 1 ) represents some possible migration of the resource, which is not present in the reduced system [START_REF] Mallet | The struggle for existence: how the notion of carrying capacity, K, obscures the links between demography, Darwinian evolution, and speciation[END_REF] since the variable R does not appear in the equations.

Computer simulations show that system (17) has an equilibrium, which appears to be globally stable, and we denote it by

E * * = (R * * 1 , R * * 2 , N * * 1 , N * * 2 ). (18) 
We will now compare the effect of migrations expressed in the complete model [START_REF] Reynolds | When can a single-species, densitydependent model capture the dynamics of a consumer-resource system[END_REF] and in the reduced model ( 14). This will be done by simulation. We integrate the equations for a long time (namely 100 units of time) until the equilibrium is almost reached and then compute the total consumer population for both models ( 14) and [START_REF] Reynolds | When can a single-species, densitydependent model capture the dynamics of a consumer-resource system[END_REF]:

N * T = N * 1 + N * 2 , N * * T = N * * 1 + N * * 2 .
Although the general case of different migration rates α and β can be studied with no special difficulty, we will consider in this paper two special cases in order to simplify the presentation: α = β ≥ 0, in Section 4.1, and α = 0 and β ≥ 0, in Section 4.2.

In order to single out the role of migration strength, we will compare the graphs of N * T (β ) and N * * T (β ) as functions of β , all other parameters being fixed.

Migration of both the resource and the consumer

In this section, the migration between the two patches is α = β with β ≥ 0. The simulations will be done with the values given in Table 2. The parameters leading to the example behaviours of Figures 3 and4 are chosen in such way that the population derivatives at β = 0 and the population values at β = ∞ obey a variety of inequalities. In other words, the parameters shown in Table 2 are chosen in such way that the quantities shown in the last four columns of Table 3 verify typical inequalities. This was done with help of Propositions 5 and 6, which are presented in Appendix B. 17) with α = β used in Figures 3 and4. On Figures 3 and4, the value of K 1 +K 2 is represented by the horizontal dotted line. As soon as β is strictly positive, there is a departure from this value and the pictures also show that the values predicted by the reduced model are quite different from those predicted by the complete model. This is not surprising since the reduced model does not take into account the resource migration modelled by α = β > 0.

s 1 L 1 q 1 s 2 L 2 q 2 a 1 a 2 b 1 b 2 ε 1 ε 2 Figure 3a 1 1 0.5 3 3 2 1 1 1 1 1 1 Figure 3b 1 2.8 1.
r 1 r 2 K 1 K 2 dN * T dβ (0) dN * * T dβ (0) N * T (∞) N * * T (∞) Figure 3a 0.
We first set the parameter values as in line 1 of Table 2. In this example (Figure 3a), the total population with migrations for the complete model is always greater than the total population with migrations for the reduced model, which is itself always greater than the total population without migration. This is not true in general, as shown by Figure 3b, obtained with the parameter values in line 2 of Table 2. In this example, K 1 + K 2 ≈ 2.995 (see line 2 of Table 3). We see that small migration values improve the total population but large values deteriorate it. Therefore the total population is not always greater than the sum of the two carrying capacities, nor the total population for the complete model is always greater than the total population for the reduced model. More precisely, all the possible inequalities between N * T , N * * T , and K 1 + K 2 can actually be obtained, depending on the value of the migration intensity β , as shown by Figure 3b, in which we have successively: 2. We see in Table 3 that, for these parameter values, we have r 2 < r 1 . Therefore, from the theoretical results of Section 2 (see Figure 1), we deduce that N * T (β ) < K 1 + K 2 for any β > 0 and N * T (β ) is decreasing, as illustrated in Figure 3c. However, we see on this figure that N * * T (β ) decreases first and then increases, and can take values larger than

N * * T > N * T > K 1 + K 2 , N * T > N * * T > K 1 + K 2 , N * * T > K 1 + K 2 > N * T , K 1 + K 2 > N * T > N * * T , and K 1 + K 2 > N * * T > N * T . (a) (b) N * T (β ) N * * T (β ) K 1 + K 2 N * T (β ) N * * T (β ) K 1 + K 2 β β (c) (d) N * T (β ) N * * T (β ) K 1 + K 2 N * T (β ) N * * T (β ) K 1 + K 2 β β
K 1 + K 2 .
Figure 3d is obtained with the parameter values in line 4 of Table 2. We see in Table 3 that, for these parameter values, we have r 2 /K 2 > r 1 /K 1 . Therefore, from Figure 1, we deduce that N * T (β ) > K 1 + K 2 for any β > 0, as illustrated in Figure 3d. However, we see on this figure that N * * T (β ) > K 1 + K 2 for small β and the opposite holds for large β .

Figure 4 is obtained with the parameter values in line 5 of Table 2. We see in Table 3 that, for these parameter values, we have r 2 > r 1 and r 2 /K 2 < r 1 /K 1 . Therefore, from Figure 1, we have that N * T (β ) > K 1 + K 2 for β small enough and N * T (β ) < K 1 + K 2 for β large enough, as illustrated in Figure 4. However, we see on this figure that N * * T (β ) has a completely different behaviour. It should be noticed (see Table 3) that 2 and3). Panel (b) is a zoom of (a) in a narrow range of very small values of β .

dN * * T dβ ( 
N * T (β ) N * * T (β ) K 1 + K 2 N * T (β ) N * * T (β ) K 1 + K 2 β β

Migration of the consumer alone

Since MacArthur's reduction does not contain the resource as an explicit variable, it certainly cannot, as shown above, account for resource migration. However, if we assume that there is no resource migration, one may wonder whether it doesn't become accurate. The complete model is system [START_REF] Reynolds | When can a single-species, densitydependent model capture the dynamics of a consumer-resource system[END_REF] with α = 0. It can be analyzed mathematically to a large extent (see Appendix C). Here, we present illustrations obtained by numerical simulation.

We set the parameter values as in line 1 of Table 4. On Figure 5a, the value K 1 + K 2 is represented by the horizontal dotted line. As soon as β is strictly positive, there is a departure from this value. The value predicted by the reduced model is the same as the one predicted by the complete model. Indeed, for this set of parameters, the reduced model gives a correct picture of the complete model. However, this is not the general case, as will be shown in the following example. 17) with α = 0 used in Figures 5 andC.8. The values of the other parameters in [START_REF] Reynolds | When can a single-species, densitydependent model capture the dynamics of a consumer-resource system[END_REF] We now set the parameters as in line 2 of Table 4. On Figure 5b, the value K 1 + K 2 is again represented by the horizontal dotted line. As soon as β is strictly positive, there is a departure from this value. The value predicted by the reduced model is the same as the one predicted by the complete model when β is small enough. After a certain value (β ≈ 0.5), the predictions of the two models differ suddenly, with the prediction of the reduced model (solid curve) being quite smaller than the prediction of the complete model (curve with circles). The mathematical explanation to this threshold effect is given in the Appendix C.

are ε i = a i = b i = 1. s 1 L 1 q 1 s 2 L 2 q 2 r 1 K 1 r 2 K 2 Figure 5a
(a) (b) Regarding the abundances, the stable equilibrium ( 18) is strictly positive when β < 0.5, but when β > 0.5, the resource R 1 becomes extinct at equilibrium, as shown in Figure 6. Thus, when β > 0.5, the system works as a classical source-sink system, with the resource being constantly supplied by patch 2 to patch 1, where it is instantly consumed by the population N 1 .

N * T (β ) = N * * T (β ) K 1 + K 2 N * T (β ) N * * T (β ) K 1 + K 2 β β
(a) (b) 

t t N 1 (t) N 2 (t) R 2 (t) R 1 (t) N 1 (t) N 2 (t) R 2 (t) R 1 (t)

Discussion

When we say that the logistic equation ( 1) is a model for the growth of some population N, what do we mean exactly? Usually, we say nothing about the actual mechanisms that explain this kind of growth. What we mean is roughly the following argument:

1. Let µ(N) be the density-dependent, specific growth rate of a population. If we want the population to be bounded, µ(N) must decrease to 0. 2. The simplest function of N that decreases to 0 is µ(N) = r 1 -N K . 3. Equation ( 1) is a good approximation of some more complicated model. 4. The fit of the logistic model [START_REF] Deangelis | Persistence and stability of seed-dispersed species in a patchy environment[END_REF] to actual population dynamics is often fairly good.

From the above considerations, it seems natural to model migrations between two patches directly as in system (2). However, the correct generalization depends on the mechanisms that underly the logistic growth and that are not specified in the items 1 to 4 above. In the examples we have studied, we have shown that the patch version (2) could be incorrect.

Nevertheless, it can be correct under specific assumptions. For instance, the logistic model can be derived from the following mechanism, different from those of Sections 3 and 4. Assume that the population basically follows exponential growth:

dN dt = r N,
and that some proportion of the encounters between two individuals lead to mortality. In this case, if we also assume perfect mixing, the number of individuals dying during a small time interval dt is simply proportional to the product N 2 dt. Subtracting this mortality, we obtain the equation

dN dt = r N -λ N 2 = rN 1 - λ r N , (19) 
which is a logistic (with carrying capacity K = r/λ ). This is a mechanistic derivation of the logistic equation that assumes direct intraspecific interference. Now, if we consider two patches with linear dispersal between them, we can assume the same mechanism and build the two-patch model (2) directly as a whole. In this case, we can be confident about the predictions of model ( 2), which is the traditional two-patch generalization of the logistic model.

If we accept the two-patch logistic model, our complete mathematical analysis summarized by Figures 1 and2 has determined the exact conditions under which fragmentation (associated to dispersal) increases the total equilibrium population size. This occurs in J 0 for all migration rates (Fig. 2a) and in J 1 for the lower migration rates (Fig. 2c). Thus, a necessary condition is r 2 > r 1 (which is not always sufficient). Recalling that K 2 > K 1 , this means that, when the "good" patch 2 is the better one both in terms of carrying capacity and in terms of intrinsic growth rate, fragmentation can indeed have a beneficial effect. Fragmentation is always detrimental if carrying capacity and growth rate are negatively correlated, i.e., if K 2 > K 1 and r 2 < r 1 . One may reasonably assume that this condition occurs in nature much less frequently than positive correlation (i.e., K 2 > K 1 and r 2 > r 1 ). Therefore, our analysis confirms the earlier partial results of other authors (e.g., [START_REF] Freedman | Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator[END_REF][START_REF] Holt | Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution[END_REF]; DeAngelis and Zhang, 2014) who suggested that, in general, fragmentation was beneficial.

In particular, this will always be the case with the parameterization (19) of the logistic equation. In this case, K is proportional to r because K = r/λ . Therefore, if the fundamental cause of density dependence is the intrinsic interference λ , assumed to be the same in both patches, the fragmented logistic model (2) analyzed in Section 2 is always on the border line between J 0 and J 1 of Figure 1. Fragmentation is always beneficial.

While this first message of our paper generally confirms previous results, our second message is more critical. We have shown that, if the logistic model is viewed as a mechanistic model (e.g., the two different mechanisms presented in Sections 3 and 4), then the correct two-patch generalization is different from the traditional reduced model [START_REF] Deangelis | Effects of dispersal in a nonuniform environment on population dynamics and competition: a patch model approach[END_REF]. Moreover, the effect of fragmentation can be quite different from that predicted by the latter model. Figures 3,4, and 5 have shown that this effect can be either detrimental or beneficial, sometimes in a direction opposite to that predicted by the traditional model [START_REF] Deangelis | Effects of dispersal in a nonuniform environment on population dynamics and competition: a patch model approach[END_REF].

This second message of our paper brings some new light to earlier criticisms of the logistic equation, especially in the parameterization of equation ( 1) (e.g., [START_REF] Kuno | Some strange properties of the logistic equation defined with r and K: inherent defects or artifacts?[END_REF][START_REF] Ginzburg | Evolutionary consequences of basic growth equations[END_REF]. Particularly, the expression "carrying capacity" for K is very unfortunate because it conveys the idea that it is an intrinsic environmental property. With this view, our results would lead to say that the total carrying capacity of a patchy environment is different from the sum of the patches' carrying capacities. Instead, K must be better viewed as the asymptotic, maximal value of the population abundance. This question was notably discussed by [START_REF] Gabriel | Paradoxes in the logistic equation?[END_REF] and by [START_REF] Mallet | The struggle for existence: how the notion of carrying capacity, K, obscures the links between demography, Darwinian evolution, and speciation[END_REF], who pointed out that it makes much more sense to write the logistic equation as in equation ( 19) because it makes clear that the asymptotic limit of population abundance is due to intraspecific competition. Moreover, historically, this was the original way in which Pierre-François Verhulst first wrote the logistic equation [START_REF] Verhulst | Notice sur la loi que la population suit dans son accroissement[END_REF].

A last point to discuss is to ask how our results generalize to situations with more than two patches. We have found that the complete analysis of the simplest two-patch case shows that the outcome is by no way intuitive. The mathematical extension to n patches (n > 2) is probably very intricate and is a challenge for further work. Still, we can be pretty much confident that our two main findings remain qualitatively valid: (1) under some conditions, but not always, the total equilibrium population can be higher than the sum of the local carrying capacities; (2) the coupling of n patches with local logistic dynamics gives different theoretical results from those of the detailed direct coupling of the underlying mechanisms.

Appendix A. Appendix to Section 2

Appendix A.1. Some formulas Let us first prove the following preliminary result.

Proposition 1. Let (N * 1 (β ), N * 2 (β )) be an equilibium of (2). 1. If K 1 < K 2 and β > 0, then K 1 < N * 1 (β ) < N * 2 (β ) < K 2 (i.e., (5) holds). 2. Let N * T (β ) = N * 1 (β ) + N * 2 (β ). Then N * T = K 1 + K 2 + β N * 2 -N * 1 r 1 K 1 r 2 K 2 N * 1 N * 2 r 2 K 2 N * 2 - r 1 K 1 N * 1 (A.1)
and dN * T dβ = N * 2 -N * 1 B(N * 1 , N * 2 ) β N * 1 N * 2 - N * 2 N * 1 + r 2 K 2 N * 2 - r 1 K 1 N * 1 (A.2) where B(N 1 , N 2 ) = r 1 K 1 r 2 K 2 N 1 N 2 + β r 1 K 1 N 2 1 N 2 + r 2 K 2 N 2 2 N 1 .
PROOF. Let us prove item 1, that is to say, that (5) holds. The equilibria are the solutions of the set of equations

   0 = r 1 N 1 1 -N 1 K 1 + β (N 2 -N 1 ), 0 = r 2 N 2 1 -N 2 K 2 + β (N 1 -N 2 ). (A.3)
Solving the first equation for N 2 and the second for N 1 yields that the equilibria are the nonnegative intersections of the two parabolas P 1 and P 2 of equations N 2 = P 1 (N 1 ) and N 1 = P 2 (N 2 ), where the functions P 1 and P 2 are defined by

P 1 (N 1 ) = N 1 - r 1 β N 1 1 - N 1 K 1 , P 2 (N 2 ) = N 2 - r 2 β N 2 1 - N 2 K 2 . (A.4)
These parabolas are simply the isoclines Ṅ1 = 0 and Ṅ2 = 0. The isoclines intersect at (0, 0) and at E = (N * 1 , N * 2 ). Since P 1 (K 1 ) = K 1 , the point A = (K 1 , K 1 ) belongs to P 1 . Since P 2 (K 2 ) = K 2 , the point B = (K 2 , K 2 ) belongs to P 2 . Hence, the equilibrium E belongs to the triangle ABC, where

C = (K 1 , K 2 ) (see Figure A.7). Thus K 1 < N * 1 < N * 2 < K 2 , which is (5). 0 E A B C P 1 P 2 K 1 K 2 N * 1 K 1 K 2 N * 2 0 E A B C P 2 P 1 K 1 K 2 N * 1 K 1 K 2 N * 2 Figure A.7: Phase-plane diagram for equation system (2). E = (N * 1 , N * 2 )
, the positive intersection of the nullclines P 1 and P 2 , is a stable equilibrium and 0 is an unstable one. Parameter values:

K 1 = 1, K 2 = 2, r 2 = 2, β = 0.8. Left: r 1 = 0.5, corresponding to the case N * T > K 1 + K 2 . Right: r 1 = 2.5, corresponding to the case N * T < K 1 + K 2 .
Let us now prove item 2. The proof of (A.1) is as follows. At the equilibrium (N * 1 , N * 2 ), one has:

0 = r 1 K 1 N * 1 (K 1 -N * 1 ) + β (N * 2 -N * 1 ), 0 = r 2 K 2 N * 2 (K 2 -N * 2 ) + β (N * 1 -N * 2 ). (A.5)
Dividing the first equation by r 1 K 1 N * 1 , the second by r 2 K 2 N * 2 , and adding the two, one gets:

K 1 + K 2 -(N * 1 + N * 2 ) + β N * 2 -N * 1 r 1 K 1 N * 1 + β N * 1 -N * 2 r 2 K 2 N * 2 = 0. Hence N * 1 + N * 2 = K 1 + K 2 + β N * 2 -N * 1 r 1 K 1 r 2 K 2 N * 1 N * 2 r 2 K 2 N * 2 - r 1 K 1 N * 1 ,
which is (A.1). The proof of (A.2) uses the implicit function theorem. Since N * 1 (β ) and N * 2 (β ) satisfy (A.3), one has

f i (N * 1 (β ), N * 2 (β ), β ) = 0, i = 1, 2, (A.6)
where

f i (N 1 , N 2 , β ) = r i N i 1 - N i K i + β (N j -N i ), i, j = 1, 2, j = i.
The total derivatives of (A.6) with respect to β are

d f i N * 1 (β ), N * 2 (β ), β dβ = ∂ f i ∂ N 1 (N * 1 (β ), N * 2 (β ), β ) dN * 1 (β ) dβ + ∂ f i ∂ N 2 (N * 1 (β ), N * 2 (β ), β ) dN * 2 (β ) dβ + ∂ f i ∂ β (N * 1 (β ), N * 2 (β ), β ) = 0.
This is a linear system in

dN * 1 (β ) dβ and dN * 2 (β ) dβ
that can be solved to give

dN * 1 dβ (β ) dN * 2 dβ (β ) = -A -1 N * 2 (β ) -N * 1 (β ) N * 1 (β ) -N * 2 (β ) , (A.7) 
where

A =   r 1 1 - N * 1 (β ) K 1 -β -r 1 K 1 N * 1 (β ) β β r 2 1 - N * 2 (β ) K 2 -β -r 2 K 2 N * 2 (β )   .
Using (A.5), we have

r 1 1 - N * 1 K 1 -β = -β N * 2 N * 1 , r 2 1 - N * 2 K 2 -β = -β N * 1 N * 2 .
Using these formulas, and after some algebraic manipulation, equation (A.7) reduces to

dN * 1 dβ dN * 2 dβ = 1 B(N * 1 , N * 2 )   β N * 1 N * 2 + r 2 K 2 N * 2 β β β N * 2 N * 1 + r 1 K 1 N * 1   N * 2 -N * 1 N * 1 -N * 2 .
Therefore

dN * 1 dβ = 1 B(N * 1 , N * 2 ) β N * 1 N * 2 + r 2 K 2 N * 2 (N * 2 -N * 1 ) + β (N * 1 -N * 2 ) , dN * 2 dβ = 1 B(N * 1 , N * 2 ) β N * 2 N * 1 + r 1 K 1 N * 1 (N * 1 -N * 2 ) + β (N * 2 -N * 1 )
.

Adding the two equations, one obtains (A.2).

Remark. The stability study of E = (N * 1 , N * 2 ) comes from the analysis of the variational matrix. See [START_REF] Freedman | Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator[END_REF], DeAngelis et al. (1979), where it is proved that E is stable. Actually, E is globally asymptotically stable [START_REF] Holt | Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution[END_REF].

Graphically, the two parabolic isoclines in Figure A.7 are attractive (P 1 horizontally and P 2 vertically). P 1 can only be crossed vertically and P 2 horizontally. It is therefore easy to follow the general direction of trajectories in the positive quadrant of this figure and to understand that they all lead to the equilibrium point E.

Appendix A.2. Comparison of N * T and K 1 + K 2 In this section, we explain why, in general, the total equilibrium population in the system of coupled logistic growths (2) is different from the sum of the carrying capacities. More precisely, we give the exact conditions under which

N * T > K 1 + K 2 . Recall that, if K 1 = K 2 , then N * 1 = K 1 and N * 2 = K 2 for any β ≥ 0. Therefore N * T = K 1 + K 2 for any β ≥ 0. When K 1 is not equal to K 2 ,
we have the following result, where N * T (β ) is studied as a function of the migration rate β . Proposition 2. We recall the assumption that K 1 < K 2 .

1. If r 2 K 2 ≥ r 1 K 1 , then N * T (β ) > K 1 + K 2 for any β > 0. 2. If r 2 K 2 < r 1 K 1 and r 2 > r 1 , then N * T (β ) > K 1 + K 2 for 0 < β < β 0 and N * T (β ) < K 1 + K 2 for β > β 0
, where β 0 > 0 is defined by

β 0 = r 2 -r 1 K 2 r 2 -K 1 r 1 1 r 2 K 2 + r 1 K 1 . 3. If r 2 ≤ r 1 , then N * T (β ) < K 1 + K 2 for any β > 0.
PROOF. From (A.1), we can study the cases 1 and 3 of Proposition 2.

• If r 2 K 2 ≥ r 1 K 1 , then, using (5), we have

r 2 K 2 N * 2 - r 1 K 1 N * 1 ≥ r 1 K 1 N * 2 - r 1 K 1 N * 1 = r 1 K 1 (N * 2 -N * 1 ) .
Therefore, using N * 2 > N * 1 and (A.1), we have

N * T > K 1 + K 2 .
• If r 2 ≤ r 1 , then, using (5), we have

N * 2 K 2 < 1 and N * 1 K 1 > 1, so that r 2 K 2 N * 2 - r 1 K 1 N * 1 = r 2 N * 2 K 2 -r 1 N * 1 K 1 < r 2 -r 1 ≤ 0.
Therefore, using N * 2 > N * 1 and (A.1), we have

N * T < K 1 + K 2 .
The study of the case 2 of Proposition 2 requires both (A.1) and (A.2). From (A.1) we deduce that N * T (β ) = K 1 + K 2 for β > 0, if and only if

r 2 K 2 N * 2 - r 1 K 1 N * 1 = 0. (A.8)
Using (A.2), we see that (A.8) necessarily implies that Since N 1 = N is an asymptotically stable equilibrium of the fast equation, the Tikhonov theorem applies and tells us that the reduced model is obtained by replacing, in the second equation of (A.10), the fast variable N 1 by the equilibrium N 1 = N of the fast equation. One obtains

dN dt = r 1 + r 2 2 N 1 -N r 1 /K 1 + r 2 /K 2 r 1 + r 2 (A.12)
which is the logistic equation with parameters r and K as given by the formulas in the present Proposition. This reduction method is also known as the quasi-steady state approximation, since N 1 is replaced by the quasi-steady state N 1 = N of the fast equation (A.11).

The equation (A.12) is simply a logistic equation whose positive equilibrium is given by

N * = r 1 + r 2 r 1 /K 1 + r 2 /K 2 .
Hence, in the limit β → ∞, we get

N * 1 (+∞) = N * 2 (+∞) = N * , so that N * T (+∞) = N * 1 (+∞) + N * 2 (+∞) is given by N * T (+∞) = 2 r 1 + r 2 r 1 /K 1 + r 2 /K 2 , (A.13)
which is the same result as (3).

Remark. The property N * 1 (+∞) = N * 2 (+∞) = r 1 +r 2 r 1 /K 1 +r 2 /K 2 had already been obtained by Freedman and Waltman (1977, their Theorem 3.1) by a direct computation on the equations (A.3). See also [START_REF] Holt | Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution[END_REF], his Section 2.3). We have obtained here this formula from the model (A.12) to which the model (2) reduces in the limit β → ∞. This approach is more general than the direct computations used by [START_REF] Freedman | Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator[END_REF] and will be useful for other models considered in this paper.

A more complete understanding of the effect of migration is provided by the following proposition, which gives additional information on the derivative of N * T (β ) with respect to β . Proposition 4.

1.

dN * T dβ (0) = (K 1 -K 2 ) 1 r 2 -1 r 1 = (K 1 -K 2 ) r 1 -r 2 r 1 r 2 . 2. If N * T (β ) < K 1 + K 2 , then dN * T dβ (β ) < 0. PROOF. Using N * 1 (0) = K 1 , N * 2 (0) = K 2 in (A.2), we get dN * T dβ (0) = 1 r 2 - 1 r 1 (K 1 -K 2 ).
This is item 1 of Proposition 4. From (A.1) we deduce that

N * T (β ) < K 1 + K 2 if and only if r 2 K 2 N * 2 - r 1 K 1 N * 1 < 0.
and N 2 (t, β ) are both approximated by N(t), where (R(t), N(t)) is the solution of the MacArthur single-patch model ( 12) where

s = s 1 + s 2 2 , L = s 1 + s 2 s 1 /L 1 + s 2 /L 2 , a = a 1 + a 2 2 , ε = ε 1 + ε 2 2 , w = 2 a 1 + a 2 ε 1 b 1 + ε 2 b 2 ε 1 + ε 2 , q = ε 1 q 1 + ε 2 q 2 ε 1 + ε 2 ,
and with initial condition R 0 = R 10 +R 20 2

and N 0 = N 10 +N 20

2

.

PROOF. We use here the singular perturbation analysis outlined in Appendix A.3 to obtain the behaviour of the system as β → ∞. Let

R = R 1 + R 2 2 , N = N 1 + N 2 2 .
We can rewrite (17) using the variables R 1 , N 1 and R, N (using R 2 = 2R -R 1 and

N 2 = 2N -N 1 ):                              dR 1 dt = s 1 1 - R 1 L 1 -a 1 N 1 R 1 + 2β (R -R 1 ) dN 1 dt = ε 1 (b 1 R 1 -q 1 )N 1 + 2β (N -N 1 ) dR dt = 1 2 s 1 1 -R 1 L 1 -a 1 N 1 R 1 + 1 2 s 2 1 -2R-R 1 L 2 -a 2 (2N -N 1 ) (2R -R 1 ) dN dt = 1 2 [ε 1 (b 1 R 1 -q 1 )N 1 + ε 2 (b 2 (2R -R 2 ) -q 2 )(2N -N 2 )] . (B.3) System (B.
3) is a slow and fast system whose slow variables are R and N and fast variables are R 1 and N 1 . In the limit β → ∞, we can replace the fast variables R 1 and N 1 in the third and fourth equations by their quasi-steady state approximations R 1 = R and N 1 = N obtained from the first and second equations. We obtain

     dR dt = s 1 +s 2 2 1 -R s 1 /L 1 +s 2 /L 2 s 1 +s 2 -a 1 +a 2 2 N R, dN dt = 1 2 [(ε 1 b 1 + ε 2 b 2 ) R -(ε 1 q 1 + ε 2 q 2 )] N. (B.4)
This is simply the MacArthur resource-consumer model [START_REF] Macarthur | Species packing and what interspecies competition minimizes[END_REF] with parameters as given by the formulas in the present Proposition.

The positive equilibrium of (B.4) is given by

R * = ε 1 q 1 + ε 2 q 2 ε 1 b 1 + ε 2 b 2 , N * = s 1 + s 2 a 1 + a 2 1 -R * s 1 L 1 + s 2 L 2 s 1 + s 2 .
This equilibrium is positive if and only if

ε 1 q 1 + ε 2 q 2 ε 1 b 1 + ε 2 b 2 < s 1 + s 2 s 1 L 1 + s 2 L 2 .
Hence, in the limit β → ∞, we get

N * * 1 (+∞) = N * * 2 (+∞) = N * , so that N * * T (+∞) = N * * 1 (+∞) + N * * 2 (+∞) is given by N * * T (+∞) = 2 s 1 + s 2 a 1 + a 2 1 - ε 1 q 1 + ε 2 q 2 ε 1 b 1 + ε 2 b 2 s 1 L 1 + s 2 L 2 s 1 + s 2 . (B.5) Appendix B.2.
Comparison of N * * T and N * T for small β A more complete understanding of the effect of migration is provided by the following proposition, which gives the derivative of

dN * * T dβ (0). Proposition 6. We have dN * * T dβ (0) = b 2 a 2 q 2 - b 1 a 1 q 1 q 1 b 1 - q 2 b 2 + dN * T dβ (0). (B.6) PROOF. Let (R * * 1 (β ), R * * 2 (β ), N * * 1 (β ), N * * 2 (β )
) be a positive equilibrium of (B.1). Thus, it is a solution of the set of equations

                 0 = s 1 1 - R * * 1 L 1 -a 1 N * * 1 R * * 1 + β (R * * 2 -R * * 1 ) 0 = s 2 1 - R * * 2 L 2 -a 2 N * * 2 R * * 2 + β (R * * 1 -R * * 2 ) 0 = ε 1 (b 1 R * * 1 -q 1 )N * * 1 + β (N * * 2 -N * * 1 ) 0 = ε 2 (b 2 R * * 2 -q 2 )N * * 2 + β (N * * 1 -N * * 2 ). (B.7)
As in Appendix A.1, we use the implicit function theorem and calculate the derivatives

dR * * i dβ (β ) and dN * * i dβ (β ). We have       dR * * 1 dβ (β ) dR * * 2 dβ (β ) dN * * 1 dβ (β ) d 2 N * * dβ (β )       = -A(β ) -1     R * * 2 (β ) -R * * 1 (β ) R * * 1 (β ) -R * * 2 (β ) N * * 2 (β ) -N * * 1 (β ) N * * 1 (β ) -N * * 2 (β )     , (B.8)
where

A(β ) = A 11 (β ) A 12 (β ) A 21 (β ) A 22 (β ) ,
and the matrices A i j (β ) are given by

A 11 (β ) =   -s 1 L 1 R * * 1 (β ) + s 1 1 - R * * 1 (β ) L 1 -a 1 N * * 1 (β ) -β β β -s 2 L 2 R * * 2 (β ) + s 2 1 - R * * 2 (β ) L 2 -a 2 N * * 2 (β ) -β   , A 12 (β ) = -a 1 R * * 1 (β ) 0 0 -a 2 R * * 2 (β ) , A 21 (β ) = ε 1 b 1 N * * 1 (β ) 0 0 ε 2 b 2 N * * 2 (β ) , A 22 (β ) = ε 1 (b 1 R * * 1 (β ) -q 1 ) -β β β ε 2 (b 2 R * * 2 (β ) -q 2 ) -β . Using R * * i (0) = q i b i and N * * i (0) = s i a i b i L i -q i b i L i = K i
, and after some algebraic manipulation, for β = 0, equation (B.8) reduces to

       dR * * 1 dβ (0) dR * * 2 dβ (0) dN * * 1 dβ (0) dN * * 2 dβ (0)        =      0 0 -1 ε 1 b 1 K 1 0 0 0 0 -1 ε 2 b 2 K 2 b 1 a 1 q 1 0 1 r 1 0 0 b 2 a 2 q 2 0 1 r 2          q 2 b 2 -q 1 b 1 q 1 b 1 -q 2 b 2 K 2 -K 1 K 1 -K 2     ,
where r i and K i are given by [START_REF] Pearl | The growth of populations[END_REF][START_REF] Poggiale | Global production increased by spatial heterogeneity in a population dynamics model[END_REF]. Therefore

dN * * 1 dβ (0) = b 1 a 1 q 1 q 2 b 2 - q 1 b 1 + 1 r 1 (K 2 -K 1 ) , dN * * 2 dβ (0) = b 2 a 2 q 2 q 1 b 1 - q 2 b 2 + 1 r 2 (K 1 -K 2 ) .
Adding these equations, one obtains 

dN * * T dβ (0) = b 2 a 2 q 2 - b 1 a 1 q 1 q 1 b 1 - q 2 b 2 + (K 1 -K 2 ) 1 r 2 - 1 r 
N * 1 (β ) N * 1 (β ) β β s 1 a 1 s 1 a 1 Figure C.8: (a) N * 1 (β ) < s 1 a 1 for all β ≥ 0. (b) The critical value β c for which N * 1 (β ) = s 1 a 1
. See Figure 5 for the plots of the corresponding total consumer population. initial interval, R 1 (t, β ) and R 2 (t, β ) are approximated by R 1 (t) and R 2 (t), and N 1 (t, β ) and N 2 (t, β ) are both approximated by N(t), where (R 1 (t), R 2 (t), N(t)) is the solution, with initial condition R 10 , R 20 , and N 0 = N 10 +N 20 2 , of the MacArthur single-patch model with two resources

             dR 1 dt = s 1 1 - R 1 L 1 -a 1 N R 1 dR 2 dt = s 2 1 - R 2 L 2 -a 2 N R 2 dN dt = ε (c 1 R 1 + c 2 R 2 -q) N, (C.7)
where ε = ε 1 +ε 2 2 , c 1 = ε 1 b 1 ε 1 +ε 2 , c 2 = ε 2 b 2 ε 1 +ε 2 , and q = ε 1 q 1 +ε 2 q 2 ε 1 +ε 2 .

PROOF. We use here the singular perturbation analysis outlined in Appendix A.3 to obtain the behaviour of the system as β → ∞. Let N = N 1 +N 2 2 . We can rewrite (C.1) using the variables s 1 , s 2 , N and N 1 (using N 2 = 2N -N 1 ):

                     dR 1 dt = s 1 1 - R 1 L 1 -a 1 N 1 R 1 dR 2 dt = s 2 1 - R 2 L 2 -a 2 N 2 R 2 dN dt = 1 2 [ε 1 (b 1 R 1 -q 1 )N 1 + ε 2 (b 2 R 2 -q 2 )(2N -N 2 )] dN 1 dt = ε 1 (b 1 R 1 -q 1 )N 1 + 2β (N -N 1 ).
(C.8) System (C.8) is a slow and fast system whose slow variables are R 1 , R 2 and N, and fast variable is N 1 . In the limit β → ∞, we can replace the fast variable N 1 in the first three equations of (C.8) by its quasi-steady state approximation N 1 = N obtained from the fourth equation. We obtain

             dR 1 dt = s 1 1 - R 1 L 1 -a 1 N R 1 dR 2 dt = s 2 1 - R 2 L 2 -a 2 N R 2 dN dt = 1 2 [ε 1 (b 1 R 1 -q 1 )N + ε 2 (b 2 R 2 -q 2 )N] ,
which is simply the MacArthur two resource-one consumer model (C.7).

In the MacArthur model (C.1), all resources are not necessarily present at equilibrium. For instance, assuming that the resources are labelled such that s 1 a 1 < s 2 a 2 (which holds for Figure 5b, since in this figure one has s 1 a 1 = 1 < 3 = s 2 a 2 ), we have the following results, which are special cases of the results in [START_REF] Holt | Predation, apparent competition, and the structure of prey communities[END_REF] obtained for the model of one consumer and n ≥ 2 resources. (It should be noted that Holt (1977) used the convention s 1 a 1 > s 2 a 2 , so some changes of indices occur in the following formulas.)

1. If ε 1 b 1 L 1 + ε 2 b 2 L 2 > ε 1 q 1 + ε 2 q 2 ,
then no resource is present at equilibrium. 

L 1 + ε 2 b 2 L 2 ≤ ε 1 q 1 + ε 2 q 2 ,
then resource R 2 is always present at equilibrium and resource R 1 is present if and only if the following condition holds:

ε 1 q 1 + ε 2 q 2 ε 2 b 2 L 2 > 1 - a 2 s 2 s 1 a 1 .
(C.9)

The condition (C.9) of existence of species R 1 at equilibrium is independent of its own carrying capacity L 1 , yet may critically depend on L 2 . This behaviour of resources sharing a common consumer is known as apparent competition.

This behaviour of the limiting model (C.7) when β → ∞ explains why there is a critical value β c such that, for β > β c , the resource R 1 is not present at equilibrium (see Figure 5b).

From Proposition 9, we deduce the following result: If the reverse of inequality (C.9) holds, then we have

N * * T (+∞) = 2 s 2 a 2 1 - ε 1 q 1 + ε 2 q 2 ε 2 b 2 L 2 > N * T (+∞). (C.11)
PROOF. If (C.9) holds, then the solutions of (C.7) converge towards the positive equilibrium (R * 1 , R * 2 , N * ) given by

R * 1 = L 1 1 - a 1 s 1 N * , R * 2 = L 2 1 - a 2 s 2 N * ,
where N * is the solution of the equation

ε 1 b 1 L 1 1 - a 1 s 1 N * + ε 2 b 2 L 2 1 - a 2 s 2 N * -ε 1 q 1 -ε 2 q 2 = 0.
Hence

N * = ε 1 b 1 L 1 + ε 2 b 2 L 2 -(ε 1 q 1 + ε 2 q 2 ) ε 1 b 1 L 1 a 1 s 1 + ε 2 b 2 L 2 a 2 s 2 .
Using Proposition 9, we see that, in the limit β → ∞, we get N * * 1 (+∞) = N * * 2 (+∞) = N * , so that N * * T (+∞) = N * * 1 (+∞) + N * * 2 (+∞) = 2N * . Therefore, using (B.2), we see that N * * T (+∞) = N * T (+∞) and (C.10) holds. If the reverse of inequality (C.9) holds, then R 1 is eliminated by apparent competition and the solutions of (C.7) converge towards the boundary equilibrium (0, R * 2 , N * ) given by

R * 2 = L 2 1 - a 2 s 2 N * , N * = s 2 a 2 1 - ε 1 q 1 + ε 2 q 2 ε 2 b 2 L 2 .
Using Proposition 9, we see that, in the limit β → ∞, we get N * * 1 (+∞) = N * * 2 (+∞) = N * , so that N * * T (+∞) = N * * 1 (+∞) + N * * 2 (+∞) = 2N * is given by (C.11).
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 1 Figure 2: Total equilibrium population of model (2) as a function of migration: N * T (β ). The horizontal dotted line is K 1 + K 2 . Depending on the parameter values (given in Table 1), three different patterns can be obtained, corresponding to the three domains of Figure 1. (a) Example in J 0 . (b) Example in J 2 . (c) Example in J 1 . See text in Section 2 for more comments.

Figure 3 :

 3 Figure 3: Total consumer population as a function of migration when both the resource and the consumer can disperse. N * T (solid curve) for the coupled-logistic reduced model, N * * T (curve with circles) for the complete mechanistic model. See Tables2 and 3for the parameter values and text in Section 4.1 for explanations. See alsoFigure 4. 

Figure

  Figure3cis obtained with the parameter values in line 3 of Table2. We see in Table3that, for these parameter values, we have r 2 < r 1 . Therefore, from the theoretical results of Section 2 (see Figure1), we deduce that N * T (β ) < K 1 + K 2 for any β > 0 and N * T (β ) is decreasing, as illustrated in Figure3c. However, we see on this figure that N * * T (β ) decreases first and then increases, and can take values larger thanK 1 + K 2 .Figure3dis obtained with the parameter values in line 4 of Table2. We see in Table3that, for these parameter values, we have r 2 /K 2 > r 1 /K 1 . Therefore, from Figure1, we deduce that N * T (β ) > K 1 + K 2 for any β > 0, as illustrated in Figure3d. However, we see on this figure that N * * T (β ) > K 1 + K 2 for small β and the opposite holds for large β .Figure4is obtained with the parameter values in line 5 of Table2. We see in Table3that, for these parameter values, we have r 2 > r 1 and r 2 /K 2 < r 1 /K 1 . Therefore, from Figure1, we have that N * T (β ) > K 1 + K 2 for β small enough and N * T (β ) < K 1 + K 2 for β large enough, as illustrated in Figure4. However, we see on this figure that N * * T (β ) has a completely different behaviour. It should be noticed (see Table3) that

  0) < 0 and dN * T dβ (0) > 0, as also shown in the zoom in Figure 4b. Hence, N * *T (β ) is first decreasing, then increasing, then decreasing again, while N * T (β ) is first increasing and then decreasing.

Figure 4 :

 4 Figure 4: Similar plots to Figure 3 with different parameter values (see Tables2 and 3). Panel (b) is a zoom of (a) in a narrow range of very small values of β .

Figure 5 :

 5 Figure 5: Total consumer population as a function of migration when the consumer only can disperse. N * T (solid curve) for the coupled-logistic reduced model, N * *T (curve with circles) for the complete mechanistic model. See Table4for the parameter values and text in Section 4.2 for explanations.

Figure 6 :

 6 Figure 6: Population abundances of R 1 (t), R 2 (t), N 1 (t), and N 2 (t) for the parameter values of Figure 5b, with initial conditions R 1 (0) = R 2 (0) = N 1 (0) = N 2 (0) = 1. (a) β = 0.2, all species are present at equilibrium. (b) β = 0.8, R 1 becomes extinct.

  ) < 0. Hence, we can have N * T (β ) = K 1 + K 2 for at most one value of β > 0. For such value of β , (N * 1 , N * 2 )

1 .

 1 Using (B.2), we obtain (B.6). The formulas (B.2), (B.5), and (B.6) give the values of the derivatives at β = 0 and the values at β = ∞ of the functions N * T (β ) and N * * T (β ). They show that N * T (β ) and N * * T (β ) are different from each other. The parameter values can be chosen in such way to display the typical behaviours of the examples considered in Section 4.2. See Figures3 and 4

  .

29 2 .

 2 If ε 1 b 1

Proposition 10 .

 10 If the inequality (C.9) holds, then we haveN * * T (+∞) = N * T (+∞) = 2 r 1 + r 2 r 1 /K 1 + r 2 /K 2 .(C.10)

Table 1 :

 1 Parameter values of the three cases of Figure 2. The derivative

	dN * T dβ (0) is calculated with the

* T (+∞) with equation (A.13).

Table 2 :

 2 Numerical values of the parameters of model (

Table 3 :

 3 Numerical values of several quantities derived from the parameters of Table2. r 1 , r 2 , K 1 , K 2 are calculated with equations[START_REF] Pearl | The growth of populations[END_REF][START_REF] Poggiale | Global production increased by spatial heterogeneity in a population dynamics model[END_REF]. The derivatives

	dN * T dβ (0) and	dN * *

T dβ (0), and the perfect mixing abundances N * T (∞) and N * * T (∞) are calculated with the expressions given in equations (B.2), (B.5), and (B.6).

Table 4 :

 4 Numerical values of the parameters of model (
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is a solution of the set of linear equations formed by (A.8) and the condition

(A.9)

Solving (A.8-A.9), we obtain

.

Using (A.5), we obtain that

We conclude that N * T (β ) = K 1 + K 2 if and only if β is equal to this value, and that N * T (β ) < K 1 + K 2 if and only if β is greater than this value.

Appendix A.3. Perfect mixing

The behaviour of the system for perfect mixing (β → ∞) is given by the following result.

Proposition 3. Let (N 1 (t, β ), N 2 (t, β )) be a solution of [START_REF] Deangelis | Effects of dispersal in a nonuniform environment on population dynamics and competition: a patch model approach[END_REF] with initial condition (N 10 , N 20 ). When β → ∞, then, with the exception of a small initial interval, N 1 (t, β ) and N 2 (t, β ) are both approximated by the solution N(t) of the logistic equation [START_REF] Deangelis | Persistence and stability of seed-dispersed species in a patchy environment[END_REF], where r = r 1 +r 2 2 and K = r 1 +r 2 r 1 /K 1 +r 2 /K 2 , and with initial condition N 0 = N 10 +N 20 2 .

PROOF. Let

We can rewrite (2) using the variables N 1 and N (notice that

(A.10)

The system (A.10) is a slow and fast system whose slow variable is N and fast variable is N 1 . We use the Tikhonov theorem [START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF][START_REF] Wasow | Asymptotic Expansions for Ordinary Differential Equations[END_REF][START_REF] Lobry | On Tykhonov's theorem for convergence of solutions of slow and fast systems[END_REF] to show that, in the limit β → ∞, the solutions of (A.10) are approximated by the solutions of the reduced model. The reduced model is obtained as follows.

We first consider the dynamics of the fast variable N 1 in the time scale τ = βt, which is

The fast equation

is obtained from the previous one by setting 1/β = 0 in the right hand side.

Using (A.2), we see that this condition necessarily implies that dN * T dβ (β ) < 0. This is item 2 of Proposition 4.

Using (A.13) and Proposition 4, we can notice that

• J 1 is characterized by the conditions N * T (+∞) < K 1 + K 2 and

• J 2 is characterized by the condition

Appendix B. Appendix to Section 4.1

We assume in this section that the dispersion rates of the consumer and the resource are equal. The mathematical model is system [START_REF] Reynolds | When can a single-species, densitydependent model capture the dynamics of a consumer-resource system[END_REF] with α = β , that is:

This system can have many equilibria, whose analytical study is difficult (if not impossible) and is beyond the scope of this paper. As already mentioned in Section 4, computer simulations show that (B.1) has a globally stable equilibrium. Assuming that this equilibrium exists for each value of β and is positive, we can consider, as in the previous section, its dependence with respect to

) be the positive and stable equilibrium of (B.1). Let (N * 1 (β ), N * 2 (β )) be the globally stable equilibrium of the corresponding reduced model [START_REF] Mallet | The struggle for existence: how the notion of carrying capacity, K, obscures the links between demography, Darwinian evolution, and speciation[END_REF]. We consider here some properties of N * T (β ) and N * * T (β ) as functions of the migration rate β . From Proposition 4 and (A.13), we have

where r i and K i are given by equations [START_REF] Pearl | The growth of populations[END_REF][START_REF] Poggiale | Global production increased by spatial heterogeneity in a population dynamics model[END_REF].

Appendix B.1. Perfect mixing

The behaviour of (B.1) for perfect mixing (β → ∞) is given by the following result. Here, we give the mathematical analysis of the complete resource-consumer model in the case in which the consumer alone can disperse. The mathematical model is system [START_REF] Reynolds | When can a single-species, densitydependent model capture the dynamics of a consumer-resource system[END_REF] with α set to 0, that is:

We have the folowing result.

is a positive equilibrium of the reduced model [START_REF] Mallet | The struggle for existence: how the notion of carrying capacity, K, obscures the links between demography, Darwinian evolution, and speciation[END_REF]. Conversely, let (N * 1 , N * 2 ) be a positive equilibrium of the reduced model [START_REF] Mallet | The struggle for existence: how the notion of carrying capacity, K, obscures the links between demography, Darwinian evolution, and speciation[END_REF].

is a positive equilibrium of (C.1) if and only if

PROOF. An equilibrium point

If this equilibrium is positive, then we must have

Replacing these values in the third and fourth equations in (C.2), we get

is a positive equilibrium of the reduced model [START_REF] Mallet | The struggle for existence: how the notion of carrying capacity, K, obscures the links between demography, Darwinian evolution, and speciation[END_REF]. The reverse holds as long as the inequalities (C.3) are satisfied.

The model (C.1) was already considered by Holt (1984, his equations 6-7). In the case of resource exponential growth instead of logistic growth, he gave the condition on β for resource persistence in both patches at equilibrium. He did not consider, however, the links between (C.1) and the reduced two-patch logistic equation ( 14), as we did in our study.

We will now consider the question of equilibrium resource persistence in both patches with logistic growth. More precisely, we investigate the links between the equilibrium of (C.1) and the equilibrium of the reduced model [START_REF] Mallet | The struggle for existence: how the notion of carrying capacity, K, obscures the links between demography, Darwinian evolution, and speciation[END_REF]. Let (N * 1 (β ), N * 2 (β )) be a positive equilibrium of the reduced system [START_REF] Mallet | The struggle for existence: how the notion of carrying capacity, K, obscures the links between demography, Darwinian evolution, and speciation[END_REF]. The resource abundances are positive if and only if

Recall that

where K 1 and K 2 are the carrying capacities defined by [START_REF] Poggiale | Global production increased by spatial heterogeneity in a population dynamics model[END_REF]. Using (5) we get

Hence, the condition N * 2 (β ) < s 2 a 2 is satisfied for every β > 0 and, since N * 1 (β ) is continuous with respect to β , the condition N * 1 (β ) < s 1 a 1 is also satisfied when β is small enough. This means that, for β small enough, the positive equilibrium E * * of (C.1) defined by [START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF] is the same as the equilibrium E * considered in Proposition 7 and corresponding to the positive equilibrium (N * 1 , N * 2 ) of the reduced model [START_REF] Mallet | The struggle for existence: how the notion of carrying capacity, K, obscures the links between demography, Darwinian evolution, and speciation[END_REF]. Thus, for β small enough, we have N * * T (β ) = N * T (β ), as illustrated in Figure 5a.

Two cases must be distinguished: N * 1 (β ) < s 1 a 1 for all β > 0, as in Figure C.8a, or there exists a critical value β c , such that N * 1 (β ) < s 1 a 1 for β < β c , and Hence, when β > β c , the equilibrium (N * 1 (β ), N * 2 (β )) no longer corresponds to a positive equilibrium of (C.1). Actually, the corresponding equilibrium E * of (C.1) described by Proposition 7, becomes negative when 

2 ) be a positive equilibrium of the reduced model [START_REF] Mallet | The struggle for existence: how the notion of carrying capacity, K, obscures the links between demography, Darwinian evolution, and speciation[END_REF]. If N * 1 (β ) > s 1 a 1 , then we have

PROOF. The components R † 2 (β ), N † 1 (β ) and N † 2 (β ) of the equilibrium E † (β ) are the positive solutions of the set of equations

Solving the first equation for R † 2 yields

Replacing R † 2 by this expression in the second and third equations of (C.5) yields

Solving the second equation for N † 2 yields that the equilibria are the positive intersections of the parabola P 2 of equation N 1 = P 2 (N 2 ), where P 2 (N 2 ) is defined by (A.4), with r 2 and K 2 given by [START_REF] Pearl | The growth of populations[END_REF][START_REF] Poggiale | Global production increased by spatial heterogeneity in a population dynamics model[END_REF], and the straight line ∆ of equation -ε

We want to compare the solution

a 1 , and from the first equation of (C.4), we deduce that

Hence, the point (N * 1 , N * 2 ) is on the left of the straight line ∆. We recall that (N * 1 , N * 2 ) is the positive intersection of the two parabolas P 1 and P 2 of equations N 2 = P 1 (N 1 ) and N 1 = P 2 (N 2 ), where P 1 (N 1 ) and P 2 (N 2 ) are defined by (A.4), with r i and K i given by [START_REF] Pearl | The growth of populations[END_REF][START_REF] Poggiale | Global production increased by spatial heterogeneity in a population dynamics model[END_REF]. Hence we have N * At β = β c , there is a bifurcation of E † (β ) from E * (β ). When β > β c , we observed numerically that E † (β ) becomes stable and attracts all solutions. Therefore, for β > β c , the stable equilibrium (18) of (C.1) is no longer equal to E * (β ), which has become negative, but is equal to the boundary equilibrium E † (β ). Therefore, using Proposition 8, we have

as illustrated in Figure 5b.

Appendix C.3. Perfect mixing

The behaviour of (C.1) for perfect mixing (β → ∞) is given by the following result.

Proposition 9. Let (R 1 (t, β ), R 2 (t, β ), N 1 (t, β ), N 2 (t, β )) be a solution of (C.1) with initial condition (R 10 , R 20 , N 10 , N 20 ). When β → ∞, then, with the exception of a small