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CONCENTRATION AND NON-CONCENTRATION FOR THE
SCHRODINGER EVOLUTION ON ZOLL MANIFOLDS

FABRICIO MACIA AND GABRIEL RIVIERE

ABSTRACT. We study the long time dynamics of the Schrodinger equation on Zoll man-
ifolds. We establish criteria under which the solutions of the Schrédinger equation can
or cannot concentrate on a given closed geodesic. As an application, we derive some re-
sults on the set of semiclassical measures for eigenfunctions of Schrodinger operators: we
prove that adding a potential to the Laplacian on the sphere results on the existence of
geodesics v such that ., cannot be obtained as a semiclassical measure for some sequence
of eigenfunctions. We also show that the same phenomenon occurs for the free Laplacian
on certain Zoll surfaces.

1. INTRODUCTION

In this article we are interested in understanding the dynamics of Schrodinger equations
and the structure of eigenfunctions of Schrodinger operators on Zoll manifolds. Recall that
a Zoll manifold is a smooth, connected, compact, Riemannian manifold without boundary
(M, g) such that all its geodesics are closed. This means that, for every x in M, all the
geodesics issued from x come back to z. Thanks to Theorem of Wadsley (see [4] — section
7.B), the geodesic flow ¢* acting on the unit cotangent bundle S*M of such a manifold is
periodic, meaning that all its trajectories have a minimal common period [ > 0.! Using the
terminology of [4] — chapter 7, we will say that the metric g is a P-metric, or that (M, g)
is a P-manifold. Similarly, in the case where all the geodesics have the same length [, we
will say that ¢ is a Cj-metric or that (M, g) is a Cj-manifold. The main examples of Cj-
manifolds are the compact rank one symmetric spaces (that we will sometimes abbreviate
by CROSS) and certain surfaces of revolution — see chapters 3 and 4 in [4]. It is also
known that the set of Cj-metrics on S? that can be obtained as smooth deformations of
the canonical metric is infinite dimensional and contains many metrics that are not of
revolution. The characterization of such deformations is a remarkable result by Guillemin
[22].

FM takes part into the visiting faculty program of ICMAT and is partially supported by grants ERC
Starting Grant 277778 and MTM2013-41780-P (MEC).

GR is partially supported by the Agence Nationale de la Recherche through the Labex CEMPI (ANR-
11-LABX-0007-01) and the ANR project GeRaSic (ANR-13-BS01- 0007-01).

INote that this does not mean that all the geodesics have length equal to I. There may exist exceptional
geodesics whose length is strictly smaller than I, the Lens spaces (quotients of S?™~1 by certain finite cyclic
groups of isometries) provide an example of this — see Ex. 2.43 in [27].
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Our goal here is to understand the long time dynamics of the following Schroédinger
equation:

1
(1) i0(t, z) = (_QAQ + V(a:)) v(t,z), Vim0 =u € L*(M),
or the behavior of eigenfunctions:

(2) (—%Ag + V(x)) u(z) = Nu(z), |Jullrzon =1,

in the high-frequency limit A — co. As usual, A, is the Laplace Beltrami operator induced
by the Riemannian metric g on M, and we shall assume that V' is in C*(M,R).

The study of the spectral properties of the operator —%Ag + V' in this geometric context
is a problem which has a long history in microlocal analysis starting with the works of
Duistermaat-Guillemin [14, 23, 24], Weinstein [51] and Colin de Verdiere [9]. Many other
important results on the fine structure of the spectrum of Zoll manifolds were obtained both
in the microlocal framework [25, 47, 48, 53, 54], and in the semiclassical setting [8, 28, 26]
— see also [30, 31] in the nonselfadjoint setting.

In this this article we use similar techniques to those that were originally developed in
order to study of the spectrum of Schrédinger operators to actually provide some results on
the long-time dynamics of the Schrédinger evolution (1) and the structure of high-frequency
eigenfunctions (2).

1.1. Concentration and non-concentration of eigenfunctions. Let us start by de-
scribing our results in the context of eigenfunctions of Schrodinger operators, as they are
somewhat simpler to state. We are mainly interested in analyzing how the mass |u|? of
a high-frequency eigenfunction satisfying (2) distributes over M. More precisely, consider
the set N (00) of probability measures in M that are obtained as follows. A probability
measure v belongs to A (co) provided there exist a sequence of eigenfunctions (u,,) :

1
—éAgun + Vu, = Nu, ||| 20y = 1,
with eigenvalues satisfying A\, — oo such that

li_)m a(x)|u,|*(z)d vol,(z) = / a(x)v(dz), for every a € C(M).
e M M
Measures in N (0o) therefore describe the asymptotic mass distribution sequences of eigen-
functions (u,) whose corresponding eigenvalues tend to infinity. The problem of charac-
terizing the probability measures in N'(co) has attracted a lot of attention in the last forty
years.

In the case of Zoll manifolds, it is well known that N (oc0) is contained in N, which is,
by definition, the closed convex hull (with respect to the weak-* topology) of the set of
probability measures 4., where 7 is a geodesic of (M, g). Recall that

| atayian =5 [ a(a()ds,
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where [ denotes the length of v and the parametrization v(s) has unit speed.

In the case of S? endowed with its canonical metric, it was proved that a “generic”
orthonormal basis of eigenfunctions satisfies the quantum unique ergodicity property [52,
49]. In particular, in this case, the normalized Riemannian volume is the only accumulation
point of the sequence of eigenfunctions under consideration. Note that quantum ergodicity
properties were also proved recently for sequences of eigenfunctions on S¢ satisfying certain
symmetry assumptions [36, 7]. Yet, there are in fact some situations for which one has

N (o00) = Ny,

which is in a certain sense the opposite situation to quantum ergodicity. Jakobson and
Zelditch proved in [35] that this holds when (M, g) is the sphere S? equipped with its
canonical metric g = can and the potential V' vanishes identically. This was also shown to
hold for general Compact Rank-One Symmetric Spaces (see [37]) and for any manifold of
positive constant curvature (see [3] — this analysis relies on the study of eigenfunctions of
the canonical Laplacian on the sphere that are invariant by certain groups of isometries);
in both cases one has to assume that V' = 0. To the authors’ knowledge, the question of
whether this is always the case when the potential V' does not vanish identically or when
(M, g) is a Zoll manifold that is not isometric to a CROSS remains open.

Here we answer these questions by the negative. It turns out that these regimes are some-
what intermediate between the quantum ergodicity results and the results on a CROSS.
Let us first introduce some notations. Denote by T*M the cotangent bundle of M with
the zero section removed. The Radon transform of V is defined as

. [TE o

) 1.8 = e [y oo gar, e etar
0

Above, m : T*M — M stands for the canonical projection, ¢ is the geodesic flow of (M, g)

acting on the cotangent bundle, and [ is the minimal common period of the trajectories of

" |g+m. Clearly, Z,(V) € C>(T*M) is zero-homogeneous with respect to the variable &.

We shall consider the projection onto M of the set of critical points of the Radon transform

of V:

C(V)={x € M :dZ,(V) =0 for some £ € T, M \ {0}}.

The set C(V') is a union of geodesics of (M, g) and if the critical points of Z,(V') are non
degenerate in an appropriate sense, C(V') consists in a finite number of geodesics (see
Section 4). Note in particular that if di ¢ Z,(V') = 0, then the geodesic issued from (z, &)
is included in C(V'). As an application of Theorem 1.9 below, one has

Theorem 1.1. Suppose that (M,g) is a Compact Rank-One Symmetric Space and that
C(V) # M. Then there exist infinitely many geodesics v of (M, g) such that v(y) =0 for
every v € N'(00). In particular, 5, ¢ N(c0), and

N (o) # N,

When d = 2 and M is orientable, we are able to obtain a more precise result.
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Theorem 1.2. Suppose that (M, g) = (S?,can). Then every v € N(oo) can be written as:
v = fvoly +Vsing,

where f € LYS?) and veng 15 a nonnegative measure supported on C(V). When C(V)
consists in a finite number of geodesics 1, ...y, then one has:

v = fvol,+ Z Cj0r; s
j=1

for some ¢; > 0.

Remark 1.3. Note that the condition on C(V') in Theorems 1.1 and 1.2 is non-empty as
soon as the Radon transforms Z,(V') is not constant, which is the case generically if, for

instance, (M, g) is the 2-sphere endowed with its canonical metric — see e.g. appendix A
of [22].

Our third result on eigenfunctions deals with Zoll surfaces that are not isometric to
(S?, can). Recall from chapter 4 in [4] that the Cy,-metrics of revolution on S? are precisely
those that can be written in spherical coordinates as:

9o = (1 4+ o(cos 0))*db? + sin? Odp?,

where o is a smooth odd function on [—1, 1] satisfying o(1) = 0; such surfaces are also called
Tannery surfaces. Combining our methods to some earlier results by Zelditch [53, 54], one
can prove the following result for Cs-surfaces of revolution on S*:

Theorem 1.4. Let g, be a Cyr-metric on S* such that o’(0) # 0. Suppose that V = 0.
Then there exist infinitely many geodesics v of (S%,g,) such that v(y) = 0 for every v in
N (00). In particular, 6, & N(c0), and

N(o0) #N,,.

The proof of this result will be given in paragraph 3.4. Theorems 1.1 and 1.2 will
also be proved in Section 3; they are obtained as a consequence of our analysis of the
time-dependent Schrodinger equation.

1.2. Long-time dynamics for the semiclassical Schrodinger equation. Our analysis
of the time-dependent Schrodinger evolution fits in a natural way in the semiclassical
framework. There will be three scales involved: the characteristic scale of oscillation of
the solution A, the size of the perturbation €? and the time-scale 7. Our goal is to describe
how these three scales affect the dynamics of the Schrédinger equation.

We shall assume that i € (0, 1], and define the semiclassical the Schrodinger operator:

R2A
@ PR = 22+ &V,

where, as before, V' belongs to C*(M,R). We shall be interested in the regime in which
the strength € := (€p)o<n<1 of the perturbation satisfies

en —0ash— 0",
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The corresponding semiclassical Schrodinger equation is:
2
(5) 1hoyvy, = (ﬁ)vh, Uh‘t:o =up € L (M)

We assume that the sequence of initial data (u;)s=o is normalized in L*(M) and satisfies
the following oscillation properties:

(6) lim sup Hl[R,OO) (—hQAg) uhHLQ(M) — 0, as R — oo,
h—0

and

(7) lim sup H]_[O,(g] (—hQAg) uﬁHLQ(M) —0, asd— 0" .

h—0

Remark 1.5. Note that any normalized sequence (uy,)nen safisfies (6) for some (h,,); this is
also the case with (7), provided (u,,) weakly converges to zero (the sequence (%,) here may
be different from the one in (6)). Yet, in general, it is possible to construct normalized
sequences (u,) such that (6), (7) never hold simultaneously (see [18]). Note also that any
sequence of normalized eigenfunctions of —3A, + V satisfies (6), (7) with %, = A,* where
A2 is the corresponding eigenvalue.

We are interested in understanding the dynamics of the sequence of solutions (v;) at
time scales 7 := (7)o<n<1 Where

lim 7 = +o0.
h—0+

More precisely, the main object in our study is the sequence of time-scaled position densi-
ties:

_;Th
e n tPe(h)uh

(@),

v () — |op(Tit, x)\Q =

The sequence (vy) is bounded in D/(R x M) and satisfies:
|(Vn, b)prxcee| < / |16(t, )| | e (arydt, for every b e C(R x M).

Therefore, every accumulation point of the sequence (vy) is an element in L>®(R, P(M)),
where P(M) denotes the set of probability measures on M. We shall denote by N (7, €) the
set of such accumulation points obtained as the sequence of initial data (u;) varies among
normalized sequences satisfying (6) and (7).

Our goal is to understand the structure of the elements in N (7,¢€), in particular how
this set depends on 7 and € as well as on the geometry of the manifold and the form of the
potential. Again any element v(t) in N (7, €) satisfies v(t) € N, for a.e. t in R.

Remark 1.6. When ¢, = h and 7, = A~!, one has

—iltP(h) it(3 A -V)

(& =

Therefore this particular scaling corresponds to studying solutions to the non-semiclassical
Schrodinger equation (1).
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Remark 1.7. If u is an eigenfunction of the operator (2) then, by the previous remark,

|e—f—gtph(ﬁ)u|2 _ |6iﬁrht(%Ag—V)u|2 _ |u|2

This implies that A (co) C N (7, k) for any time scale 7.

Remark 1.8. Most of our analysis can be extended to perturbations of the form e:Qy,
where Q) is a selfadjoint operator in W%°(M). Taking Qn = V makes the exposition
slightly simpler as we can use homogeneity properties of V.

The set N'(7, €) was characterized in [38] in the case of short times (7, < h™?) and small
perturbations (e; < h) in the same geometric setting as in this article. It turns out that in
that case, the elements in N'(7,¢€) do not depend in ¢ and one has

N (7€) =N,

that is, N(7, €) gets in some sense as big as it can be.

In the context of negatively curved surfaces, some equidistribution properties of the
elements of N (7, €) were obtained for strong enough perturbations [16, 44].

This problem has also been studied in great detail for the case M = T¢ endowed with
its natural metric. The articles [1, 2] describe this set in the case of small perturbations
(en < h), whereas the case of stronger perturbations will be studied in more detail in [39].
In particular, in [1, 2] it is shown that when (M,g) = (T% can) and €, = h, the time
scale 7, = h~! is critical for this problem. When 7, < h~! the set N(7,¢) contains
measures that are singular with respect to Lebesgue measure (in particular, it contains all
d., corresponding to closed geodesics); whereas if 7, > h™' then N(7,¢€) consists only of
measures that are absolutely continuous with respect to the Lebesgue measure. Moreover,
when 7, = h~! a precise description of the dependence on ¢ of those mesures is given.

In this article we show that a similar phenomenon takes place for Zoll manifolds. It
turns out that the critical time scale for this problem is 7, = ¢, in the case of strong
perturbation (e; > h) or 7, = h~? for small perturbations (e, < h) :

e Below the critical time-scale, one has N (7,¢) = N, and we provide a formula to
compute v from the sequence of initial data.

e At the critical time-scale, measures in N (7, ¢) may depend in a non trivial way on
t. We give an explicit propagation law that involves the Radon transform of the
potential and the sequence of initial data.

e Above the critical time-scale, the restriction of the measures in N (7, €) to the com-
plement of the critical set C(V') has some additional regularity. When (M, g) =
(S2, can), this restriction is in fact absolutely continuous with respect to the Rie-
mannian measure.

The precise statement of our results is given in Propositions 2.2, 2.3 and 2.4; they are
formulated in terms of semiclassical measures and are presented in Section 2.2. In Section
2.3 we apply these results to the study of the quantum Loschmidt echo.

1.3. Some results on the structure of N (7,¢). Let us now present some direct conse-
quences of our results.
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Theorem 1.9. Suppose (M, g) is a P,-manifold and that
TEE% — +00.
Suppose one the following condition holds:
(1) exh™' — +o0;
(2) (M, g) is a compact rank one symmetric space.
Then, for every v in N (7,€) and for every geodesic vy that is not contained in C(V'), one

has:
v(t)(y0) =0, for a.e. t €R.

We note that for general P, manifolds we are still able to obtain a similar result even
if the condition €; > h does not hold — see section 2 for more details. It is however
more complicated to state as it involves the structure of a remainder term appearing in
the natural decomposition of /—A, on Zoll manifolds [9, 14]. In the case of a general
Pmetric on M = S?, an explicit expression of this term involving curvature terms and
Jacobi fields was obtained by Zelditch in [53, 54] (see Paragraph 3.4 for more details on
this issue).

This Theorem is a direct consequence of Propositions 2.2 and 2.3 and it will be proved
in Paragraph 3.3. It tells us in particular that, for large enough times, solutions of the
Schrodinger equation cannot be concentrated on closed geodesics corresponding to regular
points of Z,(V'). For instance, if one considers a sequence (uy)o<n<1 of coherent states that
is microlocalized at a certain point p € T*M , then the corresponding solution will not be
concentrated along the corresponding closed geodesic (for large enough times) provided
that the geodesic consists of regular points.

Theorem 1.9 admits the following reformulation in terms of quasimodes for the Schrodinger
operator P.(h):

Corollary 1.10. Suppose the hypotheses of Theorem 1.9 hold. Let (1)o<n<1 be a normal-
ized sequence in L*(M) satisfying

2
<—h QAg + 6%‘/) Un = E(h)n + olhe;),

with E(h) — E # 0 as h — 0. Then, for every weak-x accumulation point vy of the sequence

Vyp = |wﬁ|2V0197

and for every geodesic 7o that is not contained in C(V'), one has
V(](’)/()) = O

We would like to stress the fact that we are not requiring e, < /A for our results to hold.
One often makes this assumption when studying the spectral properties of semiclassical
operators with periodic bicharacteritics (see [41, 26] for instance) in order to to keep the
nice cluster structure of the the spectrum of the operator —A,, see [9].

For the 2-sphere endowed with its canonical metric ¢ = can, we are able to be more
precise regarding the regularity of the elements in N (7, ¢):
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Theorem 1.11. Let V be a smooth function on (S* can) such that C(V') consists in a
finite number of geodesics Yy, ..., Suppose

Thefzi —r +00.

Then, any v € N(7,¢€) is of the following form
v(t,) = f(t,-) volaan + Y _ ¢;(t)55,,
j=1

where for a.e. t in R, f(t,-) € L'(S?) and ¢y, ..., ¢, are non-negative functions in L>(R).
Remark 1.12. This Theorem is a direct consequence of Proposition 2.3 and Corollary 4.4.

Remark 1.13. Recall that the space of geodesics on S? can be identified with S? [4] (remark
2.10) and that Z,, induces an isomorphism from C%, (S?) onto C°, (S?) [22]. Moreover,

Zean(V) = 0 for any odd function on S?. In particular, for a generic choice of V', the
assumption of the Theorem is satisfied.

1.4. An application to spectral theory. We mention the following Proposition on the
spectral properties of P.(h) which can also be obtained using the tools developed in the
present article:

Proposition 1.14. Suppose (M, g) is a P,-manifold. Let Eq > 0 and let 0 < 25y < Ej.

Let (E](h));vz(? be the distinct eigenvalues of P.(h) in the interval [Ey — 8o, Eo + dp).
IfC(V') # M, then there exists some constant ¢y > 0 such that, for h > 0 small enough,
one has
so(h) == inf{|E;(k) — Ex(h)| : 1 < j # k < N(h)} < cohes,
provided one of the following conditions holds:
(1) Ehhfl — 00,
(2) (M, g) is a compact rank-one symmetric space.

The proof of this result will be given in Section 6. We note that, thanks to the semiclassi-
cal Weyl’s law [12], one knows that so(%) > 0. In the case where d = 2 and i < ¢, < VA
(where N is some positive exponent related to the clustering of the unperturbed operator),
a much stronger result was for instance obtained in [26]. In fact, it was proved in this
reference that, near regular values of Z,(V'), one can obtain an asymptotic expansion of
the eigenvalues with a level spacing which is exactly of order he7. Compared with this
result, the above Proposition only provides a simple criterium for the existence of distinct
eigenvalues which are asymptotically at distance less than hie;. On the other hand, it is
valid in any dimension and even for strong perturbation, meaning e, > v/h.

Acknowledgments. Much of this work was done while the first author was visiting
Laboratoire Paul Painlevé at Université de Lille 1 in October 2013 in the framework of
the CEMPI program (ANR-11-LABX-0007-01). He wishes to thank this institution for its
warm hospitality and support. The authors thank San Vu Ngoc for useful discussions on
integrable systems.
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2. MAIN RESULTS: PROPAGATION OF SEMICLASSICAL MEASURES

We now describe our main results, that are formulated using the notion of semiclassical
or Wigner measure.

2.1. Semiclassical measures. In order to study the asymptotic properties of the solu-
tions of (5), we will make use of the so-called semiclassical measures [17], or more precisely
of their time dependent version [38] — see also appendix B for a brief reminder. We now
recall their construction. For a given ¢ in R, we denote the Wigner distribution at time t75

by

(8) wp(tTh)(a) == (vn(tTh), Opy(a)va(tm)) ,

where Op,(a) is a h-pseudodifferential operator with principal symbol a € C°(T*M) — see
appendix A. This quantity represents the distribution of the solution of (5) in the phase
space T* M.

Recall now that we can extract a subsequence h, — 0" as n — +oo such that, for every
a in C*(T*M) and for every 6 in L'(R),

lim 0(t)a(z, §)wy, (tm,, dx, dE)dt :/ O(t)a(x, &)p(t, dx, d)dt,
n=0% JRx T+ 1 RxT* M
where (t,x,&) — p(t,z, &) belongs to L®°(R, M(T*M)), with M(T*M) the set of finite
complex measures carried on T*M. Recall also that, for a.e. t € R, pu(t,-) is in fact a
probability measure which is carried on T*M and which is invariant by the geodesic flow
©® on T*M. For instance, u(t,-) can be the normalized Lebesgue measure along closed
orbit of the geodesic flow. We refer to appendix B for a brief reminder of these results
from [38].
We will denote by M(, €) the set of accumulation points of the sequences

20 (ta L, 5) — wﬁ(tTﬁa z, 5)
as (uy) varies among normalized sequences satisfying (6) and (7).

Remark 2.1. Thanks to the frequency assumption (6), one can also verify that N (7, ¢)
corresponds in fact to the projections on M of the elements of M(7,¢).

2.2. Propagation at different time scales. The Zoll structure on M allows to prove
that every element in M(7,€) satisfies an additional invariance or transport property,
depending on the relative size of 7 and e.

We denote by ¢!, the Hamiltonian flow associated to the Radon transform of the potential
Z,(V). Note that ¢!, commutes with the geodesic flow ¢°.

Let us start presenting our results in the particular case when (M, g) is a Compact
Rank-One Symmetric Space, since they are somewhat simpler to describe. It turns out, as
it was already stated in the introduction, that the time scale 7, = egz is critical for this
problem. More precisely, the following result holds:
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Proposition 2.2. Suppose (M, g) is a Compact Rank-One Symmetric Space. Let p €
M(71,€) and denote by po the semiclassical measure of the sequence of initial data used to
generate p. The following results hold.

i) If Ther — OF then p is continuous with respect to t and, for every b € C>°(T*M) and
every t € R:

pu(t)(b) = po(Zy(b)).
i) If et = 1 then p is continuous with respect to t and, for every b € C(T*M) and every
teR:
p(t)(b) = 110(Zy(b) 0 ).
i) If Thes — +o00 then p has an additional invariance property. For almost every t € R
and every s € R:

(0 )spu(t) = p(t).

This result can be obtained by similar arguments as the proof of Propositions 2.3, 2.4
presented below, which describe additional properties satisfied by the elements of M(7,€)
in the more general case of P-manifolds. In this case, one must take into account a certain
(¢*)-invariant function gy on T*M that depends on the metric g. Let ¢! and ¢y, +q, denote

respectively the Hamiltonian flows on T*M generated by ¢o and Z,(V') + qo.
The first of these result is concerned with the “big perturbation” regime, when the square
root of the size of the perturbation dominates the characteristic length scale of oscillations.

Proposition 2.3. Suppose M is endowed with a P,-metric g and that:
€n Z h.

There ezists a smooth, 0-homogeneous and (¢*)-invariant function qo defined on T*M
(and depending only on (M, g)) such that, for every u € M(,€) associated to a sequence
of initial data with an unique semiclassical measure g, the following holds:

i) If ez — 0T, then, p is continuous in the t variable and, for every b € C*(T*M) and
every t € R:

(9) p(t)(b) = po(Zy(b)).

ii) If Thes = 1 then p is continuous in the t variable and, for every b € C°(T*M) and every
teR:

(10) p(t)(b) = 110(Zg(b) © Py yg, ), if n = h,
(11) u(t)(b) = po(Zy(b) o @), if enh™ — +o0.

i) If The: — +oo, then pu has an additional invariance property. For almost every t € R
and every s € R:

(12> (90€/+qo>*,u(t) = N(t)v if en = h,

(13) (%) pal(t) = ult), if enh™" — +oo.
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The next result deals with the “small perturbation” regime, when i dominates €, (and
therefore, the time scale must be compared to A? instead of €2). As it can be expected,
the effect of the perturbation in this case is negligible. We however present the precise
statement for the sake of completeness.

Proposition 2.4. Suppose M is endowed with a Pj-metric g and let qo be the function
introduced in Proposition 2.3. Suppose that:

Ehhil — 0.

Then, for every u € M(T,€) associated to a sequence of initial data with an unique semi-
classical measure g, the following holds:

i) If Tsh* — 0T, then, p is continuous in the t variable and, for every b € C(T*M) and
every t € R:

(14) p(t)(b) = po(Zy(b))-

i) If Toh* = 1 then p is continuous in the t variable and, for every b € C(T*M) and
every t € R:

(15) p(t)(b) = p10(Zy(b) © 0, )-

i) If 7wh? — +oo, then u has an additional invariance property. For almost every t € R
and every s € R:

(16) (050 )eti(t) = pa(t).

We note that the statements of these Propositions remain valid for V' = 0 (in fact, the
results of Proposition 2.3 are contained in those of Proposition 2.4 in this case).

As it will become clear from our proof, the symbol ¢q is related to the “natural” decom-
position of the operator \/—A, on Zoll manifolds — see for instance Theorem 1.1 of [9].
As stated in the Proposition, this symbol depends only on the choice of the metric. We
emphasize yet that it is given by an hardly explicit formula — see Remark 3.5 or [53, 54].

However, when (M, g) is a Compact Rank-One Symmetric Space, one can take gy = 0
and therefore it is possible to derive the result in Proposition 2.2 without making any
assumption regarding the relative size of A and €.

Remark 2.5. When Z,(V) is constant, the Hamiltonian flow ¢!, acts trivially, and some of
the above statements are thus empty. This is the case, for instance, when (M, g) = (S¢, can)
and V' = V(z) does not depend on & and is an odd function plus a constant (see [29],
Theorems 1.17, 1.23).

2.3. Application to the study of the quantum Loschmidt echo. As another appli-
cation of the methods developped to prove Proposition 2.2, 2.3 and 2.4, we derive some
properties on the so-called quantum Loschmidt echo. This quantity is defined as follows

Enltmn) == [(on(tm), vy (b)),

where



12 FABRICIO MACIA AND GABRIEL RIVIERE

e uy(try;) is the solution of (5);

e v)(t73,) is the solution of (5) when we pick V = 0.
This quantity was introduced by Peres in [43] and it allows to measure the sensitivity of a
quantum system to perturbations of the Hamiltonian. Peres predicted that this quantity
should typically goes to 0 and that the decay rate indicates the chaotic or integrable
nature of the underlying classical system. Since this seminal work of Peres [43], many
progresses have been made in the physics literature regarding the asymptotic properties of
this quantity, especially in the context of chaotic systems. We refer the reader to [19, 34, 20]
for recent surveys on these questions. Our approach allows to study a slightly related
quantity:

Fh(tTh) = (vh(trh),vg(tm)).

Up to an extraction h,, — 0, one can suppose that there exists F(t) in D'(R) such that,
for every 6 in C°(R),

lim e(t)Fﬁn(tTﬁn)dt:/e(t)F(t)dt.
hn—0 Jp R

Our last result gives a description of the limit distribution F'(t) in the context of P-

manifolds:

Proposition 2.6. Suppose (M, g) is a P-manifold and that

. _1
lim e,h™2 = 0.
h—0+

Suppose also that one the following condition holds:
(1) exh™2 — +o0,
(2) (M,g) is a compact rank one symmetric space.

Then, for every t — F(t) associated to a sequence of initial data with an unique semiclas-
sical measure [y, the following holds

i) If limy,_ o+ i 0, then, for everyt in R:

L F(t)=1.

it) If 7, = %, then, F(t) is continuous in the t variable and, for everyt in R:
h

F(t) = 1o (eitIg(V)) )

i11) If limy, o+ TETE%L = +oo and if {Z,(V) =0} =0, then, for every t in R,

F(t) =0.

This Theorem will follow from Proposition 5.2 and its proof will make use of similar
tools as the ones used to prove Proposition 2.2, 2.3 and 2.4. Note that other mathematical
studies of the long time properties of the quantum Loschmidt echo appeared recently in
various geometric settings: 1-dimensional systems [6, 10], negatively curved surfaces [44].
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3. AVERAGING, TRANSPORT AND INVARIANCE

In this section, we will prove Propositions 2.2, 2.3 and 2.4. It is organized as follows.
First, we recall an averaging procedure due to Weinstein [51] which we formulate in a
semiclassical language following [8, 28, 12]. Then, in paragraph 3.2, we deduce the above
Propositions from this averaging Lemma, and, in paragraph 3.3, we derive the proof of a
slightly stronger version of Theorem 1.9 from these Propositions.

3.1. Semiclassical averaging Lemma. The following result is a quantum analogue of
the averaging method for classical dynamical systems.

Theorem 3.1. Let (M, g) be a P-manifold. Then, for every b € C®(T*M), there exists
an operator (By) € WO(M) whose principal symbol is the classical average:

(17) 7,0, = = [ hopagas,
0

and which satisfies:

(18) [(Bh), Po(h)] = Opaspa (1),

In addition, if (M, g) is a Compact Rank-One Symmetric Space, (By) can be chosen such
that the above formula is exact, that is:

(19) [(Bn), Po(R)] = 0.

This type of result is rather well-known and goes back to [51, 14, 9]. We will give
here a semiclassical version of the argument presented in those references following the
presentation of [12] (chapter 15) — see also [8, 28] for a semiclassical treatment.

The proof of Theorem 3.1 will be done in three steps.

3.1.1. Reparametrization of the classical Hamiltonian. We have made the assumption that

all the geodesics of M have a common least period [ > 0. This means that, for every (z,§)
o !

in T*M, one has ¢v2E (z,§) = (2,€), where £ = % Following [12], the first step will

be to “reparametrize” the Hamiltonian, both at the quantum and at the classical level, in

order to have a common period 27 for the flow on T*M. For that purpose, we set

[

Py(h) == %\/—fmg.

The Hamiltonian corresponding to this operator is given by po(z,&) := ||€||., and the
Hamiltonian vector fields of py and py are related in the following way:
[
Xﬁo(xv g) = ﬁXm(xv f)v
where E = ”52”?”. If we denote by 1! the Hamiltonian flow of py, we find that, for every

(z,€) in T*M and for every s in R, one has

W (2, €) = I (2,€) , and ¥ (x, &) = (,€).



14 FABRICIO MACIA AND GABRIEL RIVIERE

3.1.2. Periodicity of the quantum propagator. We recall that the Fourier integral operator
associated to the Hamiltonian vector field satisfies a certain periodicity property. This
follows from the periodicity of the classical flow. We will denote by o € Z the common
Maslov index of the closed trajectories of ¥* on the energy layers p, " ((0, +00)) . According
to Lemma 29.2.1 in [33] — see also [9] or [28], one knows that there exists a polyhomogeneous
pseudodifferential operator A of order 1 and a polyhomogeneous pseudodifferential operator
Q of order —1 (see Ch. 18 in [32] for the precise definitions) such that the following holds:

(1) £/-A;=A+9+0Q;
(2) [vV—24, Q] = 0;

(3) Sp(A) C N.

Translated in our semiclassical framework, we get

- ah
Py(h) = hA + T + @,
and, in particular,
6_%(ﬁ0(h)_hf—ﬁQ> = IdLQ(M)
Remark 3.2. In the case of a compact rank one symmetric space, the situation is slightly
simpler using the explicit description of the spectrum — see paragraph 8.8 in [4]. In fact,

we can write that
- T\ 2 2r\% /- a2
Byi= a4 () = <7) (A+3)

where A is a polyhomogeneous pseudodifferential operator of order one such that Sp(fl) C
N, and then
27 ! A ha . e
3.1.3. Aweraging procedure. We will now verify that the operator po(h) satisfies the com-
mutation property (18) where the operator (By) is defined as the quantum average of the
pseudodifferential operator Op,(b) by the Fourier integral operator associated to hA. This
kind of averaging procedure is standard in this context and it seems that it first appeared
in Weinstein’s article [51].
Let § < 4 < R. For every symbol b € C2°(T*M) which is supported in py'([6, R]), we

define the following averaged operator:
1 2T ) )
(Bp) == —/ e Op, (b)e " dt.
0

o7

According to Egorov’s Theorem, (By) is an element in W%°(A/) whose principal symbol is
equal to Z,(b), which is a smooth function since b is supported in p,* ([0, R]) and therefore:

Z,(b)(z,§) = %/0 bo®(z,€)ds.
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Using the fact that Sp(A) C N, we start noticing that the following commutation relation
holds:

(21) [(Bn), A] = 0.

[ l
Let 0 < x <1 be a smooth cut-off function in C° <[2—\/5, 2—\/ 4R]) satisfying x = 1
T T

in a small neighborhood of [%\/ 26, v QR] We can now use property (21) in order to

derive an expression for the commutator [(By), Py(h)]. First note that:

[(B), Po(R)] = [(Bu), x(Po(R)) Po(R)] + O(h*).

Recall now that Py(h) = (2;)2 Py(h)?. We use the definition of A in order to write:

h2a? Ra
—— A+ R
16 + 2 + h* Ry,

P2(h) = h2A? +
where
(22) Qo= (AQ+QA) + 5Q +Q”
which also defines an operator commuting with 150(71). Therefore, taking into account
identity (21), we finally obtain:
B 212 h?

(23) [{Bn), Po(h)] = —5—[(Bn), X(Po(R)Qo] + O(R).

Using pseudodifferential calculus rules, one knows that 2’22252x(}30(h))Q0 is an element in
U0 M) with principal symbol equal to x(||€]|1/(27))qo(z, €) where qq is the principal
symbol of the polyhomogeneous pseudodifferential operator (AQ + QA)(2m)?/1? of degree

0. Recall that it defines a smooth function on T*M which is 0-homogeneous. Note that
this function depends only on (M, g). Thus, using the composition formula for pseudodif-
ferential operators and the Calderén-Vaillancourt Theorem [55], we conclude that:

[(Br), Po(h)] = Oraosp2(17),
as we wanted to prove.

Remark 3.3. In the case that (M, g) is a Compact Rank-One Symmetric Space, we can use
Remark 3.2 and mimick the above proof in order to obtain an exact commutation formula:

[<Bﬁ>7 PO(h)] = 07

where

2 - ) _
(B = [ VTR o, g H (VTR g
0
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3.2. Invariance and transport: proof of Propositions 2.2, 2.3, and 2.4. We will
now use Theorem 3.1 to prove additional invariance properties satisfied by every element
i in M(7,€). Recall that, for almost every ¢ in R, u(t,-) is a probability measure which is
invariant by the geodesic flow ¢®. We also emphasize that, for almost every ¢t in R, one has
u(t)(T*M) = 1 thanks to (6) and (7). These conditions imply that for every b € C*(T* M)
and almost every t one has:

(24) p()(0) = p(t)(Zy(b))-

Let ¢, cpéo and ¢, +q, denote respectively the Hamiltonian flows on T*M generated by
Z,(V), qo and Z,(V') + qo. In the case of a Compact Rank One Symmetric Space, we use
the convention gy = 0. Note that ¢f,, ¢ and ¢i,, , commute with the geodesic flow, since
{po, Zy(V)} = {po, 0} = 0.

We will now give the proof of Propositions 2.2, 2.3, and 2.4. Let pu € M(r,¢). This
means that there exists a sequence (up)o<n<1 of normalized states in L?*(M) satisfying the
frequency assumptions (6) and (7) such that the Wigner distributions uy, : t — wp(t73)

ity Pe ()
corresponding to the solutions e~ i uy converge to p — see appendix B.
Assume moreover that (up)o<nc; has a semiclassical measure p, meaning that the
Wigner distributions wy,(0) weak-x converge towards po as A — 07. Let b be a smooth

o

compactly supported function on T*M.

Remark 3.4. We note that, as u(t)(M x {0}) = 0 a.e., we can restrict ourselves to proving
the invariance properties for such functions b.

Let (By) be the operator obtained from b using Theorem 3.1. One clearly has:

itTh ’L’Th ity ittty

d it
@5) g (e O (B ) = (T RO, (Bl F )

Recall that, by Theorem 3.1 and by the composition rules for pseudodifferential operators,
one has:

T

h
In the case of a CROSS, we also note that the remainder is in fact of order Opz_,2(m€2).
If ez — 0 (and 7,h% — 0T when (M, g) is not a CROSS), after integrating both sides
of identity (25) on the interval ¢ € [0, 7] and taking limits as & — 07, one has for almost
every 7 € R:

[Pe(h), <Bﬁ>] = OL2—>L2 (TﬁhQ + Tﬁe%).

p(7)(b) = p(7)(Zy (b)) = h10(Zy (b)),

which, in view of (24) concludes the proof of i) of the three Propositions.
We now turn to the proof of ii) of these different Propositions. Equation (23) implies
that the commutator takes the form:

PRR) (B)] = nhOm a0, (Bl + Opasa () + PHV, (3],

where gy was defined in paragraph 3.1.3 — see also remark 3.5 below. Integrating again (25)
with respect to t, letting & — 0" and using the composition formula for pseudodifferential
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operators gives that, for every 7 € R the following holds

(26) (1) (Zg(b)) = p10(Zy (b)) = /OT p(t)({L, Zy(b) })dt,

where
Qo if A7t — 07,
L= QQ+V ifEﬁ:h,
\%4 if Ehh_l —r 00,

In the case of a CROSS, we let L := V without any assumptions on the size of the
perturbations. The geodesic flow preserves the symplectic form on T*M, therefore:

(27) {Zy(L), Zy(b)} = Z,({Z4(L), 0}) = Zy({L, Zy(b) })-

In particular, combining this equality to (24), we can rewrite (26) as

VT € R, pu(7)(Zy(D)) — 110(Zy (b)) = /OT p(t)({Zy(L), Zy(b) })dt,

Therefore, using again (27), one has -=/(7)(Z,(bo ;7)) = 0, and thus

u(T)(Zy (b)) = p1o(Zy(b o o7)) = p1o(Zy(b) 0 o1),
where ¢7 is the Hamiltonian flow of Z,(L). This completes the proof of ii) of Proposi-
tions 2.2, 2.3, and 2.4.
We consider now the large time regime, meaning 7,6 — +oo (in the case of Proposi-

tions 2.2 and 2.3) or 7,h* — +oo (in the case of Proposition 2.4). Let 6 be an element in
Cl(R). We use an integration by parts on (25) to derive:

itTy, Pe (h) itTy, Pe (h)
/ 0'(t) <uﬁ, el (Bp)e~ i U/ﬁ> dt =
R

1Ty, ity Pe (h) _itT Pe(h)

T [0 (anoe T ), (Bl )

Thanks to relation (23), we deduce that

1 ity Pe (h) ity Pe(h)

7 /RG(t) <uh, e [ Opylq) + eV, (Bu]e Tuh> dt = O(r; ) + O(h%).

Again, in the case of a CROSS, the remainder is only O(7, ). Using the composition
formula for pseudodifferential operators, we find that

(28) / 0 (wn(tm), {F2a0 + €V, Ty(0) Pt = O(rY) + O(R).
Taking limits as A — 01 and using identities (24), (27) shows that
/R 0t (T, (L), T, (b)})dt = 0.

This concludes the proof of part iii) in each case.
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Remark 3.5. Again, we would like to stress the fact that the symbol qq is only related to
the choice of the metric on M. In order to get an (implicit) expression for gy, we have to
write that

0= [(By), B°A%] = [(By), Po(h)* — b Opy(ao)] + Oz 2 (hY).
Using energy cut-offs, this can be in fact rewritten as
2

[
[(B1), Opa(a0)] = gz (B, Po(h)] + Opasza(h?).
From this expression, we can get an expression for {Z,(b), qo} by identifying the principal
symbol of the right hand side which turns out to be a delicate task [53, 54]. We will discuss
this in more details in paragraph 3.4 in the case of metrics of revolution on S2.

3.3. Proof of Theorem 1.9. Theorem 1.9 is now an easy consequence of Proposition 2.3.
We will in fact prove something slightly more precise that works for any size of ¢;. We
use the above convention for defining the function L. Recall that L is a smooth function
on T*M which is 0-homogeneous and that, in the case of a compact rank-one symmetric
space, one has always L =V o .

Let u € M(7,€). Suppose T,62 — +00, or T,h? — 400 when €, < h (if (M, g) is not a
CROSS). Then, Propositions 2.2, 2.3 and 2.4 assert that u(t,-) is invariant with respect to
the flow ¢} (the Hamiltonian flow of Z,(L)) for a.e. t € R.

First, we consider I'y C S*M a closed orbit of ¢* that is not included in

Crit(L) := {p € T"M : d,T,(L) = 0}

The fact that I’y ¢ Crit(L) is equivalent to the fact that the set I'y is not invariant by ¢]
—see Lemma 4.1 for a proof of this fact. For a given closed orbit I'y C S*M and for a fixed
A > 0, we now define

F()()\) = {(.T, )\g) : (l’,f) € Fo} .
We fix a compact interval [c1, ca] C (0,400) and X € [cy, o). Since ¢] commutes with the

geodesic flow, it follows that all of the sets ¢7] (I'g(A)) are distinct orbits of ¢ (at least for
7 small enough). On the other hand, the invariance of u(t,-) implies that, for a.e. ¢ in R,

pt) | | en@e) | =n@® | |J TN

A€[er,e2) AElc1,c2]

for every 7 in some interval with non-empty interior. Since u(t, -) is finite, one must have

(29) s | U T | =0,

A€[e1,c2]

for a.e. tin R.
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Consider now the projection v(t,-) of u(t,-) on M. Suppose I'y C S*M is a closed orbit
of ¢* and denote by 7o := 7(Iy) where 7 : T*M — M is the canonical projection. Suppose
that I’y is not contained in Crit(L). Using (29), we note that

v(t)(o) = n®) | |J {@& en () €] =X and (2,6) & To(V)}

A€(0,00)

Using invariance by the geodesic flow and the fact that the measure is finite, a similar
argument as above allows to conclude that this quantity is in fact equal to 0.

3.4. Explicit expression of ¢y on S%. In this last section, we briefly recall a result due
to Zelditch which gives a more or less explicit expression for gy — see Theorem 3 in [54]
for more details. We suppose that ¢ is a Cy,-metric on S?; in this case, every geodesic is a
simple curve, see [21]. We fix Iy a closed geodesic on S*M issued from the point (xq, &),
ie.

Lo == {¢°(w0, &0) = (z(s),&(s) : s € R}
We denote by fmgo (t) the unique solution of the ordinary differential equation

f(t) + K(x(1)f(t) = 0, f(0) =1, f/(0) =

and by fy, ¢ (t) the unique solution of the ordinary differential equation

f(t) + K(x(1))f(t) = 0, f(0) =0, f(0) =

where K is the scalar curvature. Using the conventions of Appendix C, we also define

K(z,€) = gy(d. K, &5).
The formula obtained by Zelditch can then be expressed as follows:

(w0, &) = o / K0t + 51 / K (0). €)oo (1 R o ()

where

Ruy (1) = Fonot) / K(2(5), £(5)) fu 0 ()7

BEYIN0) / Fro o () (2(5), £(5)) fuo 0 ()2,

We proceed as in [54] and specialize this expression to the case of Cy,-metrics of revolu-
tion on S%. According to [4] — Theorem 4.13, such a metric can be written in spherical
coordinates as:

g = (14 o(cos0))*db* + sin” Od¢?,
where ¢ is a smooth odd function on [—1, 1] satisfying o (1) = 0. Recall from Paragraph 4.17
in [4] that the sectional curvature can be expressed as follows:

K(0) = (1+ o(cosf) — cosba’(cosh)).

(1+ o(cosh))?
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Let 7(I'g) be the closed geodesic corresponding to § = 7. We note that the curvature is
constant and equal to 1 on this closed geodesic. For every (g, &) in 'y, we find then

L 30(0)° [7 (cos’ . 1 307(0)°
qo0(0, o) ::Z+%/O (%—Co#gf)—cos%bsmd‘gb) dgb:Z— i) ,

In particular, go is not equal to i on this closed geodesic if ¢’(0) # 0. This condition is of
course generic among the possible choice of . Using the symmetry of revolution and the
Gauss-Bonnet formula, one verifies that, for any (xg, £y) belonging to a geodesic orthogonal
to the geodesic 6 = 7, one has qo(z0, o) = i. In particular, ¢q is not a constant function on
T*S?. Combining this observation to the results of paragraph 3.3, we deduce Theorem 1.4
— see Remark 1.7.

4. MEASURES WITH TWO INVARIANCE PROPERTIES

This section is of more geometric flavor; it is devoted to analyzing the structure of
measures on the cotangent bundle that are invariant by two flows that commute.

4.1. Measures that are invariant by two Hamiltonians that commute. As before,
we write po(z, £) := 1]|¢||2 and ¢* denotes the geodesic flow acting on T M.

Let L be a smooth function on 7% M satisfying:

e [ is 0-homogeneous in the ¢ variable, i.e. L(x,&) = L(z, A§) for every A > 0.
e The one-form dL does not vanish identically.
e [ Poisson-commutes with po: {L,po} = 0.

We shall denote by Xy and X, the respective Hamiltonian vector fields of py and L; let
7 be the flow of X;. Then the flows ¢7, and ¢* commute.

The purpose of this section is to describe the set of probability measures on T*M that are
simultaneously invariant by the the flow ¢] and by the geodesic flow ¢°. We are especially
interested in the case when d = 2 and M is orientable,

We introduce the set Crit(L) of critical points of L in T*M:

Crit(L) = {,0 eT*M : d,L = 0} .

This is a closed set in 7*M that is invariant by both flows ¢® 7. More precisely, the
following holds.

Lemma 4.1. Under the above assumptions, Crit(L) is formed by those orbits of the geo-
desic flow that are invariant by ¢7 .

Proof. Since ¢' and ¢% commute, Crit(L) is formed by orbits of the geodesic flow that
are fixed by ¢7. On the other hand, if the orbit of the geodesic flow issued from some
po is invariant by ¢3 then necessarily X (py) = aXo(py) for some o € R. This forces
X1(p) = aXo(p) for every p in the orbit. Since L is zero-homogeneous with respect to € it
turns out that X and X, are orthogonal with respect to the Sasaki metric (see Appendix
C). Therefore, a = 0, as we wanted to prove. O
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Consider now the set: )
R(L) :=T*M\ Crit(L).
This is an open subset of T*M that is invariant by ¢® and 7. The map
¢ R x R(L) > (s,t,p) — " 0 g (p) € R(L),
is a group action of R? on R(L). Moreover, for any py € R(L) the map:
bpo - B2 3 (s5,1) — 9" 0 (o) € R(L),

is an immersion. Therefore, the stabilizer group G, of py under ¢ is discrete. This proves
that the orbits of the action ¢ are either diffeomorphic to the torus T?, to the cylinder
T x R or to R2.

The moment map:

®:R(L) 3 (2,€) — (po(, ), L(x,€)) € R,
is a submersion, and for every (F,J) € ®(R(L)) the level set
A(E,J) = (I)_l(E, J),
is a smooth submanifold of R(L) of codimension two. Note tl}at the O—Qomogeneity of
L implies that Awg.s) = ha(Ap,s)) for every a > 0, and hq : T*M — T*M being the
homothety of ratio o on the fibers.

When d = 2 the couple pg, L forms a completely integrable system on R(L); and the
map ¢,, induces a diffeomorphism:

bpy - R?/G e — Algy.5y:  for (Eo, Jo) := @(po);

Above, Af%o Jo) denotes the connected component of A(g,, s that contains py. Therefore,

if Af%m 7o) 18 compact then it is an embedded Lagrangian torus in 7*M. In that case, we
shall write T2 :=R?*/G,. See [13, 40] for more detailed proofs.

Our next result clarifies the structure of the set of probability measures on R(L) that
are invariant by the geodesic flow and the flow ¢7. Let us introduce first some notation:

R.(L) will be the set formed by those p € R(L) such that Ag(p) is compact.

Proposition 4.2. Suppose that d = 2. Let p be a probability measure on R(L) that is
invariant by ¢® and @7 and set i := @, u. Then, for every b € C.(R(L)), one has

| e onndg = [ [ s e)nm(dn dmldE. )

R(L) O(R(L)) Y ANE,n

where, for (E,J) € ®(R(L)), the measure A\g_y is a convex combination of the (normalized)
Haar measures on the tori AvaJ) for p € Ag.gy NR:(L) (see equation (30)).

Proof. The disintegration Theorem (see e.g. Th. 5.14 in [15]) gives, for -a.e. (E,J) €
R(L), the existence of a family of probability measures pg, ; concentrated on Ag s such
that:

| vwonrdg= [ [ bl dmE, dJ),
R(L) Q(R(L)) Y A&,
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for every b € C.(R(L)). The measures g s inherit the same invariance properties as p. In
particular,

/ b, € s (de, dE) = / b((s. 1,7, €) s, )
A, A,

for every (s,t) € R?. Each connected component of the manifold A (g, ;) has a group struc-

ture induced by the map ¢,, for any p € A¢g j). The invariance property of pg, s|ar Ay is

equivalent to stating that it is invariant by translations in the group. Therefore, jp s|ae Mo
must coincide with a multiple of the Haar measure on A? (B.) for every p € Ag ). If A( B.)

is non compact, this measure is infinite and pp. J(A( o J)) 0. D

An explicit formula for the restriction of the measure Ag ; to a connected component

Al ) with p € Re(L) N A,y is the following:
(30) / b(z, &) Ap, y(dx,dE) = c/ b(¢,(s,t))dsdt,
AfE,J) Tr%o

for some constant ¢ € [0,1]. Proposition 4.2 merely states that bi-invariant measures a
superpositions of measures of this form.

Note that so far we have not used the fact that the geodesic flow is periodic. When this
is the case it turns out that for every py € R.(L) the stabilizer group G,, of py contains
an element of the form (g, 0) for some g € R\ {0}.

4.2. Structure of the projection onto the base. Our next goal is to study the regular-
ity properties of the projection of a bi-invariant measure p onto the base manifold M. We
are going to prove that they decompose as an measure that is absolutely continuous with
respect to the Riemannian volume plus a singular measure supported on the projection of
the critical set Crit(L).

Theorem 4.3. Suppose that M is an orientable Pj-surface. Let i1 be a probability measure
on R(L) that is invariant by ¢° and ¢7. Then v := m.u is a probability measure on M
that is absolutely continuous with respect to the Riemannian measure.

Denote by N (L) the convex closure of the set of measures d,o, where 7y C T*M ranges
over the orbits of the geodesic flow that are contained in Crit(L). The following is a direct
consequence of Theorem 4.3.

Corollary 4.4. Suppose that M is an orientable Pj-surface. The projection v := m,u of a
probability measure p on T* M that is invariant by ¢° and 7 can be decomposed as:

v = fvoly +0ling
where f € LY(M), a € [0,1] and vgng € N(L).
Remark 4.5. For a “generic” function L, the set Crit(L) is formed by critical points that
are non degenerate with respect to directions that are orthogonal to the geodesic flow and

to the vertical vector field that generates the dilations on the fibers. In this case, for every
E > 0 the set Crit(L) N py'(F) consists in a finite number of orbits of the geodesic flow
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that project onto a finite family of geodesics {71, ...,7-} in M. The measures v described
in Corollary 4.4 then take the simple form:

v = fvol,+ Z Cj0r; s
j=1

where ¢; > 0 for j = 1,...,7 and E;Zl ¢; <1
Theorem 4.3 essentially follows from a structure result for the projections of the La-
grangian tori A?Y (,.7) Onto M: the projection 7| A is a local diffeomorphism onto its image

except at points lying on a finite family of smooth curves (called sometimes a caustic). See
also Lemma 2.1 in [5].

Lemma 4.6. Let py € R.(L); then there exist a finite family {I }7_, of smooth disjoint
closed curves contained in AZOE 7 that are traversal to the geodesic flow and such that
pos = |_|;.‘:1 F%O is exactly the set of singular points of W‘Afo ; tA 9E gy M.

Proof. Let {Xo, W, Yy, U} be the orthogonal frame on T*M defined in Appendix C. Since
L is 0-homogeneous with respect to £, the Hamiltonian vector field X has no component
in Xy, that is:

95 (X1(p), X0(p)) = gr() (d,m(XL(p)). dy7(Xo(p))) = 0.
The tangent space of A}, ;) at a point p is spanned by {Xo(p), Xr(p)}. The points p €
A(% gy close to which 7| aro s not a local diffeomorphism are precisely those at which

d,m(Xr(p)) = 0. Define:

F(tv 3) = Gr(dpg(t.5) (d(bpo(tvs)ﬂ-(XL((bPo <t7 S)))v d¢>p0 (t,s)ﬂ-<W<¢Po (tv 8))))
One has:
F(t,s) =0<<= X1(¢y(t,s)) € Kef(d¢>p0(t,s)ﬂ)-
We are going to apply the implicit function Theorem to the equation F'(¢,s) = 0 in order
to prove our claim. Note that J(t) := dg,, (1,6 (XL(Ppe (L, 8))) = Os(moy,)(t, s) is a Jacobi
field along the geodesic v,(t) := m(p" (0} (p0)). Write Zy(t) := dg, (1,)T (W (¢p, (L, 5))). One

has:
DJ, DZ(t)
atF(t7 8) = g7r(¢ﬁ()(t S) < dt ( )’ Zs(t)) + gﬂ(¢ﬂo(t75)) (Js(t)’ dt ) )

where £ is the covariant derivative along the curve ,(t). If F(to, s9) = 0 then J,,(to) =0
but:

DJ;
ooy (1) Zu (o)) £ 0

the reason for this is that if that term were to vanish, this would imply that %JSO (to) is
proportional to 7/(ty). Therefore, the Jacobi field Jy,(¢) should be proportional to tv'(t)
which forces J, to vanish identically. In other words, Xp,(¢,,(t,s0)) € Ker(dg, (1,s,)7) for
every t. But this is a contradiction, since the values of ¢ for which that property holds turn
out to form a discrete set in R, as we show next.



24 FABRICIO MACIA AND GABRIEL RIVIERE

This fact is a consequence of the twist property of the vertical subbundle as stated in
[42]: recall that Af% 7 is a Lagrangian submanifold of T*M; applying Proposition 2.11 of

with p € A

(B, We deduce that, for every sq the

[42] to the Lagrangian subspaces TPAZ%’ 7
set of the ¢ € R such that:

Ker(d%o(mo)w) N T¢p0(t,SO)A(p2,J) = Ker(dqﬁpo(t,So)ﬂ-) N d<PiO(PO)S06(T802O(PO)Af%,J)) 7é {0},

is discrete.

If the geodesic ¢'(pg) is g-periodic, this set is in fact finite modulo ¢Z. Set so = 0
and let {t1,...,t,} C R/qZ be the set at which F(¢,0) = 0. We can apply the implicit
function Theorem to conclude the existence of a unique family of smooth functions ¢;(s)
with s € R/r(J)Z satistying ¢;(0) = t; and F(¢;(s),s) = 0. Taking into account that
0. F(t,s) # 0 as soon as F(t,s) = 0, we conclude that two curves (¢;(s),s) and (¢;(s), s)
are either disjoint or they coincide. Let us relabel these curves in order to have (¢;(s), s)
with j = 1,...n are disjoint. Since these curves are the unique solutions to the equation
F(t,s) = 0, the trajectories (t;(s), s) must be closed. Therefore, the smooth curves I’} :=
{Pp(ti(s),s):s € R/r(J)Z} with j =1, ...,n are disjoint and closed. O

To conclude the proof of Theorem 4.3 let B C M be of zero Riemannian measure. By
construction,

v(B) = / Mg (7 (B) N A, R(dE, dJ).
B(R)(L)

Fix a connected component A(p% gy in Ag,7), let Q,; be any connected component of A(p% J)\
[%s. Then Ag s(I'5a*) = 0 by Lemma 4.6 and 7[q, is a local diffeomorphism; therefore,
m1(B) N Q,, has Ap j-measure equal to zero. Hence,

>\E7J(7T71(B) N A(pj(r)ij)) = 0.

This shows that v(F) = 0 and therefore, v is absolutely continuous with respect to Rie-
mannian mesure.

5. QUANTUM LOSCHMIDT ECHO ON ZOLL MANIFOLDS

In this section, we revisit the proof of section 3 in order to study a quantity which is
related to the so called quantum Loschmidt echo defined in the section 2. Precisely, we
prove Proposition 2.6. For every b in C°(T*M) and every t in R, we define

My (t7y)(b) := (vn(t7), Opy,(D)vy (t7)),
where

o (Th)o<n<1 is a scale of times satisfying limy_,o 7 = +o00;
o v (t7y;) is the solution of (5);
e v)(t73,) is the solution of (5) when we pick V = 0.
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If we suppose that the sequence of initial data (up)o<n<i is normalized and that it satis-
fies (6) and (7), then, proceeding as in appendix (B), we can extract a subsequence £,, — 0
such that, for every 0 € C°(R) and for every a in C°(T*M), one has

lim | O(t)M,, (tm,)(b)dt = / o(t) ( /T *Mb(:p,g)M(t,dx,dg)) dt,

n—-+4o0o R R

where t — M (t) belongs to L>*(R, M(T*M)). Thanks to the frequency assumptions, the
support of M (t) is included in T*M\ (M x {0}). Moreover, in the case where ¢, < v/, we
also observe that, for a.e. ¢ in R and for every s in R, one has

(31) /*M b(x, )M (t,dx,dE) = /T*Mbocps(:[,f)M(t,dl‘,df).

Remark 5.1. In order to make the link with Proposition 2.6, we note that, thanks to (6)
and (7), one has

n—-+o0o R R

0(t) ( M(t,da:,df)) dt.
T*M
Proposition 2.6 follows then from the previous remark and the following Proposition.
Proposition 5.2. Suppose (M, g) is a P-manifold and that

lim Eﬁh_% =0.
h—0+
Suppose also that one the following condition holds:
(1) enh™2 — +o0,
(2) (M, g) is a Compact Rank One Symmetric Space.

Then, for every t — F(t) associated to a sequence of initial data with an unique semiclas-
sical measure gy, the following holds:

i) If limy,_,o+ Thhe% =0, then, for every t in R and for every b in C(T*M),

M (t)(b) = po(Zy(D))-
i) If T, = %, then, for every t in R and for every b in C(T*M),

M) = o (Z, ()}

2
TfLEfL o

i1) If limp,_o+ 7 +00, then, for a.e. everyt in R and for every b in C*(T*M),

M(#)(bZy(V)) = 0.
Remark 5.3. In the case (iii), we emphasize that we can deduce that
suppM (t) C {Z,(V') = 0}.

We will now give the proof of this Proposition which follows the same lines as the proofs
in section 3.
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Proof. Let b be a smooth compactly supported function on T*M. Using (31), one has that
M(t)(b) = M(t)(Zy(D)).

We start our proof by computing the following derivative

d 0
= (wntm), (Bu)vi(tm))) .

where (By) is the operator from Theorem 3.1. Using Theorem 3.1, we obtain in fact

d 1€2T
(32) i ((on(tms), (Bryvp(tm))) = — hhh (va(tTn), V(Bp)vy(t1)) + O(hh?).
We observe that, if (M, g) is a compact rank-one symmetric space, then the remainder is
in fact equal to 0. The case (i) follows immediatly by integrating (32) between 0 and ¢. In

the case where 7, = %, one finds that, for every 6 in C2°(R), one has
h

[oanoa,ea =i [ aopra@,mvia =i [ som@ @,z
where the first equality follows from (32) and the second one from (31). The case (ii) follows

= 400, we deduce from (32) that

2
ThE,
h

/ 6(t)M(1)(Z, (b)T, (V))dt = 0,

from which (iii) follows according to (31). O

then from the above relation. Finally, when limj_,q+

6. RELATION TO SPECTRAL PROBLEMS: PROOF OF PROPOSITION 1.14

In this last section, we explain how time dependent semiclassical measures can be used
to prove some results on the spectrum of the semiclassical Schrédinger operator

n2A,

P.(h) = +eV.

Precisely, we prove Proposition 1.14 from the introduction which establishes the existence
of distinct eigenvalues which are asymptotically close to each other. In order to prove
this result, we revisit an argument that was given in [37] — proof of Theorem 2 from this
reference. Thanks to Corollary 1.10, recall that any weak-+ accumulation point v of the
sequence (|1y|*voly)o<n<1 verifying

P.(h)yy, = E(h)Yn, and E(h) — Ey # 0,
must satisfy
v({r}) =0,
for every closed geodesic 7y that is not included in C(V'). Let vy be such a geodesic; let
Iy be a lift of g to T*M such that, for (zg,&) € Iy one has @ = Fy . We proceed by
contradiction and we suppose that there exists h,, — 0 as n — +o00 such that
. _ f{|Ej(fn) — Ex(fin)| : 1 < j # k < N(hn)}
So(hn) = 7 62
>Ry,

— +00
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Our goal is to construct v as above verifying v({yo}) > 0.
We fix a sequence 75, — +00 satisfying

(33) ThaS0(hn)€r. — +00,
and
(34) Thn€r, — 0.

These two conditions are compatible thanks to our assumption on the subsequence h,, —
0". In the following, we omit the subscript n in order to alleviate the notations.

6.1. A sequence of “good” initial data. We fix a sequence of initial data (UZO7£O)O<5§1
whose semiclassical measure is unique and given by the Dirac measure d,, ¢,. This can be
obtained from a sequence of normalized coherent states — see for instance Ch. 5 in [55].
Then, we pick a cutoff function 0 < x < 1 in C*(R) which is equal to 1 in a small
neighborhood of 0, say [—1/2,1/2], and 0 outside a slightly larger neighborhood, say [—1, 1].
We introduce the following truncation of our coherent states:

i =y <Po(h) - EO) B

z0,80 5o 20,£0°

Using results on functional calculus for semiclassical pseudodifferential operators — see for
Po(h)—Eo
o0

operator belonging to the set =°0(M) as defined in Appendix A. Recall that its principal

symbol is
2/9
Xn(,€) = x <—H£H /52 EO) :
0

As the semiclassical measure of the sequence (uf, . Jo<n<i is the Dirac measure in (7o, &),

one can observe that

(35) | a2 = o(1).

z0,80 0,80

instance Ch. 14 in [55], one can verify that the operator x ( ) is an h-pseudodifferential

Thanks to the Calderén-Vaillancourt Theorem, one can also verify that
Py(h) — E, P.(h) — E,
N o() — Eo . (h) — Eg — o).
do do

Denote by Ilg, ) the spectral projector corresponding to the eigenvalue Ej;(h), one has

(36) |

L2(M)—L2(M)

N(h)

i P.(h) — E E;(h)— E
h,e L € 0 h o 0 h

Jj=1

Recall that the eigenvalues F;(h) (and the spectral projectors) depend implicitly on e.
When Tlg, (ﬁ)uh # 0, we define

0,0

h
7 HEj(h)umoﬁo
Up

75.

Tyl gl
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otherwise, we set v] . = 0. Then, we write

N(h)
e E;(h) — E L ,
it = v (=) [t s

j=1

2
Finally, we introduce C;LE =X (%O_EO) HHEJ'(E)UZO,&) H; Note that this quantity is equal
to 0 when v; = 0. Using (35) and (36), one can verify that

N(h)

(37) > d.=1+0(1).

J=1

6.2. Semiclassical measures of the Schrodinger equation. Let 6 be a smooth func-
tion on R such that 6 is compactly supported and satisfies 6(0) = 1. We also fix b in

C°(T*M). According to Propositions 2.2 and 2.3 (point i) and to the fact that me2 — 0,
one has

5 itTy Pe (R) itTy Pe(h) A
e(t) <uxo7§0’ e ° Oph(b)e " umo7§0> dt = Ig<b) (x()? go) + 0<1)7
R

as h goes to 0. Using the conventions introduced in the previous paragraph, one deduces
then

S o (MBOZBOY ()} 2 00, = Lm0 )+ o).

1<5,k<N(h)
For j # k, one has
(£ (h) — Ey(h))
h

which tends to +oo according to (33). Thus, we get, as h goes to 0,

> 1h50(h)er,

N(n)

(38) > e (Uhe Oi(0)v], ) = Ty (b) (20, &0) + o(1).

J=1

Recall that v,{,e is either 0 or a normalized state in L*(M) which satisfies Pe(h)vé6 =

Ej(h)v%e. We will deduce from this asymptotic formula the existence of an accumulation

element v satisfying v(79) = 1, and thus we will obtain the expected contradiction as 7 is
not cointained in C(V).

6.3. Estimating the variance. We now remark that the measure b — Z,(b)(zo,&p) is
an ergodic measure which can be written as a convex sum of almost invariant and almost
positive distribution. Thus, we can proceed as in the proof of the quantum ergodicity
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Theorem [55] to construct a subsequence converging to this measure. For that purpose,
we start by estimating the variance:

N(n)

Va(b) =Y e [(vh.0, Opn(b)v] ) — T, (b) (o, &o)

j=1

’ 2

One can introduce y; a smooth compactly supported function on T*M which is equal to
1 for £o < ||¢||? < 8Ey and which is invariant by the geodesic flow. By construction of the

states v%e, we can rewrite V;,(b) as follows:

N(h)

Vi(b) =) 4

1,€

i + O(h),

<vhe7 Oph(le)Uhe>

J=1

where b = b — Z,(b)(20, &). Combining the Egorov Theorem to the fact that the v%g are
eigenmodes, one finds, for every T" > 0,
N(h)

1 (7. :
‘/Ei(b) = Z C;le <vh €’ Oph (T/(] (bxl) © QOSdS) v)ji,e>
j=1

where the constant in the remainder depends on T'. Applying the Cauchy-Schwarz inequal-
ity and the composition rule for pseudodifferential operators, we obtain

) v%,e> +0(h),

We now use the limit formula (38), and we derive that, for every 7' > 0,
2
) (0, &o)-

’ 2

2

+ O(h),

N(n)

. : 1 /T
‘/h<b> < Z 077175 <Uf]i,57 Opﬁ (’T /0 (bxl) o (psds

j=1

17
lim sup V;(b) < I, (’T/ (bx1) o w*ds
0

h—0

We take the limit 7' — +o00, and we have, as h — 07,

N(R)

(39) Z C%,E }<U%,E> Opﬁ(b)%J — Z,(b)(o, &0)

J=1

=o(1).

6.4. Bienaymé-Tchebychev inequality. As the eigenmodes are microlocalized on the
2
energy layers Ey — &g < @ < Ey + 6o, we fix (bg)ren a family of smooth functions in

C2°(T* M) which defines by restriction a dense subset (in the C° topology) of the continuous
functions on {(z,£) € T*M : [Ey — 200, Eo + 20g]}. We reestablish the dependence in the
parameter n and we define, for every k£ in N and every n in N,

Ab = {1 << N (0], Opy, (b)vd ) = Ty(bi) (x0, &0)|* > th(ak)%}-
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From the Bienaymé-Tchebychev inequality, we get, as n — 400,

Y G =o(D).

oAk
]EAhn

For every k > 0, we set Af := U} (Al which still satisfies

> g, =o(l)

: k
JeAhn

For every k € N, we take n; larke enough to ensure that, for every n > k, one has

A 1
Z Ciyin,e S E)

JEAF

hin

and we also impose the subsequence ny to be increasing. Then, for every ny < n < ngy1,
we let Ay, := A} . Then, thanks to (37), one has, as n — +o0,

> g . =1+o0(1).

jEAgn

By construction, this implies that there exists a sequence 1 < j, < N(h,) such that, for
every k in N,

lim (v} ., Opy, (bx)07 o) = T, (i) (w0, o).

n——+0o0o
By density of the family b, in the C°-topology, we find that the limit measure is the measure
carried by the closed geodesic issued from (xg,&p). In other words, we have constructed a
sequence of eigenmodes whose semiclassical measure is carried by the closed geodesic issued
from (z9,&o). As we have supposed that this closed geodesic is not included in Crit(V'), we
obtain the contradiction.

APPENDIX A. SEMICLASSICAL ANALYSIS ON MANIFOLDS

In this appendix, we review some basic facts on semiclassical analysis that can be found
for instance in [55]. Recall that we define on R?? the following class of symbols:

S™FR) 1= { (bn(,)neqoy € C(R*) 1 [02020n] < Caph™ (€)™ 1}

Let M be a smooth Riemannian d-manifold without boundary. Consider a smooth atlas
(fi, Vi) of M, where each f; is a smooth diffeomorphism from V; C M to a bounded open
set W; C R%. To each f; correspond a pull back fi (W) — C>(V,) and a canonical
map fl from TV, to T*W:

fr: (2,6) = (fi(x), (Dfilz) 7€) .
Consider now a smooth locally finite partition of identity (¢;) adapted to the previous atlas

(f1,V1). That means ), ¢; = 1 and ¢; € C*(V}). Then, any observable b in C*(T*M) can
be decomposed as b = ), b, where by = bg;. Each b belongs to C>(7*V;) and can be
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pushed to a function by = (f,71)*b, € C®°(T*W}). As in [55], define the class of symbols of
order m and index k

(40)  S™K(T*M) = {(bn(x, E))ne(o) € C(T*M) : 059, by| < Ca,ﬁh*k(@mf‘ﬁl} .

Then, for b € S™*(T*M) and for each [, one can associate to the symbol b, € S™F(R2)
the standard Weyl quantization

Ovt(ute) i= gy [ e (T2 con ) oy

where u € S(R?), the Schwartz class. Consider now a smooth cutoff 1, € C2°(V}) such that
Y = 1 close to the support of ¢;,. A quantization of b € S™*(T*M) is then defined in the
following way [55]:

(41) O (1)) = 3 (/0PGBI ) (W x ),

where u € C*(M). This quantization procedure Op;, sends (modulo O(A>)) S™*(T*M)
onto the space of pseudodifferential operators of order m and of index k, denoted W™k (M) [55].
It can be shown that the dependence in the cutoffs ¢; and v/; only appears at order 1 in A
(Theorem 9.10 in [55]) and the principal symbol map o : U™*(M) — S™F /Sm=LE=1(T* )

is then intrinsically defined. Most of the rules (for example the composition of operators,
the Egorov and Calderén-Vaillancourt Theorems) that hold on R?* still hold in the case of
U™k (M). Finally, we denote by W="F(M) the set N,,,cg ¥"™F(M).

APPENDIX B. TIME-DEPENDENT SEMICLASSICAL MEASURES

The aim of this short appendix is to recall a few facts on the definition of time-dependent
semiclassical measures — we refer to [38] for more details.

Let (up)o<nc1 be a normalized sequence in L?(M) verifying the oscillation assump-
tions (6) and (7). For a given scale of times 7 := (7;) 5,0+ satisfying

lim 7, = +o0,
h—0+

we denoted the Wigner distribution by
(42) Va € C(T*M), wp(tm,)(a) := (vp(tmh), Opy (a)vg(tmh)) ,

where vy,(7') is the solution at time 7’ of (5) with initial condition u;. Using the Calderén-
Vaillancourt Theorem, we deduce the existence of a constant C' > 0 and a positive integer
D depending only on the manifold (M, g) such that

/ a(t,x,f)wh(tm,d:c,d{)dt’ <Ckx Y h? / 102 ca(t, ) lleoerandt,
RxT*M

|a\<D

for every a € C(R x T*M). According to [46] (Ch. 3), the sequence (uy : (¢,z,&) —
wi(tTh, T, €))nso 18 relatively compact in D'(R x T*M). Thus, we can extract converging
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subsequences (for the weak-x topology). In particular, for any accumulation point p of this
sequence and every a € CX(R x T*M), one has

[t utandnag)| < [ fat o
RxT*M R

Thus, p can be extended to a continuous linear form on L'(R,C§(T*M)), where CJ(T*M)
denotes the set of continuous functions vanishing at infinity. Consequently, the limit dis-
tribution ¢ — p(t, ) belongs to L>(R, M(T*M)) (see for instance [11]), where M(T*M) is
the set of finite complex measures on T* M. For any converging subsequence in D'(RxT™* M)
(which we do not relabel), we note that the following also holds, for every # € L'(R), and
for every a € C*(T*M)

lim O(t)a(x, &)wy(tm, dz, d€)dt :/ O(t)a(x,&)u(t, dr, d)dt.
h=0% Jrx1* M RXT*M
Finally?, according to the Garding inequality, the limit distribution is in fact a positive
measure for a.e. ¢ in R. Moreover, the frequency assumptions (6) and (7) and the fact that
en — 07 imply that, for every almost every ¢, u(t) (T*M ) = 1. Using Egorov Theorem, one
can also verify that, for a.e. ¢t in R, u(t,-) is invariant by the geodesic flow ®.

APPENDIX C. GEOMETRY OF T*M

In this appendix, we collect some classical results on Riemannian and symplectic geome-
try that appear at different stages of this work. Along the way, we recall classical notations
that are used all along this article. We refer for instance the reader to [4, 42, 45, 50] for
more details.

C.1. Musical isomorphisms. Recall that the Riemannian metric ¢ on M induces two
natural isomorphisms

b T, M —TiM, v g.(v,.),
and its inverse § : TxM — T, M. This natural isomorphism induces a positive definite

form on Ty M for which these isomorphisms are in fact isometries. We denote by ¢g* the
corresponding metric.

C.2. Horizontal and vertical subbundles. Let p = (z,&) be an element in 7*M. De-
note by m : T*M — M the canonical projection (z,£) — x. We introduce the so-called
vertical subspace:

V, = Ker(d,m) C T,T*M.
The fiber T*M is a submanifold of 7*M that contains the point (z,£). The tangent space

to this submanifold at point (z,§) is the vertical subspace V, and it can be canonically
identified with 7M. We will now define the connection map. For that purpose, we fix Z

20ne can for instance follow the arguments given in Ch. 5 of [55].
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in T,7*M and p(t) = (z(t),£(t)) a smooth curve in T*M such that p(0) = p and p'(0) = Z.
The connection map K, : T,T*M — T M is the following application:

K,(2) = Z0(0) = Vo €(0)

where £p(t) is the covariant derivative of p(t) along the curve z(t). One can verify that
this quantity depends only on the initial velocity Z of the curve (and not on the curve
itself) and the map is linear. The horizontal space is given by the kernel of this linear
application, i.e.
H, = Ker(IC,) C T,T"M.

There exists a natural vector bundle isomorphism between the pullback bundle 7*(TM @
T*M) — T*M and the canonical bundle TT*M — T*M. The restriction of this isomor-
phism on the fibers above p € T*M is given by

0(p) : T,T"M — Tr(yM & T, M), Z > (y,n) = (d,7(2),K,(2)).
These coordinates (y,n) will allow us to express easily the different structures on 7*M.

For instance, the Hamiltonian vector field X associated to py (i.e. the generator of the
geodesic flow) satisfies 6(p) X (p) = (7(p)*, 0).

C.3. Symplectic structure on 7M. Recall that the canonical contact form on 7" M is
given by the following expression:

Vp=(2,6) € T"M, YZ € T,T*M, a,¢(Z) = £(d,m(2)).

The canonical symplectic form on T*M can then be defined as €2 = da. Using our natural
isomorphism, this symplectic form can be written as

V7| = (yl,m) c TpT*M, N2y = (yg,ng) € TpT*M, Qp(Zl, ZQ) = 7’]1(?/2) — 7’]2(y1).
C.4. Almost complex structure on 7*M. One can define the following map from
T, M & TxM to itself:
To(ysm) = (F, =),
This map induces an almost complex structure on 7,,7*M through the isomorphism 6(p).
We denote this almost complex structure by J,.

C.5. Riemannian metric on T*M. The Sasaki metric ¢° on T*M is then defined as
95(Z1, Z2) = gi(Kp(Z1), Kp(22)) + ga(dpm(Z1), dy(Z3)).

This is a positive definite bilinear form on 7,/ 7M. The important point is that this metric
15 compatible with the symplectic structure on T* M through the almost complex structure.
Precisely, one has, for every (2, Z) € T,7*M x T,T*M,

95 (Z1, Zs) = (21, JuZs).
In fact, using the natural isomorphism, one has

(21, J,Z0) = m(mh) + va(y1) = g (m, ) + 9o (Y1, va)-
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C.6. A natural frame on 7T*M. In the case M is an oriented surface, one can introduce
a “natural basis” on 7,7*M as follows. Thanks to the fact that the manifold M is oriented
with a Riemannian structure, one can define a notion of rotation by 7/2 in every cotangent
space T*M (which is of dimension 2). Thus, given any £ € T*M \ {0} there exists a unique
&1 such that {€, &1} is a direct orthogonal basis with ||¢]|, = ||€1||.. We use this to define

an orthogonal basis of V, for p € T*M:
Yo(p) = (8(p)) ' (0,€), and U(p) = (8(p)) " (0,€").

Then, we can define an orthogonal basis of H, as follows
Xo(p) = J,Yo(p), and W(p) = J,U(p).

Note that X is the geodesic vector field and that the family {X(p), W(p), Yo(p),U(p)}
forms a direct orthogonal basis of 7,7 M.
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