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Abstract. The standard model for the dynamics of a fragmented density-dependent
population is built from several local logistic models coupled by migrations. First in-
troduced in the 1970s and used in innumerable articles, this standard model applied
to a two-patch situation has never been completely analyzed. Here, we complete this
analysis and we delineate the conditions under which fragmentation is either beneficial
or detrimental to total population abundance. Therefore, this is a contribution to the
SLOSS question. Importantly, we also show that, depending on the underlying mech-
anism, there is no unique way to generalize the logistic model to a patchy situation. In
many cases, the standard model is not the correct generalization. We analyze several
alternative models and compare their predictions. Finally, we emphasize the shortcom-
ings of the logistic model when written in the r-K parameterization and we explain
why Verhulst’s original polynomial expression is to be preferred.
Keywords. Intraspecific competition, fragmentation, SLOSS, slow-fast systems
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1 Introduction
The theoretical literature on spatially-distributed population dynamics is huge. How-
ever, we have found that even the simplest and most ancient model still contained
unresolved aspects and that unsupported generalizations were common.

In this paper, we explore the details of various ways to generalize the standard lo-
gistic model to a two-patch situation, i.e., the simplest way to describe the dynamics of
a spatially-distributed, density-dependent population. The standard model commonly
used in this situation has never been completely analyzed. We will complete this anal-
ysis and we will delineate the conditions under which fragmentation can either be ben-
eficial or detrimental to total population abundance. More importantly, we will show
that this standard two-patch logistic model is, in many cases, an incorrect description
of the dynamics of a fragmented density-dependent population.

Assume that some population N follows the standard logistic model when growing
in a uniform environment:

dN
dt

= rN
(

1− N
K

)
. (1)

This model assumes perfect mixing of the population. For modelling the dynamics
of the same species in a patchy environment, it is widely accepted to assume that each
subpopulation in each patch follows a local logistic law and that the various patches
are coupled by migrations. Taking the case of two patches as a simple example, the
following model describes logistic growth in two patches linked symmetrically by mi-
gration: 

dN1

dt
= r1N1

(
1− N1

K1

)
+β (N2−N1),

dN2

dt
= r2N2

(
1− N2

K2

)
+β (N1−N2),

(2)

where Ni is the abundance of the species in patch i and βNi is the emigration flow
from patch i to the other patch (β ≥ 0). The parameters ri and Ki are respectively
the intrinsic growth rate and the carrying capacity in patch i. This model was first
studied by Freedman and Waltman (1977), later by DeAngelis et al. (1979) and Holt
(1985), and a graphical presentation was given by Hanski (1999, pp. 43–46) in his
reference book about metapopulations. More recently, DeAngelis and Zhang (2014)
have brought new developments.

We denote by N∗1 and N∗2 the population abundances at equilibrium. With no loss
of generality, we assume that patch 1 has the lower carrying capacity (i.e., K1 ≤K2). In
isolation (β = 0), each population equilibrates at its local carrying capacity: N∗i = Ki.
A well-known result is that, in the presence of dispersal (β > 0), the total equilibrium
population N∗T = N∗1 +N∗2 is generally different from the sum of the carrying capacities
K1+K2. Freedman and Waltman (1977) have shown that, in the case of perfect mixing
(β → ∞), both patch populations tend to equal values and that the total equilibrium
population tends to:

N∗T = K1 +K2 +(K1−K2)
r1K2− r2K1

r1K2 + r2K1
, in the limit β → ∞. (3)

[Note that this expression contained typos in Freedman and Waltman (1977, their equa-
tion 3.3) that were only partially corrected by Holt (1985).] Depending on the sign of
the numerator present in equation (3), dispersal can either be beneficial or detrimental
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with respect to the total carrying capacity. Thus, if r1K2 < r2K1 (with K1 < K2), we
will have

N∗T > K1 +K2 if β is sufficiently large. (4)

This spectacular result, somewhat paradoxical, has been widely discussed and has led
to speculations about the general virtues of patchiness and dispersal, for example in the
context of conservation ecology and the SLOSS question (e.g., Hanski 1999).

Freedman and Waltman (1977) only contrasted the situations of perfect isolation
and perfect mixing; they did not study the effect of intermediate values of the dispersal
parameter β . This effect was studied in the recent paper of DeAngelis and Zhang
(2014), but only in the special case r1/K1 = r2/K2.

In the present paper, we will bring two contributions. Firstly, we will present the
analysis of model (2) in the full parameter space and we will determine the exact con-
ditions under which N∗T > K1 +K2.

Secondly, we will question the legitimacy of modelling a patchy logistic popula-
tion as in the standard system (2), using several very simple examples. The logistic
model is often justified on phenomenological grounds. However, it can also be derived
from mechanistic considerations. Depending on the mechanism being considered, we
will show that the correct generalization to a patchy situation is not necessarily repre-
sented by model (2) and that the equilibrium total population can be different from that
predicted by this model.

2 Theoretical analysis of the standard two-patch logis-
tic model

In this section, we summarize some of the properties of the standard model (2). Formal
proofs are given in the Mathematical Appendices.

As already mentioned in the Introduction, with no dispersal (β = 0), each patch
equilibrates at its own carrying capacity and the total equilibrium number of individ-
uals is just the sum of the carrying capacities: N∗T = K1 +K2. This remains true with
dispersal (β > 0) if the two carrying capacities are identical: K1 = K2. However, if the
carrying capacities are not identical (K1 < K2), the equilibrium densities are such that

K1 < N∗1 < N∗2 < K2, (5)

meaning that, in general, N∗T 6= K1 +K2 (see Proposition A.1 and Section B.2 in the
Mathematical Appendices).

In particular, the total equilibrium population N∗T can be greater than the sum of the
carrying capacities. In the Introduction, we mentioned Freedman and Waltman’s result
in the case of perfect mixing (β → ∞) (eqs. 3–4). This can also occur with imperfect
mixing, for example, if r1/K1 < r2/K2 (with K1 < K2), in which case, as shown in the
Mathematical Appendices,

N∗T > K1 +K2 as soon as β > 0. (6)

The Appendix A.1 gives the full mathematical analysis of the equilibrium proper-
ties of the coupled logistic model (2). The main qualitative results are summarized by
Figure 1. Depending on the inequalities between r1 and r2, and between r1/K1 and
r2/K2, three different domains must be considered in the parameter space r1× r2. We
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J1

J2

r1

r2 r2 = r1r2/K2 = r1/K1

Figure 1: In J0, patchiness has a beneficial effect on total carrying capacity. This
effect is detrimental in J2. In J1, it depends on the value of the migration coefficient
β . Note that, because of the assumption K1 ≤ K2, the two oblique lines cannot be
reversed. See text for additional explanations.

define J0 by the condition r2/K2 ≥ r1/K1, J2 by the condition r2 ≤ r1, and J1 by
the condition r2/K2 < r1/K1 and r2 > r1.

The effect of patchiness and migration is different in the three domains. In J0,
this effect is beneficial: N∗T is always greater than K1 +K2. In J2, the opposite is
true: patchiness is detrimental since N∗T is always smaller than K1 +K2. In J1, the
effect of patchiness depends on the migration rate: it is beneficial at lower values of
the migration coefficient β while this effect becomes detrimental at high values. This
is illustrated by Figure 2, in which the total equilibrium abundance N∗T is plotted as a
function of the migration rate β . Depending on the choice of parameter values (given
in Table 1), this figure shows three different example patterns, belonging respectively
to J0, J2, and J1.

Table 1: Parameter values of the three cases of Figure 2. The derivative d
dβ

N∗T (0) is cal-
culated with the expression given in Proposition A.3 and the perfect mixing abundance
N∗T (+∞) with equation (20).

r1 K1 r2 K2
d

dβ
N∗T (0) N∗T (+∞)

Figure 2a 0.5 0.5 2 1 0.75>0 1.67 > K1 +K2
Figure 2b 1 0.5 0.8 2 −0.375 < 0 1.5 < K1 +K2
Figure 2c 1 0.5 2 1.5 0.5 > 0 1.8 < K1 +K2

Figure 2a is an example response in J0: as soon as there is some migration (β > 0),
the global carrying capacity N∗T is greater than K1 +K2. In Figure 2b, we show an
example response in J2: the total equilibrium population N∗T is always lower than
K1 +K2. Finally, Figure 2c shows a response in the intermediate domain J1, in which
the lower values of the migration rate have a beneficial effect while this effect becomes
detrimental at high values.
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(a) (b) (c)

Figure 2: Total equilibrium population as a function of migration: N∗T (β ). The hori-
zontal dotted line is K1 +K2. Depending on the parameter values (given in Table 1),
three different patterns can be obtained, corresponding to the three domains of Figure
1. (a) Example in J0. (b) Example in J2. (c) Example in J1. See text for more
comments.

3 Mechanism 1: Logistic growth induced by resource
consumption

Consider a population of bacteria consuming a substrate in a batch culture. This process
occurs on a fast time scale, on which bacterial mortality can be ignored. Assuming
perfect mixing of both the substrate and the population, this situation is modelled by:

dR
dt

= −ρ RN,

dN
dt

= ε ρ RN,

(7)

where R is the substrate concentration and N is the bacterial density. We have:

d(εR+N)

dt
= 0

and thus εR(t)+N(t) = εR(0)+N(0) = M. Substituting (M−N) to εR in the second
equation of (7), one gets:

dN
dt

= ρN(M−N), (8)

which is equivalent to the logistic equation (1) with K = M and r = ρM. This equation,
derived from (7), has been shown to describe perfectly the dynamics of a batch culture
of bacteria.

Consider now two coupled batch reactors, with the same bacteria and substrate,
and differing only in the initial conditions. Denote by R1, N1, R2 and N2 the population
sizes of substrate and bacteria in reactors 1 and 2 respectively. Let M1 = εR1(0)+N1(0)
and M2 = εR2(0)+N2(0). If we assume linear migration (i.e., diffusion) between the
two patches and if we ignore the consumption mechanism leading to the equation (8),
it is tempting to model the coupled reactors by coupling the corresponding reduced
equations (8) with the addition of migrations:
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
dN1

dt
= ρN1(M1−N1)+β (N2−N1),

dN2

dt
= ρN2(M2−N2)+β (N1−N2).

(9)

We said in the previous section (and proved in the Mathematical Appendix A.1)
that, if we denote by (N∗1 ,N

∗
2 ) the equilibrium of (9), then

N∗1 +N∗2 > M1 +M2 (10)

as soon as β > 0 and M1 6= M2.
Despite its perfect mathematical derivation, this result is false for the coupling of

the two reactors. The correct description in this case must be done by modelling the
consumption mechanism (7) in the two patches with possibly different diffusion rates
for the substrate (α) and for the bacteria (β ):

dR1

dt
= −ρ R1 N1 +α(S2−S1),

dN1

dt
= ε ρ R1 N1 +β (N2−N1),

dR2

dt
= −ρ R2 N2 +α(S1−S2),

dN2

dt
= ε ρ R2 N2 +β (N1−N2).

(11)

Adding the four equations, one gets:

d(εR1 + εR2 +N1 +N2)

dt
= 0,

which means:

εR1(t)+ εR2(t)+N1(t)+N2(t) = εR1(0)+ εR2(0)+N1(0)+N2(0) = M1 +M2.

Note that we always have, including at equilibrium:

N1(t)+N2(t)≤M1 +M2

because the quantity R1(t)+R2(t) must be positive!
Since at equilibrium R∗1 = R∗2 = 0, we conclude that

N∗1 +N∗2 = M1 +M2,

in contradiction with the result (10) obtained when coupling the reduced logistic mod-
els (8). This is completely independent of the value of α , the substrate diffusion rate.

The flaw in obtaining the wrong inequality (10) was that it was derived on the
basis of the reduced model (9), itself derived from the first integral εR(t) +N(t) =
εR(0)+N(0) of (7), which is no longer a first integral of the full system (11).
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4 Mechanism 2: Logistic growth induced by MacArthur’s
reduction

Consider the following model for a resource-consumer interaction (see MacArthur
1969, 1970): 

dR
dt

=

[
r
(

1− R
K

)
−aN

]
R,

dN
dt

= ε(awR−q)N,

(12)

where R is the population density of the resource (prey) and N is the population density
of the consumer (predator). Here a is the probability that a consumer encounters and
eats a resource unit in a unit of time, w is the weight (caloric value) of the resource, q is
the metabolic rate for maintenance of the consumer and ε is a proportionality constant
governing the biochemical conversion of resource R into consumer N. For the sake of
simplicity, we denote b = aw.

This model is more appropriate than the previous one in situations in which the
resource can reproduce with its own dynamics and in which the consumer has some
loss term (e.g., due to basal metabolism or mortality). Here, the conversion coefficient
ε is assumed to be small.

MacArthur’s reduction (MacArthur 1969, 1970) consists, taking advantage of the
separation of time scales, in considering the “quasi-steady state” defined by the (fast)
first equation in (12) and replacing R by it in the second equation. The quasi-steady
state R, that is, the solution of the algebraic equation r

(
1− R

K

)
−aN = 0 is given by

R = K− a
r

KN

and substituting it into the second equation in (12) gives:

dN
dt

= ε

(
bK−q− ab

r
KN
)

N, (13)

which is once more a logistic equation that can be written as:

dN
dt

= σN
(

1− N
M

)
,

with intrinsic growth rate σ and carrying capacity M:

σ = ε(bK−q), M =
r
a

bK−q
bK

.

Let us now consider two patches and assume some migration between the two. If
we model this situation directly with MacArthur’s reduced logistic form (13), we have:

dN1

dt
= ε1

(
b1K1−q1− a1b1

r1
K1N1

)
N1 +β (N2−N1),

dN2

dt
= ε2

(
b2K2−q2− a2b2

r2
K2N2

)
N2 +β (N1−N2).

(14)

With no migration (β = 0), each patch equilibrates at its respective carrying capac-
ity,

M1 =
r1

a1

b1K1−q1

b1K1
, M2 =

r2

a2

b2K2−q2

b2K2
, (15)
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and the total number of individuals present at equilibrium is just the sum of the carrying
capacities, N∗T = M1 +M2.

Let us denote by (N∗1 ,N
∗
2 ) the positive (and globally stable) equilibrium of (14). We

will compare the total population N∗T = N∗1 +N∗2 with the total population obtained for
the complete two-patch extension of (12), which is:

dR1

dt
=

[
r1

(
1− R1

K1

)
−a1 N1

]
R1 +α(R2−R1),

dR2

dt
=

[
r2

(
1− R2

K2

)
−a2 N2

]
R2 +α(R1−R2),

dN1

dt
= ε1(b1R1−q1)N1 +β (N2−N1),

dN2

dt
= ε2(b2R2−q2)N2 +β (N1−N2).

(16)

The term α(R2−R1) represents some possible migration of the resource, which
is not present in the reduced system (14) since the variable R does not appear in the
equations.

Computer simulations show that system (16) has an equilibrium, which is globally
stable1, and we denote it by

E∗∗ = (R∗∗1 ,R∗∗2 ,N∗∗1 ,N∗∗2 ). (17)

We must now compare the effect of migrations expressed in the complete model
(16) and in the reduced model (14). We simulate for a long time (namely 100 units
of time) until the equilibrium is almost reached and then compute the total consumer
population for both models (14) and (16):

N∗T = N∗1 +N∗2 , N∗∗T = N∗∗1 +N∗∗2 .

We can redefine the resource migration parameter α as α = kβ . Although the
general case can be studied with no special difficulty, we will consider in this paper
two special cases in order to simplify the presentation:

k = 1, i.e., α = β and β ≥ 0, in Section 4.1,

and
k = 0, i.e., α = 0 and β ≥ 0, in Section 4.2.

In order to single out the role of migration strength, we will compare the graphs of
N∗T (β ) and N∗∗T (β ) as functions of β with β ≥ 0, all other parameters being fixed.

4.1 Migration of both the resource and the consumer
In this section, the migration between the two patches is α = β and 0 ≤ β ≤ 1. The
simulations will be done with the values given in Tables 2 and 3. We first set the
parameter values as in line 1 of Table 2.

On Figure 3a, the value of M1 +M2 is represented by the horizontal dotted line.
As soon as β is strictly positive, there is a departure from this value and the picture
shows a great difference between the two models. The value predicted by the reduced
model is quite different from the one predicted by the complete model. This is not
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Table 2: Numerical values of the parameters in Figures 3, 4 and 5.
r1 K1 q1 r2 K2 q2 a1 a2 b1 b2 ε1 ε2

Figure 3a 1 1 0.5 3 3 2 1 1 1 1 1 1
Figure 3b 1 2.8 1.5 3 3.2 0.5 1 1 1 1 1 1
Figure 4a 1 2 0.5 3 2 2 1 0.8 1 2 0.2 0.1
Figure 4b 1 1.5 1 1 3 2 1 0.5 1 1.5 0.5 0.5
Figure 5 1 1 0.1 1 2.5 1 4 0.1 1 1 0.6 0.4

Table 3: Numerical values of σ1, σ2, M1, M2, d
dβ

N∗T (0),
d

dβ
N∗∗T (0), N∗T (∞), N∗∗T (∞) and

M1 +M2. The derivatives d
dβ

N∗T (0) and d
dβ

N∗∗T (0) and the perfect mixing abundances
N∗T (∞) and N∗∗T (∞) are calculated with the expressions given in Propositions A.4 and
A.6 and in equation (23).

σ1 σ2 M1 M2
d

dβ
N∗T (0)

d
dβ

N∗∗T (0) N∗T (∞) N∗∗T (∞) M1 +M2

Figure 3a 0.5 1 0.5 1 0.5 2.75 1.5 1.5 1.5
Figure 3b 1.3 2.7 0.464 2.531 0.824 2.158 2.069 2.705 2.995
Figure 4a 1.5 0.2 0.75 1.875 -4.875 -4.5 1.614 3.148 2.625
Figure 4b 0.25 1.25 0.333 1.111 2.489 2.322 1.6 1.067 1.444
Figure 5 0.54 0.6 0.225 6 1.07 -5.68 0.91 0.66 6.225

surprising since the reduced model does not take into account the migration of the
resource modelled by α = β > 0.

In the previous example, the total population with migrations for the complete
model is always greater than the total population with migrations for the reduced
model, which is itself always greater than the sum of the populations without migra-
tion. This is not true in general, as shown by Figure 3b, obtained with the parameter
values in line 2 of Table 2. In this example, M1 +M2 ≈ 2,995 (see line 2 of Table
3). We see that small values of migration improve the total population but large val-
ues deteriorate it. Therefore the total population is not always greater than the sum of
the two carrying capacities, nor the total population for the complete model is always
greater than the total population of the reduced model. More precisely, all the possi-
ble inequalities between N∗T , N∗∗T , and M1 +M2 can actually be obtained, depending
on the value of the migration intensity β , as shown by Figure 3b, in which we have
successively: N∗∗T > N∗T > M1 +M2, N∗T > N∗∗T > M1 +M2, N∗∗T > M1 +M2 > N∗T ,
M1 +M2 > N∗T > N∗∗T or M1 +M2 > N∗∗T > N∗T .

Figure 4a is obtained with the parameter values in line 3 of Table 2. Since σ2 < σ1,
N∗T (β )< M1 +M2 and (N∗T )

′ (β )< 0 for any β > 0. We see that N∗∗T (β ) decreases first
and then increases.

Figure 4b is obtained with the parameter values in line 4 of Table 2. Since σ2/M2 >
σ1/M1, we have N∗T (β ) > M1 +M2 for any β > 0. However, we see that N∗∗T (β ) >
M1 +M2 for small β and the opposite holds for large β .

Figure 5 is obtained with the parameter values in line 5 of Table 2. Since σ2 > σ1
and σ2

M1
< σ1

M1
, we have that N∗T (β )> M1 +M2 for β small enough and N∗T (β )< M1 +

1The mathematical proof of this statement is beyond the scope of this paper.

9



(a) (b)

Figure 3: Total consumer population as a function of migration: N∗T (solid curve) for
the reduced model ; N∗∗T (curve with circles) for the complete model. See Table 2 for
the parameter values and text in Section 4.1 for explanations.

M2 for β large enough. We see that N∗∗T (β ) has a completely different behaviour. It
should be noticed (see Table 3) that d

dβ
N∗∗T (0) < 0 and d

dβ
N∗T (0) > 0, as shown also

in the zoom in Figure 5b. Hence, N∗∗T (β ) is first decreasing, then increasing, then
decreasing again, while N∗T (β ) is first increasing and then decreasing.

4.2 Migration of the consumer alone
Since MacArthur’s reduction does not contain the resource as an explicit variable, it
certainly cannot, as shown above, account for the resource migration. However, if
we assume that there is no resource migration, one may wonder whether it doesn’t
become accurate. The complete model is system (16) with α = 0. It can be analyzed
mathematically to a large extent (see the Mathematical Appendices). Here, we present
illustrations obtained by numerical simulation.

We set the parameter values as in line 1 of Table 4. The migration rates are α = 0
and 0 ≤ β ≤ 1. On Figure 6a, the value M1 +M2 is represented by the horizontal
dotted line. As soon as β is strictly positive, there is a departure from this value. The
value predicted by the reduced model is the same as the one predicted by the complete
model. Indeed, for this set of parameters, the reduced model gives a correct picture
of the complete model. However, this is not the general case, as will be shown in the
following example.

Table 4: Numerical values of the parameters of Figure 6. The values of the other
parameters in (16) are εi = 0.1, ai = bi = 1.

r1 K1 q1 r2 K2 q2
Figure 6a 2.5 2.5 0.2 3 3 2.5
Figure 6b 1 1 0.4 3 3 1

We now set the parameters as in line 2 of Table 4, with the same migration rates
as in the previous example. On Figure 6b, the value M1 +M2 is represented by the
horizontal dotted line. As soon as β is strictly positive, there is a departure from this

10



(a) (b)

Figure 4: Total consumer population as a function of migration: N∗T (solid curve) for
the reduced model ; N∗∗T (curve with circles) for the complete model. See Table 2 for
the parameter values and text in Section 4.1 for explanations.

value. The value predicted by the reduced model is the same as the one predicted by the
complete model when β is small enough. After a certain value (β ≈ 0.5), the prediction
of the reduced model (solid curve) is quite smaller than the prediction of the complete
model (curve with circles).

5 Discussion
When we say that the logistic equation (1) is a model for the growth of some population
N, what do we mean exactly? Usually, we say nothing about the actual mechanisms
that explain this kind of growth. What we mean is roughly the following argument:

1. Let µ(N) be the specific growth rate of a population. If we want the population
to be bounded, µ(N) must decrease to 0.

2. The simplest function of N that decreases to 0 is µ(N) = r
(
1− N

K

)
.

3. Equation (1) is a good approximation of some more complicated model.

4. The fit of the logistic model (1) to actual populations is often fairly good.

From the above considerations, it seems natural to model migrations between two
patches directly as in system (2). However, the correct generalization depends on the
mechanisms that underly the logistic growth and that are not specified in the items 1 to
4 above. In the examples we have studied, we have shown that the patch version (2)
could be incorrect.

Nevertheless, it can be correct under specific assumptions. For instance, the logistic
model can be derived from the following mechanism, different from those of Sections
3 and 4. Assume that the population basically follows exponential growth:

dN
dt

= r N

and that some proportion of the encounters between two individuals lead to mortality.
In this case, if we also assume perfect mixing, the number of individuals dying during
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(a) (b)

Figure 5: Total consumer population as a function of the migration coefficient β : N∗T
(solid curve) for the reduced model ; N∗∗T (curve with circles) for the complete model.
See Table 2 for the parameter values and text in Section 4.1 for explanations. Panel (b)
is a zoom of (a) in a narrow range of very small values of β .

a small time interval dt is simply proportional to the product N2 dt. Subtracting this
mortality rate, we obtain the equation:

dN
dt

= r N−λN2 = rN
(

1− λ

r
N
)
, (18)

which is a logistic. This is a mechanistic derivation of the logistic equation that assumes
direct intraspecific interference. Now, if we consider two patches with linear diffusion
between them, we can assume the same mechanism and build the two-patch model (2)
directly as a whole. In this case, we can be confident about the predictions of model
(2), which is the traditional two-patch generalization of the logistic model.

Our complete mathematical analysis of this model, summarized by Figures 1 and
2, has determined the exact conditions under which fragmentation increases the total
carrying capacity. This occurs in J0 for all migration rates (Fig. 2a) and in J1 for the
lower migration rates (Fig. 2c). Thus, a necessary condition is r2 > r1 (which is not
always sufficient). Recalling that K2 > K1, this means that, when the “good” patch 2 is
the better one both in terms of carrying capacity and in terms of intrinsic growth rate,
fragmentation can indeed have a beneficial effect. Fragmentation is always detrimental
if carrying capacity and growth rate are negatively correlated, i.e., if K2 > K1 and
r2 < r1. One may reasonably assume that this condition occurs much less frequently
than positive correlation (i.e., K2 > K1 and r2 > r1). Therefore, our analysis confirms
the earlier partial results of other authors (e.g., Freedman and Waltman 1977, Holt
1985, DeAngelis and Zhang 2014) who suggested that, in general, fragmentation was
beneficial.

While this first message of our paper generally confirms previous results, our sec-
ond message is more critical. We have shown that, if the logistic model is viewed as
a mechanistic model (e.g., the two different mechanisms presented in Sections 3 and
4), then the correct two-patch generalization is different from the traditional reduced
model (2). Moreover, the effect of fragmentation can be quite different from that pre-
dicted by the latter model. Figures 3, 4, 5, 6 have shown that this effect can be either
detrimental or beneficial, sometimes in a direction opposite to that predicted by the

12



(a) (b)

Figure 6: Total consumer population as a function of migration: N∗T (solid curve) for
the reduced model ; N∗∗T (curve with circles) for the complete model. See Table 2 for
the parameter values and text in Section 4.2 for explanations.

traditional model (2).
This second message of our paper brings some new light to earlier criticisms of

the logistic equation, especially in the parameterization of equation (1) (e.g., Kuno
1991, Ginzburg 1992). Particularly, the expression “carrying capacity” for K is very
unfortunate because it suggests that it is an intrinsic property of the environment. With
this view, our results would lead to say that the total carrying capacity of a patchy
environment is different from the sum of the patches’ carrying capacities. Instead, K
must be better viewed as the asymptotic, maximal value of the population abundance.
This question was notably discussed by Gabriel et al. (2005) and by Mallet (2012),
who pointed out that it makes much more sense to write the logistic equation as in
equation (18) because it makes clear that the asymptotic limit of population abundance
is due to intraspecific competition. Moreover, historically, this was the original way in
which Pierre-François Verhulst first wrote the logistic equation (Verhulst, 1838).

A Mathematical Appendices

A.1 Appendix to Section 2
In this section, we explain why, in general, the total equilibrium population in the sys-
tem of coupled logistic growths (2) is different from the sum of the carrying capacities.
More precisely, we give the exact conditions under which N∗T > K1 +K2. Recall that
if K1 = K2, then N∗1 = K1 and N∗2 = K2 for any β ≥ 0. Therefore N∗T = K1 +K2 for
any β ≥ 0. When K1 is not equal to K2, we have the following result, where N∗T (β ) is
studied as a function of the migration rate β .

Proposition A.1 We recall the assumption that K1 < K2.

1. If r2
K2
≥ r1

K1
, then N∗T (β )> K1 +K2 for any β > 0.

2. If r2
K2

< r1
K1

and r2 > r1, then N∗T (β )> K1 +K2 for 0 < β < β0 and

13



N∗T (β )< K1 +K2 for β > β0, where β0 > 0 is defined by

β0 =
r2− r1
K2
r2
− K1

r1

1
r2
K2

+ r1
K1

.

3. If r2 ≤ r1, then N∗T (β )< K1 +K2 for any β > 0.

The proof is given in Section B.2.
The behaviour of the system for perfect mixing (β → ∞) is given by the following

result.

Proposition A.2 Let (N1(t,β ),N2(t,β )) be a solution of (2) with initial condition (N10,N20).
When β → ∞ then, with the exception of a small initial interval, N1(t,β ) and N2(t,β )
are both approximated by the solution N(t) of the logistic equation

dN
dt

=
r1 + r2

2
N
(

1−N
r1/K1 + r2/K2

r1 + r2

)
(19)

with initial condition N0 =
N10+N20

2 .

The proof is given in Section B.3.
The equation (19) is simply a logistic equation whose positive equilibrium is given

by

N∗ =
r1 + r2

r1/K1 + r2/K2
.

Hence, in the limit β → ∞, we get N∗1 (+∞) = N∗2 (+∞) = N∗, so that N∗T (+∞) =
N∗1 (+∞)+N∗2 (+∞) is given by

N∗T (+∞) = 2
r1 + r2

r1/K1 + r2/K2
. (20)

Remark. The property N∗1 (+∞) = N∗2 (+∞) = r1+r2
r1/K1+r2/K2

had already been obtained
by Freedman and Waltman (1977) (their Theorem 3.1) by a direct computation on the
equations (30). See also Holt (1985) (his Section 2.3). We have obtained here this
formula from the model (19) to which the model (2) reduces in the limit β → ∞. This
approach is more general than the direct computations used by Freedman and Waltman
(1977) and will be useful for other models considered in this paper.

A more complete understanding of the effect of migration is provided by the fol-
lowing proposition, which gives additional information on the derivative of N∗T (β ) with
respect to β .

Proposition A.3 1. d
dβ

N∗T (0) = (K1−K2)
(

1
r2
− 1

r1

)
= (K1−K2)

r1−r2
r1r2

.

2. If N∗T (β )< K1 +K2 then d
dβ

N∗T (β )< 0.

The proof is given in Section B.4.
Using (20) and Proposition A.3 we can notice that

• J0 is characterized by the condition N∗T (+∞)≥ K1 +K2,

• J1 is characterized by the conditions N∗T (+∞)< K1 +K2 and d
dβ

N∗T (0)> 0,

• J2 is characterized by the condition d
dβ

N∗T (0)≤ 0.
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A.2 Appendix to Section 4.1
We assume in this section that the dispersion rates of the consumer and the resource
are equal. The mathematical model is system (16) with α = β , that is:

dR1

dt
=

[
r1

(
1− R1

K1

)
−a1 N1

]
R1 +β (R2−R1),

dR2

dt
=

[
r2

(
1− R2

K2

)
−a2 N2

]
R2 +β (R1−R2),

dN1

dt
= ε1(b1R1−q1)N1 +β (N2−N1),

dN2

dt
= ε2(b2R2−q2)N2 +β (N1−N2).

(21)

This system can have many equilibria, whose analytical study is difficult (if not im-
possible). This study is beyond the scope of this paper. As already mentioned in Sec-
tion 4, computer simulations show that (21) has a globally stable equilibrium. Assum-
ing that this equilibrium exists for each value of β and is positive, we can consider, as in
the previous section, its dependence with respect to β . Let (R∗∗1 (β ),R∗∗2 (β ),N∗∗1 (β ),N∗∗2 (β ))
be the positive and stable equilibrium of (21). Let (N∗1 (β ),N

∗
2 (β )) be the globally sta-

ble equilibrium of the corresponding reduced model (14). We consider here some
properties of N∗T (β ) and N∗∗T (β ) as functions of the migration rate β .

As a consequence of (20) and Proposition A.3 we have the following result.

Proposition A.4 We have

d
dβ

N∗T (0) = (M1−M2)

(
1

σ2
− 1

σ1

)
, N∗T (+∞) = 2

σ1 +σ2

σ1/M1 +σ2/M2
,

where σi = εi(biKi−qi) and Mi =
ri
ai

biKi−Ti
biKi

.

The behaviour of (21) for perfect mixing (β → ∞) is given by the following result.

Proposition A.5 Let (R1(t,β ),R2(t,β ),N1(t,β ),N2(t,β )) be a solution of (21) with
initial condition (R10,R20,N10,N20). When β → ∞ then, with the exception of a small
initial interval, R1(t,β ) and R2(t,β ) are both approximated by R(t) and N1(t,β ) and
N2(t,β ) are both approximated by N(t), where (R(t),N(t)) is the solution of MacArthur’s
single-patch model

dR
dt

=

[
r1+r2

2

(
1−R

r1
K1

+
r2
K2

r1+r2

)
− a1+a2

2 N
]

R,

dN
dt

= 1
2 [(ε1b1 + ε2b2)R− (ε1q1 + ε2q2)]N.

(22)

with initial condition R0 =
R10+R20

2 and N0 =
N10+N20

2 .

The proof is given in Section B.6.
The positive equilibrium of (22) is given by

R∗ =
ε1q1 + ε2q2

ε1b1 + ε2b2
, N∗ =

r1 + r2

a1 +a2

(
1−R∗

r1
K1

+ r2
K2

r1 + r2

)
.

15



This equilibrium is positive if and only if

ε1q1 + ε2q2

ε1b1 + ε2b2
<

r1 + r2
r1
K1

+ r2
K2

.

Hence, in the limit β → ∞, we get N∗∗1 (+∞) = N∗∗2 (+∞) = N∗, so that N∗∗T (+∞) =
N∗∗1 (+∞)+N∗∗2 (+∞) is given by

N∗∗T (+∞) = 2
r1 + r2

a1 +a2

(
1− ε1q1 + ε2q2

ε1b1 + ε2b2

r1
K1

+ r2
K2

r1 + r2

)
. (23)

A more complete understanding of the effect of migration is provided by the fol-
lowing proposition, which gives the derivative of d

dβ
N∗∗T (0).

Proposition A.6 We have

d
dβ

N∗∗T (0) =
(

b2

a2q2
− b1

a1q1

)(
q1

b1
− q2

b2

)
+

d
dβ

N∗T (0).

The proof is given in Section B.5.

A.3 Appendix to Section 4.2
Here, we give the mathematical analysis of the complete resource-consumer model in
the case in which the consumer alone can disperse. The mathematical model is system
(16) with α set to 0, that is:

dR1

dt
=

[
r1

(
1− R1

K1

)
−a1 N1

]
R1,

dR2

dt
=

[
r2

(
1− R2

K2

)
−a2 N2

]
R2,

dN1

dt
= ε1(b1R1−q1)N1 +β (N2−N1),

dN2

dt
= ε2(b2R2−q2)N2 +β (N1−N2).

(24)

We start with the following observation.

Proposition A.7 Let E∗ = (R∗1,R
∗
2,N

∗
1 ,N

∗
2 ) be a positive equilibrium of (24). Then

(N∗1 ,N
∗
2 ) is a positive equilibrium of the reduced model (14). Conversely, let (N∗1 ,N

∗
2 )

be a positive equilibrium of the reduced model (14). Then E∗ = (R∗1,R
∗
2,N

∗
1 ,N

∗
2 ), where

R∗1, R∗2 are defined by

R∗1 = K1

(
1− a1

r1
N∗1

)
, R∗2 = K2

(
1− a2

r2
N∗2

)
,

is a positive equilibrium of (24) if and only if N∗1 < r1
a1

and N∗2 < r2
a2

.

The proof is given in Section B.7.

The model (24) was already considered by Holt (1984) (his equations 6–7). In the
case of resource exponential growth instead of logistic growth, he gave the condition on
β for resource persistence in both patches at equilibrium. He did not consider, however,
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the links between (24) and the reduced two-patch logistic equation (14), as we did in
our study. We will now consider this question of equilibrium resource persistence in
both patches with logistic growth. More precisely, we investigate the links between the
equilibrium of (24) and the equilibrium of the reduced model (14). Let (N∗1 (β ),N

∗
2 (β ))

be a positive equilibrium of the reduced system (14). The resource abundances are
positive if and only if

N∗1 (β )<
r1

a1
, N∗2 (β )<

r2

a2
.

Recall that
N∗1 (0) = M1 <

r1

a1
, N∗2 (0) = M2 <

r2

a2
,

where M1 and M2 are the carrying capacities defined by (15). Using (5) we get

M1 < N∗1 (β )< N∗2 (β )< M2 <
r2

a2
.

Hence, the condition N∗2 (β ) <
r2
a2

is satisfied for every β > 0 and the condition
N∗1 (β ) <

r1
a1

is also satisfied when β is small enough. This means that, for β small
enough, the positive equilibrium E∗∗ of (24) defined by (17) is the same as the equilib-
rium E∗ considered in Proposition A.7 and corresponding to the positive equilibrium
(N∗1 ,N

∗
2 ) of the reduced model (14). Thus, for β small enough we have N∗∗T (β ) =

N∗T (β ), as illustrated in Figure 6.
However, when β increases, it can happen that, for some critical value βc, we

have N∗1 (βc) =
r1
a1

and N∗1 (β ) >
r1
a1

for β > βc. Hence when β > βc, the equilibrium
(N∗1 (β ),N

∗
2 (β )) no longer corresponds to a positive equilibrium of (24). Actually, the

corresponding equilibrium E∗ of (24) described by Proposition A.7, becomes negative
when β > βc, since R∗1(β )< 0.

Besides the equilibrium E∗(β )= (R∗1(β ),R
∗
2(β ),N

∗
1 (β ),N

∗
2 (β )) described by Propo-

sition A.7, (24) can have the boundary equilibrium

E?(β ) = (0,R?
2(β ),N

?
1 (β ),N

?
2 (β ))

where R?
2(β ), N?

1 (β ), N?
2 (β ) are positive solutions of the set of equations

0 = r2

(
1− R?

2
K2

)
−a2 N?

2 ,

0 = −q1N?
1 +β (N?

2 −N?
1 ),

0 = (b2R?
2−q2)N?

2 +β (N?
1 −N?

2 ).

(25)

Solving the first equation for R?
2 yields

R?
2 = K2

(
1− a2

r2
N?

2

)
.

Replacing R?
2 by this expression in the second and third equations of (25) yields a set

of two equations that can be solved for N?
1 and N?

2 .
For β = βc, there is a bifurcation of E∗(β ) with E?(β ). When β > βc, we observed

numerically that E?(β ) becomes stable and attracts all solutions. Therefore, for β > βc,
the stable equilibrium (17) of (24) is non longer equal to E∗(β ), which has become
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negative, but is equal to the boundary equilibrium E?(β ). Therefore, there is a critical
value βc such that (see Figure 6b)

N∗∗T (β ) =

{
N∗1 (β )+N∗2 (β ) = N∗T (β ) for 0≤ β ≤ βc
N?

1 (β )+N?
2 (β ) 6= N∗T (β ) for β > βc.

The behaviour of (24) for perfect mixing (β → ∞) is given by the following result.

Proposition A.8 Let (R1(t,β ),R2(t,β ),N1(t,β ),N2(t,β )) be a solution of (24) with
initial condition (R10,R20,N10,N20). When β → ∞ then, with the exception of a small
initial interval, R1(t,β ) and R2(t,β ) are approximated by R1(t) and R2(t), and N1(t,β )
and N2(t,β ) are both approximated by N(t), where (R1(t),R2(t),N(t)) is the solution
of MacArthur’s single-patch model

dR1

dt
=

[
r1

(
1− R1

K1

)
−a1 N

]
R1,

dR2

dt
=

[
r2

(
1− R2

K2

)
−a2 N

]
R2,

dN
dt

= 1
2 (ε1b1R1 + ε2b2R2− ε1q1− ε2q2)N.

(26)

with initial condition R10, R20 and N0 =
N10+N20

2 .

The proof is given in Section B.8.
In this MacArthur model for one consumer and two resources, all resources are

not necessarily present at equilibrium. For instance, assuming that the resources are
labelled such that r1

a1
> r2

a2
, we have the following results, which are particular cases of

the results in Holt (1977) obtained for the model of a consumer and n≥ 2 resources.

1. If ε1b1K1 + ε2b2K2 > ε1q1 + ε2q2 then no resource is present at equilibrium

2. If ε1b1K1 + ε2b2K2 ≤ ε1q1 + ε2q2 then resource R1 is always present at equilib-
rium and resource R2 is present if and only if the following condition holds

ε1q1 + ε2q2

ε1b1K1
> 1− a1

r1

r2

a2
(27)

Notice that the condition (27) of existence of the species R2 at equilibrium is indepen-
dent of its own carrying capacity K2 yet may critically depend on K1. This behaviour
of resources sharing a common consumer is known as apparent competition.

This behaviour of the limiting model (26) when β → ∞, explains why there is a
critical value βc such that, for β > βc the resource R1 is not present at equilibrium,
see Figure 6b. It should be noticed that for the numerical simulation shown in this
figure one has r1

a1
= 2.5 < 3 = r2

a2
. This explains why it is the resource R1 (and not R2)

that is eliminated from the equilibrium by apparent competition. In the presentation
of the results of Holt (1977), following him, we have used the conventional inequality
r1/a1 > r2/a2.

B Proofs

B.1 Some formulas
Let us first prove the following preliminary result.
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Proposition B.1 Let (N∗1 (β ),N
∗
2 (β )) be an equilibium of (2).

• If K1 < K2 and β > 0, then K1 < N∗1 (β )< N∗2 (β )< K2 (i.e. (5) holds).

• Let N∗T (β ) = N∗1 (β )+N∗2 (β ). Then

N∗T = K1 +K2 +β
N∗2 −N∗1

r1
K1

r2
K2

N∗1 N∗2

(
r2

K2
N∗2 −

r1

K1
N∗1

)
(28)

and
d

dβ
N∗T (β ) =

N∗2 −N∗1
detA

[
β

(
N∗1
N∗2
− N∗2

N∗1

)
+

r2

K2
N∗2 −

r1

K1
N∗1

]
. (29)

Let us prove that (5) holds. The equilibria are the solutions of the set of equations
0 = r1N1

(
1− N1

K1

)
+β (N2−N1),

0 = r2N2

(
1− N2

K2

)
+β (N1−N2).

(30)

Solving the first equation for N2 and the second for N1 yields that the equilibria
are the nonnegative intersections of the two parabolas P1 and P2 of equations N2 =
P1(N1) and N1 = P2(N2), where the functions P1 and P2 are defined by

P1(N1) = N1−
r1

β
N1

(
1− N1

K1

)
, P2(N2) = N2−

r2

β
N2

(
1− N2

K2

)
.

These parabolas are simply the isoclines Ṅ1 = 0 and Ṅ2 = 0. The isoclines intersect
at (0,0) and at E = (N∗1 ,N

∗
2 ). Since P1(K1) = K1, the point A = (K1,K1) belongs to

P1. Since P2(K2) = K2, the point B = (K2,K2) belongs to P2. Hence, the equilibrium
E belongs to the triangle ABC, where C = (K1,K2) (see Figure 7). Thus K1 < N∗1 <
N∗2 < K2, which is (5).

Remark. The stability study of E =(N∗1 ,N
∗
2 ) comes from the analysis of the variational

matrix. See Freedman and Waltman (1977), DeAngelis et al. (1979), where it is proved
that E is stable. Actually E is globally asymptotically stable (Holt 1985).

Let us prove that (28) holds. At the equilibrium (N∗1 ,N
∗
2 ), one has:{

0 = r1
K1

N∗1 (K1−N∗1 )+β (N∗2 −N∗1 ),

0 = r2
K2

N∗2 (K2−N∗2 )+β (N∗1 −N∗2 ).
(31)

Dividing the first equation by r1
K1

N∗1 , the second by r2
K2

N∗2 , and adding the two, one gets:

K1 +K2− (N∗1 +N∗2 )+β
N∗2 −N∗1

r1
K1

N∗1
+β

N∗1 −N∗2
r2
K2

N∗2
= 0.

Hence

N∗1 +N∗2 = K1 +K2 +β
N∗2 −N∗1

r1
K1

r2
K2

N∗1 N∗2

(
r2

K2
N∗2 −

r1

K1
N∗1

)
,

which is (28).
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Figure 7: Phase-plane diagram for (2). E = (N∗1 ,N
∗
2 ), the positive intersection of P1

and P2, is a stable equilibrium and 0 is an unstable one. On the left, the case N∗T >
K1 +K2. On the right, the case N∗T < K1 +K2.

Let us prove that (29) holds. The computation of the derivative of N∗T (β ) with
respect of β requires the implicit function theorem. Let us calculate the derivatives
d

dβ
N∗1 (β ) and d

dβ
N∗2 (β ). We have[

d
dβ

N∗1 (β )
d

dβ
N∗2 (β )

]
=−A−1

[
N∗2 (β )−N∗1 (β )
N∗1 (β )−N∗2 (β )

]
, (32)

where

A =

 r1

(
1− N∗1 (β )

K1

)
−β − r1

K1
N∗1 (β ) β

β r2

(
1− N∗2 (β )

K2

)
−β − r2

K2
N∗2 (β )


is the matrix of partial derivatives of equations (30) with respect to N1 and N2 evaluated
at N∗1 (β ) and N∗2 (β ), and the last vector is the vector of derivatives of equations (30)
with respect to β evaluated at N∗1 (β ) and N∗2 (β ). Using the formulas

r1

(
1− N∗1

K1

)
−β =−β

N∗2
N∗1

, r2

(
1− N∗2

K2

)
−β =−β

N∗1
N∗2

,

and after some algebraic manipulation, equation (32) reduces to[
d

dβ
N∗1

d
dβ

N∗2

]
=

1
detA

 β
N∗1
N∗2

+ r2
K2

N∗2 β

β β
N∗2
N∗1

+ r1
K1

N∗1

[ N∗2 −N∗1
N∗1 −N∗2

]
where

detA =

(
β

N∗2
N∗1

+
r1

K1
N∗1

)(
β

N∗1
N∗2

+
r2

K2
N∗2

)
−β

2 > 0.

Therefore

d
dβ

N∗1 =
1

detA

[(
β

N∗1
N∗2

+
r2

K2
N∗2

)
(N∗2 −N∗1 )+β (N∗1 −N∗2 )

]
,
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d
dβ

N∗2 =
1

detA

[(
β

N∗2
N∗1

+
r1

K1
N∗1

)
(N∗1 −N∗2 )+β (N∗2 −N∗1 )

]
.

Adding the two equations, one obtains (29).

B.2 Proof of Proposition A.1
From (28), we can study the cases 1 and 3 of Proposition A.1.

• If r2
K2
≥ r1

K1
then, using (5), we have

r2

K2
N∗2 −

r1

K1
N∗1 ≥

r1

K1
N∗2 −

r1

K1
N∗1 =

r1

K1
(N∗2 −N∗1 ) .

Therefore, using N∗2 > N∗1 and (28), we have N∗T > K1 +K2.

• If r2 ≤ r1 then, using (5), we have N∗2
K2

< 1 and N∗1
K1

> 1, so that

r2

K2
N∗2 −

r1

K1
N∗1 = r2

N∗2
K2
− r1

N∗1
K1

< r2− r1 ≤ 0.

Therefore, using N∗2 > N∗1 and (28), we have N∗T < K1 +K2.

The study of the case 2 of Proposition A.1 requires both (28) and (29). From (28)
we deduce that N∗T (β ) = K1 +K2 for β > 0, if and only if

r2

K2
N∗2 −

r1

K1
N∗1 = 0. (33)

Using (29) we see that (33) necessarily implies that d
dβ

N∗T (β )< 0. Hence, we can have
N∗T (β ) = K1 +K2 for at most one value of β > 0. For such value of β , (N∗1 ,N

∗
2 ) is a

solution of the set of linear equations formed by (33) and the condition

N∗1 +N∗2 = K1 +K2. (34)

Solving (33–34) we obtain

N∗1 =
K1

r1

K1 +K2
K1
r1
+ K2

r2

, N∗2 =
K2

r2

K1 +K2
K1
r1
+ K2

r2

.

Using (31) we obtain that

β =
r2− r1
K2
r2
− K1

r1

1
r2
K2

+ r1
K1

.

We conclude that N∗T (β ) = K1 +K2 if and only if β is equal to this value, and that
N∗T (β )< K1 +K2 if and only if β is greater than this value.

B.3 Proof of Proposition A.2
Let N = N1+N2

2 . We can rewrite (2) using the variables N1 and N (notice that N2 =
2N−N1): 

dN1

dt
= r1N1

(
1− N1

K1

)
+2β (N−N1),

dN
dt

= 1
2

[
r1N1

(
1− N1

K1

)
+ r2(2N−N1)

(
1− 2N−N1

K2

)]
.

(35)
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The system (35) is a slow and fast system whose slow variable is N and fast variable is
N1. In the limit β → ∞, we can replace the fast variable N1 is the second equation by
its quasi-steady state approximation N1 = N obtained from the first equation, and we
get

dN
dt

=
1
2

[
r1N

(
1− N

K1

)
+ r2N

(
1− N

K2

)]
=

r1 + r2

2
N
(

1−N
r1/K1 + r2/K2

r1 + r2

)
,

which is the logistic equation (19).

B.4 Proof of Proposition A.3
Using N∗1 (0) = K1, N∗2 (0) = K2 in (29), we get

d
dβ

N∗T (0) =
(

1
r2
− 1

r1

)
(K1−K2).

This is item 1 of Proposition A.3.
From (28) we deduce that N∗T (β )< K1 +K2 if and only if

r2

K2
N∗2 −

r1

K1
N∗1 < 0.

Using (29) we see that this condition necessarily implies that d
dβ

N∗T (β ) < 0. This is
item 2 of Proposition A.3

B.5 Proof of Proposition A.6
Let (R∗∗1 (β ),R∗∗2 (β ),N∗∗1 (β ),N∗∗2 (β )) be a positive equilibrium of (21). Thus, it is a
solution of the set of equations

0 =

[
r1

(
1− R∗∗1

K1

)
−a1 N∗∗1

]
R∗∗1 +β (R∗∗2 −R∗∗1 )

0 =

[
r2

(
1− R∗∗2

K2

)
−a2 N∗∗2

]
R∗∗2 +η(R∗∗1 −R∗∗2 )

0 = ε1(b1R∗∗1 −q1)N∗∗1 +β (N∗∗2 −N∗∗1 )

0 = ε2(b2R∗∗2 −q2)N∗∗2 +β (N∗∗1 −N∗∗2 ).

(36)

As in Section B.1, we use the implicit function theorem and calculate the derivatives
d

dβ
R∗∗i (β ) and d

dβ
N∗∗i (β ). We have

d
dβ

R∗∗1 (β )
d

dβ
R∗∗2 (β )

d
dβ

N∗∗1 (β )
d

dβ
N∗∗2 (β )

=−A−1


R∗∗2 (β )−R∗∗1 (β )
R∗∗1 (β )−R∗∗2 (β )
N∗∗2 (β )−N∗∗1 (β )
N∗∗1 (β )−N∗∗2 (β )

 , (37)

where A is the matrix of partial derivatives of equations (36) with respect to (R1,R2,N1,N2)
evaluated at R∗∗i (β ) and N∗∗i (β ), and the last vector is the vector of derivatives of equa-
tions (36) with respect to β evaluated at R∗∗i (β ) and N∗∗i (β ).
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Using R∗∗i (0) = qi
bi

and N∗∗i (0) = Mi, we get

A =


− r1q1

K1b1
0 − a1q1

b1
0

0 − r2q2
K2b2

0 − a2q2
b2

ε1b1M1 0 0 0
0 ε2b2M2 0 0

 .
After some algebraic manipulation, for β = 0, equation (37) reduces to

d
dβ

R∗∗1 (0)
d

dβ
R∗∗2 (0)

d
dβ

N∗∗1 (0)
d

dβ
N∗∗2 (0)

=


0 0 − 1

ε1b1M1
0

0 0 0 − 1
ε2b2M2

b1
a1q1

0 1
σ1

0
0 b2

a2q2
0 1

σ2




q2
b2
− q1

b1q1
b1
− q2

b2
M2−M1
M1−M2

 .
Therefore

d
dβ

N∗∗1 (0) =
b1

a1q1
+

(
q2

b2
− q1

b1

)
+

1
σ1

(M2−M1) ,

d
dβ

N∗∗1 (0) =
b2

a2q2
+

(
q1

b1
− q2

b2

)
+

1
σ2

(M1−M2) .

Adding these equations one obtains

d
dβ

N∗∗T (0) =
(

b2

a2q2
− b1

a1q1

)(
q1

b1
− q2

b2

)
+(M1−M2)

(
1

σ2
− 1

σ1

)
.

B.6 Proof of Proposition A.5
We use here the singular perturbation analysis outlined in Section B.3 to obtain the
behaviour of the system as β → ∞. Let

R =
R1 +R2

2
, N =

N1 +N2

2
.

We can rewrite (16) using the variables R1, N1 and R, N (using R2 = 2R− R1 and
N2 = 2N−N1):

dR1

dt
=

[
r1

(
1− R1

K1

)
−a1 N1

]
R1 +2β (R−R1)

dN1

dt
= ε1(b1R1−q1)N1 +2β (N−N1)

dR
dt

= 1
2

[[
r1

(
1− R1

K1

)
−a1 N1

]
R1 +

[
r2

(
1− 2R−R1

K2

)
−a2(2N−N1)

]
(2R−R1)

]
dN
dt

= 1
2 [ε1(b1R1−q1)N1 + ε2(b2(2R−R2)−q2)(2N−N2)] .

(38)
System (38) is a slow and fast system whose slow variables are R and N and fast

variables are R1 and N1. In the limit β → ∞, we can replace the fast variables R1 and
N1 in the third and fourth equations by their quasi-steady state approximations R1 = R
and N1 = N obtained from the first and second equations. We obtain

dR
dt

= 1
2

[[
r1

(
1− R

K1

)
−a1N

]
R+

[
r2

(
1− R

K2

)
−a2N

]
R
]

dN
dt

= 1
2 [ε1(b1R−q1)N + ε2(b2R−q2)N] .
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This is simply the MacArthur resource-consumer model (22).
dR
dt

=

[
r1+r2

2

(
1−R

r1
K1

+
r2
K2

r1+r2

)
− a1+a2

2 N
]

R

dN
dt

= ε1+ε2
2

(
ε1b1+ε2b2

ε1+ε2
R− ε1q1+ε2q2

ε1+ε2

)
N.

B.7 Proof of Proposition A.7
An equilibrium point (R∗1,R

∗
2,N

∗
1 ,N

∗
2 ) of (24) is a solution of the set of equations

0 =
[
r1

(
1− R∗1

K1

)
−a1 N∗1

]
R∗1,

0 =
[
r2

(
1− R∗2

K2

)
−a2 N∗2

]
R∗2,

0 = ε1(b1R∗1−q1)N∗1 +β (N∗2 −N∗1 ),

0 = ε2(b2R∗2−q2)N∗2 +β (N∗1 −N∗2 ).

(39)

If this equilibrium is positive, then we must have

r1

(
1− R∗1

K1

)
−a1 N∗1 = 0, r2

(
1− R∗2

K2

)
−a2 N∗2 = 0.

Therefore

R∗1 = K1

(
1− a1

r1
N∗1

)
> 0, R∗2 = K2

(
1− a2

r2
N∗2

)
> 0. (40)

Replacing these values in the third and fourth equations in (39), we get
0 = ε1

(
b1K1−q1− a1b1

r1
K1N∗1

)
N∗1 +β (N∗2 −N∗1 ),

0 = ε2

(
b2K2−q2− a2b2

r2
K2N∗2

)
N∗2 +β (N∗1 −N∗2 ).

(41)

Hence (N∗1 ,N
∗
2 ) is a positive equilibrium of the reduced model (14). The converse holds

as long as the inequalities (40) are satisfied.

B.8 Proof of Proposition A.8
We use here the singular perturbation analysis outlined in Section B.3 to obtain the
behaviour of the system as β → ∞. Let N = N1+N2

2 . We can rewrite (24) using the
variables R1, R2, N and N1 (using N2 = 2N−N1):

dR1

dt
=

[
r1

(
1− R1

K1

)
−a1 N1

]
R1

dR2

dt
=

[
r2

(
1− R2

K2

)
−a2 N2

]
R2

dN
dt

= 1
2 [ε1(b1R1−q1)N1 + ε2(b2R2−q2)(2N−N2)]

dN1

dt
= ε1(b1R1−q1)N1 +2β (N−N1)

(42)
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System (42) is a slow and fast system whose slow variables are R1, R2 and N and fast
variables are N1. In the limit β → ∞, we can replace the fast variable N1 in the first
three equations of (42) by its quasi-steady state approximations N1 = N obtained from
the fourth equation. We obtain

dR1

dt
=

[
r1

(
1− R1

K1

)
−a1 N

]
R1

dR2

dt
=

[
r2

(
1− R2

K2

)
−a2 N

]
R2

dN
dt

= 1
2 [ε1(b1R1−q1)N + ε2(b2R2−q2)N]

This is simply the MacArthur two resource–one consumer model (26).
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