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 for a class of random growth models whose growth is at least and at most linear. In this way, we obtain asymptotic shape theorems conjectured for several models: the contact process in a randomly evolving environment [SW08], the oriented percolation with hostile immigration [GM12b] and the bounded modified contact process [DS00].

Introduction

In 1974, Harris [START_REF] Harris | Contact interactions on a lattice[END_REF] introduced the classical contact process as an interacting particle system modeling the spread of a population through the grid Z d . This process has been well studied and it satisfies in particular a shape theorem. Since then, a lot of extensions appeared in the literature: two stage contact process by Krone [Kro99], boundary modified contact process by Durett and Schinazi [START_REF] Durrett | Boundary modified contact processes[END_REF], contact process in randomly evolving environment by Broman [START_REF] Broman | Stochastic domination for a hidden Markov chain with applications to the contact process in a randomly evolving environment[END_REF], Remenik [START_REF] Remenik | The contact process in a dynamic random environment[END_REF], Steif and Warfheimer [START_REF] Steif | The critical contact process in a randomly evolving environment dies out[END_REF], contact process with aging by the author [START_REF] Deshayes | The contact process with aginig ALEA Lat[END_REF] etc. All these processes are linear random growth models in the sense that we can exhibit a quantity of interest A t taking values in P(Z d ) and deterministic compact sets A -and A + such that, for t large enough, tA -⊂ A t ⊂ tA + .

The first inclusion traduces the at least linear growth and the second one the at most linear growth. These models have also others characteristics like attractivity, phase transition phenomenon etc. Here, we want to show that they satisfy asymptotic shape results i.e. there exists a deterministic set B such that At t converges to B in a sense to precise and we want to highlight their common properties which lead to a general asymptotic shape theorem. In order to do that we introduce a general class of random growth models including the above mentioned contact process extensions and a related good quantity, the essential hitting time σ, which allows us to use the same techniques that the ones involved in [START_REF] Deshayes | The contact process with aginig ALEA Lat[END_REF] to prove an asymptotic shape theorem. Indeed, as the standard contact process itself, its extensions are non permanent models: the extinction is possible and the hitting times can be infinite so that the standard integrability conditions are not satisfied. On the other hand, if we condition the model to survive, then stationarity and subadditivity properties can be lost. The quantity σ overcome such lacks: it turns out that this function σ satisfies adequate stationarity properties as well as the almostsubaddivity conditions involved in Kesten and Hammersley's theorem (see [START_REF] Kesten | Discussion on Professor Kingman's paper[END_REF] and [START_REF] Hammersley | Postulates for subadditive processes[END_REF]), a well-known extension of Kingman's seminal result. We will define precisely all the quantities involved but we will refer to [START_REF] Deshayes | The contact process with aginig ALEA Lat[END_REF] for proofs working in the same way.

We obtain a general asymptotic shape theorem for a class of random linear growth models and deduce asymptotic shape theorems conjectured for several models: the contact process in a randomly evolving environment [START_REF] Steif | The critical contact process in a randomly evolving environment dies out[END_REF], the oriented percolation with hostile immigration [START_REF] Garet | Growth of a population in a dynamical hostile environment[END_REF] and the bounded modified contact process [START_REF] Durrett | Boundary modified contact processes[END_REF].

2. A class of random linear growth models 2.1. Notations and definitions.

2.1.1. State space. We will work on interacting particle systems on Z d . For x and y in Z d , we say that x and y are neighbors, and we denote by x ∼ y, if d i=1 |x iy i | = 1. We denote by T x the spatial translation operator of vector x ∈ Z d .

Let S be a finite totally ordered set which will represent the possible state (or type) of a particle x ∈ Z d . We denote by S Z d the set of mappings ξ : Z d → S which can also be seen as the set of partitions of Z d in |S| subsets:

ξ ∈ S Z d ⇔ ξ : Z d → S x → ξ(x);
and we denote by S Z d f the subset of functions with finitely many coordinates non equal to min S (often 0). Let C(S Z d ) be the set of continuous functions from S Z d to R and C 0 (S Z d ) the subset of functions depending on only finitely many coordinates of ξ. The set S Z d will be our state space of configurations. 2.1.2. Markov process and property of interest. We work with a time space T which can be discrete (T = N) or continuous (T = R + ). Let (ξ t ) t∈T be a stationary Markov process taking values in S Z d and let (P ) be a property of interest about elements of S. We define the process (A t ) taking values in P(Z d ) by, for t ∈ T ,

A t = {x ∈ Z d , ξ t (x) satisfies (P )};
the quantity A t represents the set of points which satisfies the property (P ) at time t.

We can also write, for t ∈ T and x ∈ Z d , A t (x) = g(ξ t (x)) where g is the indicator function corresponding to the property (P ); we extend A t = g(ξ t ) in the natural way. One should notice that the process (A t ) is not necessarily Markovian.

Let δ min be the minimal non trivial configuration of the process (ξ t ) such that A 0 = g(δ min ) is not empty (i.e. someone in δ min satisfies (P )). A such configuration δ min exists because S is totally ordered and it is unique modulo translation. For every x ∈ Z d , we denote by

τ = inf{t > 0, A δ min t = ∅}, t(x) = inf{t > 0, x ∈ A δ min t }.
Starting from δ min , τ is the first time when no one satisfies (P ) and t(x) is the first time when x satisfies (P ).

For x ∈ Z d and t ∈ T we denote by T x the spatial translation and by θ t the temporal one. For t ∈ T , let

H t = s≤t A t = {x ∈ Z d , t(x) ≤ t}
be the set of points which have satisfied (P ) before time t.

2.1.3. Interacting particle system.

Definition. Let (ξ t ) be a Markov process taking values in S Z d and (P ) a property of interest. We say that (ξ t , P ) belongs to the class C if it satisfies the following conditions:

(1) The generator A of (ξ t ) satisfies, for every f ∈ C 0 (S Z d ) and every configuration

ξ ∈ S Z d , A(f )(ξ) = x∈Z d s∈S c(x, ξ, s) f (ξ (x,s) ) -f (ξ)
where, for all x ∈ Z d and ξ, ξ (x,s) is the configuration ξ where ξ(x) is replaced by s. c(x, ξ, s) ≥ 0 is the intensity for a jump ξ → ξ (x,s) and depends on ξ only through {ξ(y), y ∼ x} and ξ(x) and we take c(x, ξ, s

) = 0 if s = ξ(x). (2) The process (ξ t ) is additive in the following sense: for all f, g ∈ S Z d , ξ f ∨g t = ξ f t ∨ ξ g t ; moreover, {A t = ∅} in an absorbing state.
The first condition implies that (ξ t ) is a nearest neighbor interacting particle system; this definition was introduced by Harris in [START_REF] Harris | Contact interactions on a lattice[END_REF] but today the term NNI represents a larger class of interacting particle systems (including for example the exclusion process which does not satisfy this first condition). We can find the general definition of NNI particle systems and the proof of their existence in [START_REF] Thomas | Interacting particle systems[END_REF].

Harris [START_REF] Harris | Additive set-valued Markov processes and graphical methods[END_REF] introduced a graphical representation of additive processes which make possible to work with a percolation view on a diagram of Poisson processes impacts (see [START_REF] Deshayes | The contact process with aginig ALEA Lat[END_REF] for an example of such construction).

2.1.4. Random linear growth models. We define the class of models with which we are going to work: Definition. We say that (ξ t , P ) belongs to the class C L if it satisfies the following conditions:

(1) we have

P(τ = +∞) > 0 (2) there exist C 1 , C 2 , M 1 , M 2 > 0 such that for all t > 0 and x ∈ Z d P ∃x ∈ Z d : t(x) ≤ t and x 1 ≥ M 1 t ≤ C 1 exp(-C 2 t), (AML) P (t < τ < ∞) ≤ C 1 exp(-C 2 t), (SC) P (t(x) ≥ M 2 x + t, τ = ∞) ≤ C 1 exp(-C 2 t). (ALL)
The second condition means that the growth of the set of points satisfying (P ) is at most linear (AML), at least linear (ALL) and, if the extinction time τ is finite, then it is small (SC for small clusters in analogy with percolation vocabulary). Since P(τ = +∞) > 0, we will work with the probability conditioned to survive: P = P(.|τ = +∞).

2.2. Examples. 2.2.1. Classical contact process. For x ∈ Z d , ξ ∈ {0, 1} Z d and k ∈ N: c(x, ξ, 0) = 1 1 ξ(x)=1 c(x, ξ, 1) = 1 1 ξ(x)=0 × λ y∼x 1 1 ξ(y)=1 .
We consider P the property 'to be alive' and we get back to the already known asymptotic shape theorem for A t = ξ t . In the following we denote by λ c the critical value for classical contact process.

Next examples are extensions of the classical contact process from the literature; we give here definitions with the notations of our context. They belong to class C by construction. Several authors have worked hard to show that they belong to the class C L .

Contact process in a randomly evolving environment (CPREE).

The contact process in a randomly evolving environment was introduced by Broman [START_REF] Broman | Stochastic domination for a hidden Markov chain with applications to the contact process in a randomly evolving environment[END_REF] and studied in particular by Steif and Warfheimer [START_REF] Steif | The critical contact process in a randomly evolving environment dies out[END_REF]. Take T = R + , S = {(0, 0), (0, 1), (1, 0), (1, 1)}. An element of S represents a pair (type, stage) where type can be favorable (1) or unfavorable (0) and the stage can be alive (1) or dead (0). We can write the jump intensities:

ξ(x) → s c(x, ξ, s) birth (0, 0) → (0, 1) x∼y ξ t (y) (type independent) (1, 0) → (1, 1) x∼y ξ t (y) death (0, 1) → (0, 0) δ 0 (type dependent) (1, 1) → (1, 0) δ 1 (0, 0) → (1, 0) γp evolution (0, 1) → (1, 1) γp of type (1, 0) → (0, 0) γ(1 -p) (1, 1) → (0, 1) γ(1 -p)
with 0 ≤ δ 1 < δ 0 , p ∈ [0, 1] and γ ≥ 0 four parameters of the system. Let (P ) ='to be alive'. The process (A t ) represents the set of alive points regardless of their type (favorable or unfavorable) and corresponds to the process (C t ) in Steif and Warfheimer's article [START_REF] Steif | The critical contact process in a randomly evolving environment dies out[END_REF]. Here, δ min is the configuration where 0 is in state (0, 1) and all the others are in state (0, 0). Using the Steif-Warfheimer construction and a restart argument like the one in section 5.3 in [START_REF] Deshayes | The contact process with aginig ALEA Lat[END_REF], it is easy to see that the controls (AML), (SC) and (ALL) are satisfied, so (ξ t , P ) belongs to C ∩ C L .

Contact process with aging (CPA).

We introduced the contact process with aging in [START_REF] Deshayes | The contact process with aginig ALEA Lat[END_REF] where the dynamics are detailed; in this article we made a precise construction which allows us to consider a general case where a particle has an integer age. In the present context we have to suppose S finite so we can consider an aging contact process with a maximal age N . Then take T = R + and S = {0, . . . , N }.

Let (P ) ='to be alive'. The process (A t ) represents the set of alive points regardless of their age. Here, δ min = δ 0 is the configuration where all particles are dead except 0 which is alive with age 1. From the results obtained in [START_REF] Deshayes | The contact process with aginig ALEA Lat[END_REF], (ξ t , P ) belongs to C ∩ C L . 2.2.4. Dependent oriented percolation (DOP). In [START_REF] Garet | Growth of a population in a dynamical hostile environment[END_REF], Garet and Marchand introduced a dependent oriented percolation model where fertile bacterium (represented by a type 1 particle) is submerged in a population of immune cells (type 2 particle) that are going to impede its development. The immune cells are not very fertile but benefit from a constant immigration process. Take T = N and S = {0, 1, 2}. The system is described by a discrete time Markov chain depending on 3 parameters p, q, α ∈ (0, 1). Firstly, between time n and time n + 1/2, each particle attempts to infect its neighbors: it succeeds with probability p if it is a type 1 particle, and with probability q if it is a type 2 particle (squeezing a type 1 particle if there is one). Secondly, between time n + 1/2 and time n + 1, there is an immigration of type 2 particles on each site with probability α > 0 (again eventually squeezing a type 1 particle). Let (P ) ='to be of type 1'. The process (A t ), denote by (η 1,t ) in [START_REF] Garet | Growth of a population in a dynamical hostile environment[END_REF], represents alive fertile particles. Here, δ min = δ 0 where all particles are dead except 0 which is alive and fertile (of type 1). Theorem 1.2 of [START_REF] Garet | Growth of a population in a dynamical hostile environment[END_REF] assure that the controls (AML), (SC) and (ALL) are satisfied if the process survives (that is if α is smaller than a non trivial value α c (p, q)). So, (ξ t , P ) belongs to C ∩ C L .

Boundary modified contact process (BMCP). Durrett and Schinazi [DS00] introduced a Boundary Modified Contact

Process where particles can be infected, susceptible that has never been infected (state -1) and susceptible that as been previously infected. Take T = R + , S = {-1, 0, 1} and the jump intensities as follows:

c(x, η, 1) = λ e N 1 (x, η) if η(x) = -1, λ i N 1 (x, η) if η(x) = 0, and c(x, η, 0) = 1 if η(x) = 1.
The quantities λ e and λ i are two non negative parameters of the system. The process (A t ) represents infected particles at time t. Here, δ min is the la configuration where all site are susceptible never infected (i.e. in state -1) except site 0 which is infected (state 1). We think that the renormalization work done by Durrett and Schinazi in [DS00] makes possible to obtain the controls (AML), (SC and (ALL) thanks to restart techniques (like in section 5.3 of [START_REF] Deshayes | The contact process with aginig ALEA Lat[END_REF]) for λ i > max(λ c , λ e ).

For contact processes (with aging, boundary modified, in a randomly evolving environment), t(x) is the first time when the particle x is alive regardless its age, type or memory. For dependent oriented percolation, t(x) is the first time when the particle x is one of type 1 alive 2.3. Results. In this note, we give the elements to show the following general asymptotic shape theorem.

Theorem 1. Let (ξ t ) be a Markov process taking values in S Z d and (P ) an associated property of interest. If (ξ t , P ) belongs to classes C and C L then there exists a norm µ on R d such that for all ε > 0, P(.|τ = +∞) almost surely, for all t large enough,

(1 -ε)B µ ⊂ Gt t ⊂ (1 + ε)B µ ,
with Gt = {x ∈ Z d , t(x) ≤ t} + [0, 1] d and B µ the unit ball associated to µ.

We can immediately deduce asymptotic shape theorems for the above examples. In each statement, we denote by B µ the unit ball associated to the norm µ and P the probability conditioned to the survival of the property (P ) starting from the configuration δ min .

First we recall theorems already proved.

Theorem 2 (Asymptotic shape theorem for CPA). Let (ξ t ) a contact process with aging. If (ξ t ) is supercritical, then there exists a norm µ on R d such that for all ε > 0, P almost surely, and for all t large enough

(1 -ε)B µ ⊂ Ht t ⊂ (1 + ε)B µ ,
where Ht = H t + [0, 1] d with H t the set of points born before t, regardless of their age.

We deduce from Theorem 2 an asymptotic shape theorem for Krone's model [Kro99] which is a particular case of the contact process with aging. Now we announce theorems previously conjectured.

Theorem 3 (Asymptotic shape theorem for CPREE). Let (ξ t ) a contact process in a randomly evolving environment. If p > p c (critical value for bond percolation on Z d ), then there exists a norm µ on R d such that for all ε > 0, P . |τ ∅,{0} = +∞ almost surely, for all t large enough,

(1 -ε)B µ ⊂ Ht t ⊂ (1 + ε)B µ ,
where Ht = H t + [0, 1] d with H t the set of points born before t, regardless of their type.

Theorem 4 (Asymptotic shape theorem for DOP). Let (η t ) a dependent oriented percolation. If p > -→ p c (critical value for oriented bond percolation on Z d × N), q < -→ p c and α ∈ (0, α c (p, q)), then there exists a norm µ on R d such that for all ε > 0, P( . |τ 0,∅ 1 = +∞) almost surely, for all t large enough,

(1 -ε)B µ ⊂ Ht t ⊂ (1 + ε)B µ ,
where Ht = H t + [0, 1] d with H t the set of sites where particles of type 1 are before t.

Theorem 5 (Asymptotic shape theorem for BMCP). Let (η t ) a contact process boundary modified. If λ i > max(λ c , λ e ) and subject to that there exist

C 1 , C 2 , M 1 , M 2 > 0 such that for all t > 0 and x ∈ Z d P ∃x ∈ Z d : t(x) ≤ t and x 1 ≥ M 1 t ≤ C 1 exp(-C 2 t), P (t < τ < ∞) ≤ C 1 exp(-C 2 t), P (t(x) ≥ M 2 x + t, τ = ∞) ≤ C 1 exp(-C 2 t), où τ = inf{t > 0, ∀x ∈ Z d , η t (x) ≤ 0} et t(x) = inf{t > 0, η t (x) = 1}
, then there exists a norm µ on R d such that for all ε > 0, P( . |τ = +∞) almost surely, for all t large enough,

(1 -ε)B µ ⊂ Ht t ⊂ (1 + ε)B µ ,
where Ht = H t + [0, 1] d with H t the set of particles of type 1 born before t.

From now, (ξ t , P ) belongs to C∩C L . In Section 3 we introduce the essential hitting time, a quantity that has good properties regarding to the dynamical system. In Section 4 we prove the Theorem 1 thanks subadditive ergodic theorems applied to the essential hitting time.

Essential hitting time

3.1. Definition. With non permanent models like contact process extensions, the hitting times can be infinite (because extinction is possible) and if we condition on the survival, we can lose independence, stationarity and even subadditivity properties required by Kingman theory.

We are inspired by the construction of Garet and Marchand [START_REF] Garet | Asymptotic shape for the contact process in random environment[END_REF] for contact process in random environment to build the essential hitting time for a model which belongs to C ∩ C L .

We set u 0 (x) = v 0 (x) = 0 and we define by induction two sequences of stopping times (u n (x)) n and (v n (x)) n as follows.

• Suppose that v k (x) is defined. We set

u k+1 (x) = inf{t ≥ v k (x) : x ∈ A δ min t }. If v k (x) is finite, then u k+1 (x)
is the first time after v k (x) where the site x satisfies (P ); otherwise, u k+1 (x) = +∞.

• Suppose that u k (x) is defined, with k ≥ 1. We set v k (x) = u k (x) + τ x • θ u k (x) .
If u k (x) is finite, then the time τ x • θ u k (x) is the (possibly infinite) extinction time of (P ) starting at time u k (x) from the configuration δ min • T x ; otherwise, v k (x) = +∞. We have u 0 (x) = v 0 (x) ≤ u 1 (x) ≤ v 1 (x) ≤ . . . ≤ u i (x) ≤ v i (x) . . . We then define K(x) to be the first step when v k or u k+1 becomes infinite:

K(x) = min{k ≥ 0 : v k (x) = +∞ or u k+1 (x) = +∞}.
K(x) has a sub-geometric tail. In particular, K(x) is almost surely finite. It allows us to define the following quantities.

Definition. For x ∈ Z d , we call essential hitting time of x by the property (P ) the quantity σ(x) = u K(x) . We define the operator θx on Ω by setting:

(1) θx = T x • θ σ(x) if σ(x) < +∞, T x otherwise.
Thanks to controls (AML), (SC) and (ALL), we can obtain that, for x ∈ Z d \ {0}, P is invariant under the action of θx . Besides, under P, σ(y) • θx is independent from σ(x) and its law is the same as the law of σ(y). We refer to [START_REF] Deshayes | The contact process with aginig ALEA Lat[END_REF] for proofs of the previous properties about K(x) and θx (and to chapter 7 of [START_REF] Deshayes | Modèles de croissance et théorèmes de forme asymptotique: les processus de contact Probability[END_REF] for more details).

Lemma 7. There exist A, B > 0 such that for all L > 0, x ∈ Z d and t > 0 one has P (N L (x, t) ≥ 1) ≤ A exp(-Bt).

3.3. Subadditivity and difference between σ and t. In the same way, the following controls are still available.

Proposition 8.

(I) There exists A, B > 0 such that for all x, y ∈ Z d ,

∀t > 0 P σ(x + y) -σ(x) + σ(y) • θx ≥ t ≤ A exp -B √ t .
Moreover, for p ≥ 1, there exists M p > 0 such that for all x, y ∈ Z d ,

E[(σ(x + y) -(σ(x) + σ(y) • θx )) p + ] ≤ M p .
(II) P almost surely, it holds that lim

x →+∞ |σ(x) -t(x)| x = 0. (III) There exist A, B, C > 0 such that ∀x ∈ Z d , ∀t > 0, P (σ(x) ≥ C x + t) ≤ A exp(B √ t).
Moreover, for p ≥ 1, there exists a constant C(p) > 0 such that

∀x ∈ Z d , E[σ(x) p ] ≤ C(p)(1 + x ) p .
(IV) For every ǫ > 0, P-a.s., there exists R > 0 such that

∀x, y ∈ Z d , ( x ≥ R and x -y ≤ ǫ x ) =⇒ (|σ(x) -σ(y)| ≤ Cǫ x ) .

Proof of the asymptotic shape theorem

Thanks to the almost subadditive theorem of Kesten and Hammersley (see [START_REF] Hammersley | Postulates for subadditive processes[END_REF] and [START_REF] Kesten | Discussion on Professor Kingman's paper[END_REF]), we obtained a general asymptotic shape theorem on some random variables (σ(x)) x∈Z d .

Theorem 9 (Theorem 39 of [START_REF] Deshayes | The contact process with aginig ALEA Lat[END_REF]). Let (Ω, F, P) be a probability space. Let (σ(x)) x∈Z d be random variables with finite second moments and such that, for every x ∈ Z d , σ(x) and σ(-x) have the same distribution. Let (s(y)) y∈Z d and (r(x, y)) x,y∈Z d be collections of random variables such that: Hyp 1: ∀x, y ∈ Z d , σ(x + y) ≤ σ(x) + s(y) + r(x, y) with s(y) the same law as σ(y), and being independent from σ(x), Hyp 2: ∀x, y ∈ Z d , ∃C x,y and α x,y < 2 such that ∀n, p, E[r(nx, py) 2 ] ≤ C x,y (n + p) αx,y , Hyp 3: ∃C > 0 such that ∀x ∈ Z d , P(σ(nx) > Cn x ) n→∞ ---→ 0, Hyp 4: ∃K > 0 such that ∀ǫ > 0, Pp.s ∃M such that ( x ≥ M and xy ≤ K x ) ⇒ σ(x)σ(y) ≤ ǫ x , Hyp 5: ∃c > 0 such that ∀x ∈ Z d , P(σ(nx) < cn x ) n→∞ ---→ 0.

Then there exists µ : Z d → R + such that lim x →∞ σ(x)µ(x) x = 0 a.s.

Moreover, µ can be extended to a norm on R d and we have the following asymptotic shape theorem: for all ǫ > 0, P almost surely, for all t large enough,

(1 -ǫ)B µ ⊂ Gt t ⊂ (1 + ǫ)B µ ,
where Gt = {x ∈ Z d : σ(x) ≤ t} + [0, 1] d and B µ is the unit ball for µ.

We now deduce the expected asymptotic shape theorem for the hitting time t:

Proposition 10. There exists a norm µ on R d such that almost surely under P, lim

x →+∞ t(x)µ(x) x = 0, and for every ǫ > 0, P-a.s., for every large t,

(1 -ǫ)B µ ⊂ Ht t ⊂ (1 + ǫ)B µ
where Ht = {x ∈ Z d /t(x) ≤ t} + [0, 1] d and B µ is the unit ball for µ.

Theorem 1 is contained is the previous result.

Proof. First, we use Theorem 9 to that σ satisfies an asymptotic shape theorem. We check the hypotheses of Theorem 9 using the controls of Proposition 8. Thanks to (III), σ has finite second moment required. We take s(y) = σ(y) • θx . The hypotheses 1 and 2 are satisfied thanks to properties of θx and (I). The hypothesis 3 is the at least linear growth (III) and the hypothesis 5 is immediately checked thanks to the at most linear growth (AML): P(σ(nx) < M 2 n x ) ≤ P(t(nx) < M 2 n x ) ≤ A ρ exp(-BM 2 n x ). Finally, the hypothesis 4 is the control (IV). We deduce the result for t from the result for σ thanks to (II).

3.2. Bad growth points. In order to apply the techniques used in Section 7 of [START_REF] Deshayes | The contact process with aginig ALEA Lat[END_REF] to control σ, we introduce the general box of bad growth point for a model in C ∩ C L . For every x ∈ Z d , L > 0 and t > 0, we introduce the event

traducing the fact that a point y has bad growth with respect to the spatio-temporal point (x, t). Let ν y the counting measure of all events occurring at y during [0, L]. Thanks to Harris representation, ν y can be expressed with Poisson processes. This measure allows us to count the number of bad growth points by

For technical reasons, we add 0 in the measure ν and we modify E y (x, t) by

Going back to our examples:

• For DOP (which is a discrete model), ν is the counting measure on N.

• For CPA we consider:

where ω 1 y , ω γ y and ω ∞ e are the Poisson processes respectively giving the possible death times at y, the possible maturations and the possible birth times through e.

• For CPREE, we consider:

where ω 0 y is the Poisson process associated to type 0 deaths, ω 1 y the one associated to type 1 deaths and ω e the one associated to births. With this definitions we can show the following properties.

Besides, for any t > 0, s ∈ N and x ∈ Z d , the following inclusion holds:

Then, following the same proof lines that [START_REF] Deshayes | The contact process with aginig ALEA Lat[END_REF], and choosing κ = 3M 1 (1 + M 2 ), where M 1 and M 2 are the constants respectively given in (AML) and (ALL), we control the probability that a space-time box contains no bad growth point.