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This paper deals with the mathematical study of perturbed xed point asynchronous iterations designed for a distributed termination. The distributed termination of asynchronous iterations is considered by using a perturbed xed point mapping, which is an approximation of an exact xed point mapping. In the general framework of '-approximate contraction, it is shown that the perturbed asynchronous iteration converges in nite time and that the limit of the perturbed asynchronous iteration belongs to a ball of nite radius and center ũ? , solution of the exact problem. The value of the radius is given in the case of linear and quadratic convergence, respectively. AMS subject classi cations. 65Y05, 65N12.

Introduction

Asynchronous iterative methods whereby iterations are carried out in parallel by s e v eral processors in arbitrary order and without synchronization are an original class of iterative s c hemes which is directly derived from the concept of parallelism. For more details on asynchronous iterations reference is made in particular to: 7], 17], 18], 1], 13], 2], 21], 3], 4], 9], 16], 14], 10], and 20]. The reader is also referred to 15] for a recent survey on asynchronous iterations.

The distributed termination of asynchronous iterative methods is one of the most complex problems related to the study of this class of algorithms. The complexity of this problem is due to the fact that processors go at their own pace (each processor may h a ve its own clock) and are not synchronized. In a pioneering paper (see 5], see also Section 8.1 of 4]), Bertsekas and Tsitsiklis have presented an original distributed method in order to terminate asynchronous iterations, this method is the rst one for which a formal proof of validity has been given. Other distributed termination methods for which there exists formal proof of validity h a ve been proposed recently (see in particular 11] and 12], see also 6]).

In this paper, we concentrate on the distributed termination method of asynchronous iterations proposed by Bertsekas and Tsitsiklis (see 5]). We present this method by using a new mathematical formalism. Owing to the fact that the distributed method proposed by Bertsekas and Tsitsiklis relies on a perturbation, say an approximation, of the exact xed point mapping, we derive an original result which shows that the perturbed asynchronous iteration converges in nite time and that the limit of the perturbed asynchronous iteration belongs to a ball of nite radius and center ũ? , solution of the exact problem. The value of the radius is given in the case of linear and quadratic convergence, respectively. This result holds for a large number of iterative methods including Newton's method and methods with linear convergence such as iterations associated with contraction in the usual sense. This result is established by making use of the concept of '-approximate contraction. We note that '-approximately contractant mappings have b e e n i n troduced by Ortega and Rheinboldt in Section 12.2 of 22] for sequential iterative methods. [START_REF] Miellou | It erations chaotiques a retards, e t u d e d e l a c o n vergence dans le cas d'espaces partiellement ordonn es[END_REF], this concept was adapted by Miellou et al. to parallel iterative methods in the context of perturbation of xed point mappings.

Section 2 deals with successive approximation methods and more particularly asynchronous iterations in an abstract topological context. The concepts of '-contraction and '-approximate contraction are also presented in Section 2. Perturbed asynchronous iterations designed for distributed termination are presented in Section 3. The results concerning the convergence in nite time and the localization of the limit of a perturbed asynchronous iteration are also given in Section 3.

Successive approximation methods and topological context

2.1. General topological context Let E be a topological space and consider an embedded sequence fE n g n2N of closed subsets of E , s u c h that E n+1 E n for all n 2 N the set of natural numbers. We denote by H the intersection of the subsets E n n o t e t h a t H is also closed in E .

Let T : D(T ) E ! E be a mapping such t h a t :

E 0 D(T ) a n d T (E n ) E n+1
8n 2 N: Let fu n g be a sequence of E :We denote by a(fu n g), the set, which is possibly empty, of the limits of subsequences of fu n g: We denote by R(T ) the range of T , R(T ) = fv 2 E j 9 u 2 D(T ) w i t h v = T u g and assume that if fu n g is a sequence of elements belonging to the closure of E 0 \ R(T ), then we c a n extract a subsequence which c o n verges in E and whose limit will be denoted by u ? . Miellou et al. have s h o wn in 19] that under the above assumptions, the successive a p p r o ximation method: u n+1 = T (u n ) n = 0 1 : : : with u 0 2 E 0

(1) satis es: a(fu n g) 6 = and a(fu n g) H:

In the particular case where H = \ n2N E n = fu ? g we h a ve: a(fu n g) = fu ? g:

'-contractant mappings

Let E be a metric space endowed with the metric j u v j E for all u v elements of E . Consider the mapping T : D(T ) E ! E such that the interior of D(T ) denoted by _ D(T ) is nonempty. Let u ? 2 _ D(T ) a n d a positive real number such that the closed ball of center u ? and radius in E denoted by B E (u ? ) satisfy: B E (u ? ) _ D(T ):

De nition 1: The mapping T is '-contractant i n B E (u ? ) if there exists a continuous isotone function ' : R + ! R + such t h a t : '(0) = 0 '( ) < and j T u T v j E '(j u v j E ) 8u v 2 B E (u ? ):

(2) De nition 2: Let u ? be a xed point o f T : The mapping T is 'contractant with respect to u ? in B E (u ? ) if there exists a continuous isotone function ' : R + ! R + such that : '(0) = 0 ' ( ) < and j u ? T v j E '(j u ? v j E ) 8v 2 B E (u ? ):

(3)

Remark 1: The function ' is attached to the xed point mapping T :In the case of linear convergence we h a ve : '(x) = l x with 0 l < 1: In the case of quadratic convergence we h a ve : '(x) = c x 2 with 0 < c : In the sequel, we shall consider particular cases where we h a ve : '(x) < x for all x 2 (0 ]

i.e. 0 < x :

Remark 2: In the particular case where H = fu ? g and T i s a c o n tractant xed point mapping de ned in a complete metric space, the sets E n can be naturally chosen for the closed balls of center u ? and radius l n j u ? u 0 j E where l is the constant o f c o n traction of T and j u ? u 0 j E denotes the distance between u ? and u 0 in the metric space E .

Remark 3: In the particular case where T is a '-contractant xed point mapping in B E (u ? ) with u ? 2 H and '(x) < x for all x 2 (0 ] it follows from '( 0 ) = 0 that x ? = 0 is the only solution in 0 ] of the xed point equation: '(x ? ) = x ? : The sets E n can be naturally chosen as follows: E 0 = B E (u ? j u ? u 0 j E ) with j u ? u 0 j E and E n = B E (u ? ' n (j u ? u 0 j E ))

where ' n denotes the n-th power of ': In this particular case, we n o t e t h a t w e have also: H = fu ? g since T is strictly nonexpansive (see Section 5 of 22]).

'-approximately contractant mappings

We p r e s e n t n o w the important concept of '-approximate contraction which will be very useful in the sequel.

De nition 3: The mapping T is '-approximately contractant (in brief

'-a-contractant) with respect to u ? in B E (u ? ), if there exist a nonnegative real number , and a continuous isotone function ' : R + ! R + such t h a t

'(0) = 0 (4) 
; '( ) (5) and j u ? T v j E '(j u ? v j E ) + 8v 2 B E (u ? ): It follows from the continuity and the isotonicity of the function ' that the function f : R + ! R + de ned by f (x) = '(x) + is continuous and isotone.

It follows from ( 4) and ( 5) respectively, t h a t 0 a n d are a subsolution and a supersolution, respectively, of the xed point equation: f (x ? ) = x ? : [START_REF] Blathras | Timing models and local stopping criteria for asynchronous iterative algorithms[END_REF] We shall denote by ? the largest xed point of ( 7) that is smaller than :

Remark 5: In the particular case where ' is linear and T is approximately contractant with respect to u ? in B E (u ? ) i.e. 9 2 R + and l 2 0 1) such that ; l and j u ? T v j E l j u ? v j E + 8v 2 B E (u ? )

we h a ve: ? = (1;l) by de nition of ? :

Remark 6: Consider now the quadratic case, where for example T is related to the Newton mapping and '-a-contractant with respect to u ? in B E (u ? ) with '(x) = c x 2 0 < c and the value of is small enough so that c 1 4

: The real roots of c x 2 ; x + = 0 are:

? = 1 ; (1 ; 4c ) 1 2 2c ?? = 1 + ( 1 ; 4c ) 1 2 2c : (9) 
For 2 ( ? ?? ) w e h a ve: c 2 + < : [START_REF] Baz | M-functions and parallel asynchronous algorithms[END_REF] We note that for su ciently small we h a ve: (1 ; 4c ) 1 2 ' 1 ; 2c and ? ' with ? > :

Asynchronous iterations

Let us consider now metric spaces E i i = 1 ::: endowed respectively with the metric j u i v i j E i for u i v i 2 E i : Let us consider the product space:

E = Q i=1 E i :
We write u 2 E as follows: u = ( u 1 : : : u ) with u i 2 E i i = 1 ::: : The space E is endowed with the metric:

j u v j E = m a x i 1 i j u i v i j E i 8u v 2 E ( 11 
)
where i > 0 for i = 1 ::: :

Let T : D(T ) E ! E be the xed point mapping de ned by: T (u) = ( T 1 (u) : : : T (u)) for all u 2 D(T ) with T i (u) 2 E i i = 1 : : : :

We de ne asynchronous iterations as follows:

De nition 4: An asynchronous iteration associated with the xed point mapping T and the initial guess u 0 2 D(T ) is the sequence fu n g of vectors of E de ned recursively as follows for all i 2 f 1 : : : g:

u n+1 i = ( T i (:::: u s j (n) j : : : ) if i 2 J (n) u n i if i = 2 J (n) (12)
where the strategy J = fJ(n)g n2N is a sequence of nonempty subsets of f1 : : : g, J (n) is the subset of the indices of the blocks of components updated at the n-th iteration and S = f(s 1 (n) :::: s (n))g n2N is a sequence of elements of N which corresponds to delayed iteration numbers. For all i 2 f 1 ::: g: the set fn 2 N j i 2 J (n)g is in nite,

0 s i (n) n 8n 2 N ( (13) 
) s i (n) = n 8i 2 J (n) a n d n 2 N (15) lim n!1 s i (n) = + 1: (16) 14 
Remark 7: We note that hy p o t h e s i s ( 1 5 ) i s a n e x t r a h ypothesis as compared to the standard asynchronous iterations model (see for example 1]) however, this assumption is ful lled in all current computational models for which there is static allocation of tasks to the processors.

We h a ve the following result (see 19]).

Theorem 1: Assume that the closure o f B E (u ? ) \R(T) is compact and T is '-a-contractant with respect to u ? in B E (u ? ). Then, the asynchronous iteration fu n g with initial guess u 0 2 B E (u ? ) is well de ned and we have: a(fu n g) 6 = and a(fu n g) B E (u ? ? ): [START_REF] Giraud | R esolution parall ele de probl emes aux limites non lin eaires[END_REF] This result was established by using the concept of '-approximately contractant mappings and the abstract result related to the localization of the limits of subsequences of successive approximation methods.

Perturbed asynchronous iterations

We consider now T a g i v en xed point mapping from D( T) E ! E which is associated with a xed point algorithm. We can quote for example: methods with quadratic convergence such as Newton's method or methods with linear convergence i.e. methods associated with contraction in the usual sense such as relaxation and multisplitting. According to De nition 4, an asynchronous iteration associated with the xed point mapping T and the initial guess ũ0 2 D( T) is the sequence fũ n g of vectors of E de ned recursively as follows for all i 2 f 1 : : : g:

ũn+1 i =
( Ti (:::: ũs j (n) j : : :

) if i 2 J (n) ũn i if i = 2 J (n) ( 18 
)
where the strategy J and the delayed iteration numbers sequence S verify conditions ( 13) to [START_REF] Frommer | On asynchronous iterations[END_REF].

In general, asynchronous iterations given by the above model do not converge in nite time and thus never terminate.

We present n o w the perturbed xed point mapping T : D(T ) E ! E associated with T:The perturbed xed point mapping is introduced in order to derive a perturbed asynchronous iterative s c heme which c o n verges in nite time and whose termination is detected in a distributed way.

De nition 5: Let 0 be a given positive real number which is related to the perturbation of the xed point mapping. The perturbed xed point mapping T : D(T ) E ! E associated with T is such that for all u 2 E and i 2 f 1 ::: g we h a ve:

T i (u) = Ti (u) i f j Ti (u) u i j E i > 0 T i (u) = u i if j Ti (u) u i j E i 0 :

Remark 8: We h a ve D(T ) = D( T ): We note that according to De nition 5, the perturbed xed point mapping T is such that for all i 2 f 1 ::: g if applying Ti to vector u does not lead to a signi cant i m p r o vement o f u i then u i remains unchanged when applying T i : The mapping T is introduced in order to design a perturbed asynchronous iteration which w i l l e v entually reach a n inactive state where none of the block components u i changes and for which we can detect termination in a distributed way.

Proposition 1: Let ũ? be a xed p oint of T:If the mapping T is '-contractant with respect to ũ? in B E (ũ ? ), then the perturbed x e d p oint mapping T is '-a-contractant with respect to ũ? in B E (ũ ? ):

Proof: it follows from De nition 5 that for all u 2 E and i 2 f 1 : : : g we have:

j Ti (u) T i (u) j E i = 0 if j Ti (u) u i j E i > 0 j Ti (u) T i (u) j E i 0 if j Ti (u) u i j E i 0 : Thus, j Ti (u) T i (u) j E i 0 8i 2 f 1 : : : g and u 2 E : [START_REF] Miellou | It erations chaotiques a retards, e t u d e d e l a c o n vergence dans le cas d'espaces partiellement ordonn es[END_REF] Moreover, we h a ve: j ũ? T (u) j E j ũ? T(u) j E + j T(u) T (u) j E 8u 2 E : [START_REF] Miellou | Perturbation of xed point iterative methods[END_REF] From the '-contractant property of the mapping T with respect to ũ? in B E (ũ ? ) and equations ( 19) and ( 20) it follows that: j ũ?

T (u) j E '(j ũ? u j E ) + 8u 2 B E (ũ ? ) (21) where = 0 max i 1 i :

We de ne now the perturbed asynchronous iteration.

De nition 6: Let us consider an initial guess u 0 2 D(T ): A perturbed asynchronous iteration is the sequence fu n g of vectors of E de ned recursively as follows for all i 2 f 1 ::: g :

u n+1 i = ( T i (:::: u s j (n) j : : : ) if i 2 J (n) u n i if i = 2 J (n) ( 22 
)
where T is given in De nition 5, the strategy J and the delayed iteration numbers sequence S satisfy assumptions [START_REF] Baz | An e cient termination method for asynchronous iterative algorithms on message passing architectures[END_REF] to [START_REF] Frommer | On asynchronous iterations[END_REF].

We h a ve the following important result.

Proposition 2: Let ũ? be a xed p oint of T:If the mapping T is '- contractant with respect to ũ? in B E (ũ ? ) and the closure o f B E (ũ ? ) \R(T) is compact, then the perturbed asynchronous iteration fu n g associated with T and u 0 2 B E (u ? ) is well de ned and we have: a(fu n g) 6 = and a(fu n g) B E (ũ ? ? ):

(23) Proof : The proof follows directly from Proposition 1 and Theorem 1 by s u bstituting ũ? for u ? and perturbed asynchronous iteration for asynchronous iteration in Theorem 1.

Remark 9:

If is su ciently small and 1 ; l is small, then we n o t e that the case of linear convergence, where ? = (1;l) is worse in terms of accuracy, than the case of quadratic convergence, where ? ' (see Remarks 5 and 6).

In the sequel, we w i l l s h o w that the perturbed asynchronous iteration fu n g converges in nite time to a xed point u ? by using a mathematical formalism which is new we note that this formalism is di erent from the formalism used in 4] and 5]. With respect to this last remark, we i n troduce a new strategy J 0 = fJ 0 (n)g: De nition 7: The new strategy J 0 = fJ 0 (n)g is such t h a t :

J 0 (n) = fi 2 f 1 ::: g j i 2 J (n) a n d j Ti (:::: u s j (n) j : : : ) u n i j E i > 0 g (24)

where J (n) and S are de ned according to De nition 4.

We note that J 0 (n) J (n): It follows from [START_REF] Frommer | Asynchronous two-stage iterative methods[END_REF] and De nitions 5 to 7 that we h a ve the following alternative de nition of the perturbed asynchronous iteration fu n g: This de nition will be useful in the sequel in order to show t h e convergence in nite time of the perturbed asynchronous iteration fu n g: For all i 2 f 1 ::: g we h a ve: u n+1 i = ( Ti (:::: u s j (n) j : : :

) if i 2 J 0 (n) u n i if i = 2 J 0 (n) (25)
where the delayed iteration numbers sequence S satis es assumptions ( 14) to [START_REF] Frommer | On asynchronous iterations[END_REF].

We de ne the sets P (i) i 2 f 1 : : : g as follows:

P (i) = fn 2 N j i 2 J 0 (n)g:

(26)

We de ne the set I as follows: I = fi 2 f 1 : : : g j C a r d (P (i)) = +1g:

(27)

In fact, I denotes the subset of f1 : : : g associated with the blocks of components which are updated an in nite number of times by the perturbed asynchronous iteration.

Let u ?

i be the limiting value of fu n i g, for all i 2 I where I denotes the complementary subset of I in f1 : : : g: We i n troduce now a new xed point mapping and a new asynchronous iterative sequence fû n g which will be useful in order to show the convergence in nite time of the perturbed asynchronous iteration fu n g: De nition 8: The new xed point mapping T I : D( T) E ! E is such that for all u 2 E and i 2 f 1 ::: g we h a ve:

T I i (u) = Ti (u) if i 2 I (28) T I i (u) = u ? i if i 2 I : (29)
De nition 9: Let us consider an initial guess û0 = u 0 2 D(T ): The new asynchronous iteration fû n g is the sequence of vectors of E de ned recursively as follows for all i 2 f 1 ::: g : 

) if i 2 J (n) ûn i if i = 2 J (n) (30) 
where the strategy J = fJ(n)g n2N and the delayed iteration numbers sequence S verify conditions (13) to [START_REF] Frommer | On asynchronous iterations[END_REF].

Proposition 3: Let ũ? 2 _ D( T) and assume that the mapping T is 'contractant in B E (ũ ? ) with '(x) < x for all x 2 (0 ] and T(B E (ũ ? ))

B E (ũ ? ): Then, the mapping T I de ned in De nition 8, has a xed p oint û?

in B E (ũ ? ) and the new asynchronous iteration fû n g de ned in De nition 9, with initial guess û0 2 B E (û ? 0 ) B E (ũ ? ) converges to û? : Moreover, the perturbed asynchronous iteration fu n g de ned in De nition 6 with initial guess u 0 = û0 2 B E (û ? 0 ) B E (ũ ? ) converges in nite time to u ? = û? :

Proof: Since T is '-contractant i n B E (ũ ? ), it follows from De nitions 1 and 8 that we h a ve: j T I (u) T I (v) j E j T(u) T(v) j E '(j u v j E ) 8u v 2 B E (ũ ? ):

Thus, T I is '-contractant i n B E (ũ ? ): It follows from T (B E (ũ ? )) B E (ũ ? ) and De nition 8 that T I (B E (ũ ? )) B E (ũ ? ): Thus, the mappings T I and T have a xed point i n B E (ũ ? ) (see Section 6 of 22]). However, the mappings T I and T may n o t h a ve the same xed point i n B E (ũ ? ): Let û? be a xed point o f T I and consider the ball: B E (û ? 0 ) B E (ũ ? ): It follows from Remark 3 and classical results of convergence such as the Theorem of convergence of Bertsekas (see 2] and p. 431 of 4] ) that fû n g ! û? which shows the rst part of the Proposition.

Consider now the perturbed asynchronous iteration fu n g associated with T and u 0 = û0 : It follows from the de nitions of I and u ?

i for all i 2 I that for all there exists n( ) such that for all n n( ) we h a ve: j u n i u ?

i j E i for all i 2 I Moreover, according to De nitions 5, 6, 8, and 9, the perturbed asynchronous iteration fu n g which is di erent from the new asynchronous iteration fû n g eventually becomes identical with fû n g after a certain number of iterations and therefore converges to the same limit point.

We show n o w that fu n g converges in nite time. It follows from the convergence of fu n g that for all there exists n( ) s u c h that for all n n( ) we have: j u n i u ? i j E i for all i 2 f 1 : : : g: Thus, for all there exists n( ) s u c h that for all n n 0 n( ) we h a ve: j u n i u n 0 i j E i j u n i u ? i j E i + j u n 0 i u ? i j E i 2 for all i 2 f 1 ::: g: For 0 2 and all n n( ) w e h a ve in particular: j u n+1 i u n

i j E 0 for all i 2 f 1 ::: g: Thus, it follows from De nition 7 that there exists an n such that for all n n J 0 (n) = as a consequence I = : It follows from (25) that the perturbed asynchronous iteration fu n g converges in nite time to u ? : Remark 10: Since the perturbed asynchronous iteration converges in nite time and the perturbed xed point mapping T uses the local termination test: j Ti (u) u i j E i 0 the distributed termination procedure of the perturbed asynchronous iteration fu n g will be derived from the combination of the local termination tests by using for example the distributed termination detection procedure of Dijkstra and Scholten (see 8]), see also 4] and 5]) which i s b a s e d on message acknowledgment and generation of an activity graph.

( 6 )

 6 Remark 4: In the sequel, the constant o f a p p r o ximation is related to the perturbation of the xed point mapping.