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Abstract

We present a novel hybrid algorithm for Bayesian network structure learning, called H2PC. It first reconstructs the
skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges.
The algorithm is based on divide-and-conquer constraint-based subroutines to learn the local structure around a target
variable. We conduct two series of experimental comparisons of H2PC against Max-Min Hill-Climbing (MMHC),
which is currently the most powerful state-of-the-art algorithm for Bayesian network structure learning. First, we use
eight well-known Bayesian network benchmarks with various data sizes to assess the quality of the learned structure
returned by the algorithms. Our extensive experiments show that H2PC outperforms MMHC in terms of goodness
of fit to new data and quality of the network structure with respect to the true dependence structure of the data.
Second, we investigate H2PC’s ability to solve the multi-label learning problem. We provide theoretical results to
characterize and identify graphically the so-called minimal label powersets that appear as irreducible factors in the
joint distribution under the faithfulness condition. The multi-label learning problem is then decomposed into a series
of multi-class classification problems, where each multi-class variable encodes a label powerset. H2PC is shown
to compare favorably to MMHC in terms of global classification accuracy over ten multi-label data sets covering
different application domains. Overall, our experiments support the conclusions that local structural learning with
H2PC in the form of local neighborhood induction is a theoretically well-motivated and empirically effective learning
framework that is well suited to multi-label learning. The source code (in R) of H2PC as well as all data sets used for
the empirical tests are publicly available.

Keywords: Bayesian networks, Multi-label learning, Markov boundary, Feature subset selection.

1. Introduction 2007; Rodrigues de Morais & Aussem, 2010b), causal
relationships inference from observational data (Ellis

A Bayesian network (BN) is a probabilistic model & Wong, 2008; Aliferis et al., 2010; Aussem et al.,

formed by a structure and parameters. The structure
of a BN is a directed acyclic graph (DAG), whilst its
parameters are conditional probability distributions as-
sociated with the variables in the model. The problem
of finding the DAG that encodes the conditional inde-
pendencies present in the data attracted a great deal
of interest over the last years (Rodrigues de Morais &
Aussem, 2010a; Scutari, 2010; Scutari & Brogini, 2012;
Kojima et al., 2010; Perrier et al., 2008; Villanueva &
Maciel, 2012; Pefia, 2012; Gasse et al., 2012). The in-
ferred DAG is very useful for many applications, includ-
ing feature selection (Aliferis et al., 2010; Peiia et al.,
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2012, 2010; Prestat et al., 2013; Cawley, 2008; Brown
& Tsamardinos, 2008) and more recently multi-label
learning (Dembczy;\ski et al., 2012; Zhang & Zhang,
2010; Guo & Gu, 2011).

Ideally the DAG should coincide with the dependence
structure of the global distribution, or it should at least
identify a distribution as close as possible to the correct
one in the probability space. This step, called structure
learning, is similar in approaches and terminology to
model selection procedures for classical statistical mod-
els. Basically, constraint-based (CB) learning methods
systematically check the data for conditional indepen-
dence relationships and use them as constraints to con-
struct a partially oriented graph representative of a BN



equivalence class, whilst search-and-score (SS) meth-
ods make use of a goodness-of-fit score function for
evaluating graphical structures with regard to the data
set. Hybrid methods attempt to get the best of both
worlds: they learn a skeleton with a CB approach and
constrain on the DAGs considered during the SS phase.

In this study, we present a novel hybrid algorithm for
Bayesian network structure learning, called H2PC'. Tt
first reconstructs the skeleton of a Bayesian network and
then performs a Bayesian-scoring greedy hill-climbing
search to orient the edges. The algorithm is based
on divide-and-conquer constraint-based subroutines to
learn the local structure around a target variable. HPC
may be thought of as a way to compensate for the large
number of false negatives at the output of the weak PC
learner, by performing extra computations. As this may
arise at the expense of the number of false positives,
we control the expected proportion of false discover-
ies (i.e. false positive nodes) among all the discoveries
made in PC7. We use a modification of the Incremental
association Markov boundary algorithm (IAMB), ini-
tially developed by Tsamardinos et al. in (Tsamardi-
nos et al., 2003) and later modified by Jose Pefa in
(Pefia, 2008) to control the FDR of edges when learn-
ing Bayesian network models. HPC scales to thou-
sands of variables and can deal with many fewer sam-
ples (n < g). To illustrate its performance by means
of empirical evidence, we conduct two series of exper-
imental comparisons of H2PC against Max-Min Hill-
Climbing (MMHC), which is currently the most pow-
erful state-of-the-art algorithm for BN structure learn-
ing (Tsamardinos et al., 2006), using well-known BN
benchmarks with various data sizes, to assess the good-
ness of fit to new data as well as the quality of the
network structure with respect to the true dependence
structure of the data.

We then address a real application of H2PC where
the true dependence structure is unknown. More specif-
ically, we investigate H2PC’s ability to encode the joint
distribution of the label set conditioned on the input
features in the multi-label classification (MLC) prob-
lem. Many challenging applications, such as photo and
video annotation and web page categorization, can ben-
efit from being formulated as MLC tasks with large
number of categories (DembczyAski et al., 2012; Read
et al., 2009; Madjarov et al., 2012; Kocev et al., 2007;
Tsoumakas et al., 2010b). Recent research in MLC fo-
cuses on the exploitation of the label conditional de-

'A first version of HP2C without FDR control has been discussed
in a paper that appeared in the Proceedings of ECML-PKDD, pages
58-73, 2012.

pendency in order to better predict the label combina-
tion for each example. We show that local BN struc-
ture discovery methods offer an elegant and power-
ful approach to solve this problem. We establish two
theorems (Theorem 6 and 7) linking the concepts of
marginal Markov boundaries, joint Markov boundaries
and so-called label powersets under the faithfulness as-
sumption. These Theorems offer a simple guideline to
characterize graphically : i) the minimal label powerset
decomposition, (i.e. into minimal subsets Y, p C Y such
that Y;p 1L Y \ Y.p | X), and ii) the minimal subset of
features, w.r.t an Information Theory criterion, needed
to predict each label powerset, thereby reducing the in-
put space and the computational burden of the multi-
label classification. To solve the MLC problem with
BNs, the DAG obtained from the data plays a pivotal
role. So in this second series of experiments, we assess
the comparative ability of H2PC and MMHC to encode
the label dependency structure by means of an indirect
goodness of fit indicator, namely the 0/1 loss function,
which makes sense in the MLC context.

The rest of the paper is organized as follows: In
the Section 2, we review the theory of BN and dis-
cuss the main BN structure learning strategies. We then
present the H2PC algorithm in details in Section 3. Sec-
tion 4 evaluates our proposed method and shows results
for several tasks involving artificial data sampled from
known BNs. Then we report, in Section 5, on our exper-
iments on real-world data sets in a multi-label learning
context so as to provide empirical support for the pro-
posed methodology. The main theoretical results appear
formally as two theorems (Theorem 8 and 9) in Section
5. Their proofs are established in the Appendix. Fi-
nally, Section 6 raises several issues for future work and
we conclude in Section 7 with a summary of our contri-
bution.

2. Preliminaries

We define next some key concepts used along the pa-
per and state some results that will support our analysis.
In this paper, upper-case letters in italics denote random
variables (e.g., X, Y) and lower-case letters in italics de-
note their values (e.g., x,y). Upper-case bold letters de-
note random variable sets (e.g., X, Y, Z) and lower-case
bold letters denote their values (e.g., X,y). We denote
by X L Y | Z the conditional independence between X
and Y given the set of variables Z. To keep the notation
uncluttered, we use p(y | x) to denote p(Y =y | X = x).



2.1. Bayesian networks

Formally, a BN is a tuple < G,P >, where G =<
U,E > is a directed acyclic graph (DAG) with nodes
representing the random variables U and P a joint prob-
ability distribution in Y. In addition, G and P must
satisfy the Markov condition: every variable, X € U,
is independent of any subset of its non-descendant vari-
ables conditioned on the set of its parents, denoted by
Paig . From the Markov condition, it is easy to prove
(Neapolitan, 2004) that the joint probability distribution
P on the variables in U can be factored as follows :

P(V) = P(X1,....X,) = | | P(Xi|Pad) 1)

i=1

Equation 1 allows a parsimonious decomposition of
the joint distribution P. It enables us to reduce the prob-
lem of determining a huge number of probability values
to that of determining relatively few.

A BN structure G entails a set of conditional indepen-
dence assumptions. They can all be identified by the d-
separation criterion (Pearl, 1988). We use X Lg Y|Z to
denote the assertion that X is d-separated from Y given
ZinG. Formally, X Lg Y|Z s true when for every undi-
rected path in G between X and Y, there exists a node
W in the path such that either (1) W does not have two
parents in the path and W € Z, or (2) W has two parents
in the path and neither W nor its descendants is in Z. If
<G,P>isaBN, X 1p Y|Zif X 15 Y|Z. The converse
does not necessarily hold. We say that < G, P > satis-
fies the faithfulness condition if the d-separations in G
identify all and only the conditional independencies in
P,ie,X 1pY|Ziff X 14 Y|Z.

A Markov blanket M7 of T is any set of variables
such that T is conditionally independent of all the re-
maining variables given My. By extension, a Markov
blanket of 7' in V guarantees that My C V, and that T
is conditionally independent of the remaining variables
in V, given My. A Markov boundary, MBr, of T is any
Markov blanket such that none of its proper subsets is a
Markov blanket of T'.

We denote by PC? , the set of parents and children
of T in G, and by SPY, the set of spouses of T in G.
The spouses of T are the variables that have common
children with 7. These sets are unique for all G, such
that < G, P > satisfies the faithfulness condition and so
we will drop the superscript G. We denote by dSep(X),
the set that d-separates X from the (implicit) target 7.

Theorem 1. Suppose < G, P > satisfies the faithfulness
condition. Then X and Y are not adjacent in G iff AZ €
U\ {X,Y} such that X L Y | Z . Moreover, MBy =
PCy U SPy .

A proof can be found for instance in (Neapolitan,
2004).

Two graphs are said equivalent iff they encode the
same set of conditional independencies via the d-
separation criterion. The equivalence class of a DAG
G is a set of DAGs that are equivalent to G. The next
result showed by (Pearl, 1988), establishes that equiv-
alent graphs have the same undirected graph but might
disagree on the direction of some of the arcs.

Theorem 2. Two DAGs are equivalent iff they have the
same underlying undirected graph and the same set of
v-structures (i.e. converging edges into the same node,
suchas X - Y « Z).

Moreover, an equivalence class of network structures
can be uniquely represented by a partially directed DAG
(PDAG), also called a DAG pattern. The DAG pattern is
defined as the graph that has the same links as the DAGs
in the equivalence class and has oriented all and only the
edges common to the DAGs in the equivalence class.
A structure learning algorithm from data is said to be
correct (or sound) if it returns the correct DAG pattern
(or a DAG in the correct equivalence class) under the
assumptions that the independence tests are reliable and
that the learning database is a sample from a distribution
P faithful to a DAG G, The (ideal) assumption that the
independence tests are reliable means that they decide
(in)dependence iff the (in)dependence holds in P.

2.2. Conditional independence properties

The following three theorems, borrowed from Pefia
et al. (2007), are proven in Pearl (1988):

Theorem 3. Let X,Y,Z and W denote four mutu-
ally disjoint subsets of U. Any probability distribu-
tion p satisfies the following four properties: Symme-
ry X L Y| Z =Y L X | Z Decomposition,
XL XYUW) | Z =X L Y | Z Weak Union
X1LNYUW)|Z=X1Y]|(ZUW)and Contraction,
XLY|ZUWIAXLWI|Z=X1LIYUW)|Z.

Theorem 4. If p is strictly positive, then p satisfies the
previous four properties plus the Intersection property
XLY|(ZUWAXLWI]|(ZUY)=X 1 (YU
W) | Z. Additionally, each X € U has a unique Markov
boundary, MBx

Theorem S. If p is faithful to a DAG G, then p satisfies
the previous five properties plus the Composition prop-
erty X LY |ZAXLWI|Z=>XL(YUW)|Zand
the local Markov property X L (NDx \ Pay) | Pay for
each X € U, where NDx denotes the non-descendants

of XinG.



2.3. Structure learning strategies

The number of DAGs, G, is super-exponential in the
number of random variables in the domain and the prob-
lem of learning the most probable a posteriori BN from
data is worst-case NP-hard (Chickering et al., 2004).
One needs to resort to heuristical methods in order to
be able to solve very large problems effectively.

Both CB and SS heuristic approaches have advan-
tages and disadvantages. CB approaches are relatively
quick, deterministic, and have a well defined stopping
criterion; however, they rely on an arbitrary significance
level to test for independence, and they can be unsta-
ble in the sense that an error early on in the search
can have a cascading effect that causes many errors to
be present in the final graph. SS approaches have the
advantage of being able to flexibly incorporate users’
background knowledge in the form of prior probabili-
ties over the structures and are also capable of dealing
with incomplete records in the database (e.g. EM tech-
nique). Although SS methods are favored in practice
when dealing with small dimensional data sets, they are
slow to converge and the computational complexity of-
ten prevents us from finding optimal BN structures (Per-
rier et al., 2008; Kojima et al., 2010). With currently
available exact algorithms (Koivisto & Sood, 2004; Si-
lander & Myllymiki, 2006; Cussens & Bartlett, 2013;
Studeny & Haws, 2014) and a decomposable score like
BDeu, the computational complexity remains exponen-
tial, and therefore, such algorithms are intractable for
BN’ with more than around 30 vertices on current work-
stations. For larger sets of variables the computational
burden becomes prohibitive and restrictions about the
structure have to be imposed, such as a limit on the
size of the parent sets. With this in mind, the ability
to restrict the search locally around the target variable
is a key advantage of CB methods over SS methods.
They are able to construct a local graph around the tar-
get node without having to construct the whole BN first,
hence their scalability (Pefia et al., 2007; Rodrigues de
Morais & Aussem, 2010b,a; Tsamardinos et al., 2006;
Pefia, 2008).

With a view to balancing the computation cost with
the desired accuracy of the estimates, several hybrid
methods have been proposed recently. Tsamardinos et
al. proposed in (Tsamardinos et al., 2006) the Min-
Max Hill Climbing (MMHC) algorithm and conducted
one of the most extensive empirical comparison per-
formed in recent years showing that MMHC was the
fastest and the most accurate method in terms of struc-
tural error based on the structural hamming distance.
More specifically, MMHC outperformed both in terms
of time efficiency and quality of reconstruction the PC

(Spirtes et al., 2000), the Sparse Candidate (Friedman
et al.,, 1999b), the Three Phase Dependency Analysis
(Cheng et al., 2002), the Optimal Reinsertion (Moore &
Wong, 2003), the Greedy Equivalence Search (Chick-
ering, 2002), and the Greedy Hill-Climbing Search on
a variety of networks, sample sizes, and parameter val-
ues. Although MMHC is rather heuristic by nature (it
returns a local optimum of the score function), it is cur-
rently considered as the most powerful state-of-the-art
algorithm for BN structure learning capable of dealing
with thousands of nodes in reasonable time.

In order to enhance its performance on small dimen-
sional data sets, Perrier et al. proposed in (Perrier et al.,
2008) a hybrid algorithm that can learn an optimal BN
(i.e., it converges to the true model in the sample limit)
when an undirected graph is given as a structural con-
straint. They defined this undirected graph as a super-
structure (i.e., every DAG considered in the SS phase is
compelled to be a subgraph of the super-structure). This
algorithm can learn optimal BNs containing up to 50
vertices when the average degree of the super-structure
is around two, that is, a sparse structural constraint is
assumed. To extend its feasibility to BN with a few
hundred of vertices and an average degree up to four,
Kojima et al. proposed in (Kojima et al., 2010) to divide
the super-structure into several clusters and perform an
optimal search on each of them in order to scale up to
larger networks. Despite interesting improvements in
terms of score and structural hamming distance on sev-
eral benchmark BNs, they report running times about
103 times longer than MMHC on average, which is still
prohibitive.

Therefore, there is great deal of interest in hybrid
methods capable of improving the structural accuracy
of both CB and SS methods on graphs containing up
to thousands of vertices. However, they make the
strong assumption that the skeleton (also called super-
structure) contains at least the edges of the true network
and as small as possible extra edges. While control-
ling the false discovery rate (i.e., false extra edges) in
BN learning has attracted some attention recently (Ar-
men & Tsamardinos, 2011; Pefia, 2008; Tsamardinos
& Brown, 2008), to our knowledge, there is no work on
controlling actively the rate of false-negative errors (i.e.,
false missing edges).

2.4. Constraint-based structure learning

Before introducing the H2PC algorithm, we discuss
the general idea behind CB methods. The induction of
local or global BN structures is handled by CB methods
through the identification of local neighborhoods (i.e.,
PCy), hence their scalability to very high dimensional



data sets. CB methods systematically check the data for
conditional independence relationships in order to in-
fer a target’s neighborhood. Typically, the algorithms
run either a G? or a y? independence test when the data
set is discrete and a Fisher’s Z test when it is continu-
ous in order to decide on dependence or independence,
that is, upon the rejection or acceptance of the null hy-
pothesis of conditional independence. Since we are
limiting ourselves to discrete data, both the global and
the local distributions are assumed to be multinomial,
and the latter are represented as conditional probabil-
ity tables. Conditional independence tests and network
scores for discrete data are functions of these condi-
tional probability tables through the observed frequen-
cies {mjp;i = 1,...,R;j=1,...,C;k = 1,...,L} for
the random variables X and Y and all the configurations
of the levels of the conditioning variables Z. We use
ni+r as shorthand for the marginal Z_/ n;jx and similarly
for n;ix, neyr and ny .y = n. We use a classic conditional
independence test based on the mutual information. The
mutual information is an information-theoretic distance
measure defined as

MI(X,Y|Z) =

1

N jk kMg vk
P

n Ntk i

R C L
=1 j=1

Jj=1 k=1

It is proportional to the log-likelihood ratio test G*
(they differ by a 2n factor, where n is the sample size).
The asymptotic null distribution is y* with (R — 1)(C —
1)L degrees of freedom. For a detailed analysis of their
properties we refer the reader to (Agresti, 2002). The
main limitation of this test is the rate of convergence
to its limiting distribution, which is particularly prob-
lematic when dealing with small samples and sparse
contingency tables. The decision of accepting or re-
jecting the null hypothesis depends implicitly upon the
degree of freedom which increases exponentially with
the number of variables in the conditional set. Sev-
eral heuristic solutions have emerged in the literature
(Spirtes et al., 2000; Rodrigues de Morais & Aussem,
2010a; Tsamardinos et al., 2006; Tsamardinos & Bor-
boudakis, 2010) to overcome some shortcomings of the
asymptotic tests. In this study we use the two follow-
ing heuristics that are used in MMHC. First, we do not
perform MI(X, Y|Z) and assume independence if there
are not enough samples to achieve large enough power.
We require that the average sample per count is above
a user defined parameter, equal to 5, as in (Tsamardi-
nos et al., 2006). This heuristic is called the power rule.
Second, we consider as structural zero either case n, j
or niix = 0. For example, if n, 3 = 0, we consider y

as a structurally forbidden value for Y when Z = z and
we reduce R by 1 (as if we had one column less in the
contingency table where Z = z). This is known as the
degrees of freedom adjustment heuristic.

3. The H2PC algorithm

In this section, we present our hybrid algorithm
for Bayesian network structure learning, called Hy-
brid HPC (H2PC). It first reconstructs the skeleton of
a Bayesian network and then performs a Bayesian-
scoring greedy hill-climbing search to filter and orient
the edges. It is based on a CB subroutine called HPC to
learn the parents and children of a single variable. So,
we shall discuss HPC first and then move to H2PC.

3.1. Parents and Children Discovery

HPC (Algorithm 1) can be viewed as an ensemble
method for combining many weak PC learners in an at-
tempt to produce a stronger PC learner. HPC is based
on three subroutines: Data-Efficient Parents and Chil-
dren Superset (DE-PCS), Data-Efficient Spouses Super-
set (DE-SPS), and Incremental Association Parents and
Children with false discovery rate control (FDR-IAPC),
a weak PC learner based on FDR-IAMB (Peiia, 2008)
that requires little computation. HPC receives a target
node 7, a data set D and a set of variables U as input
and returns an estimation of PCr. It is hybrid in that
it combines the benefits of incremental and divide-and-
conquer methods. The procedure starts by extracting
a superset PCSy of PCy (line 1) and a superset SPSy
of SP7 (line 2) with a severe restriction on the max-
imum conditioning size (Z <= 2) in order to signifi-
cantly increase the reliability of the tests. A first can-
didate PC set is then obtained by running the weak PC
learner called FDR-IAPC on PCS; USPS7 (line 3). The
key idea is the decentralized search at lines 4-8 that in-
cludes, in the candidate PC set, all variables in the su-
perset PCS7 \ PCr that have T in their vicinity. So,
HPC may be thought of as a way to compensate for the
large number of false negatives at the output of the weak
PC learner, by performing extra computations. Note
that, in theory, X is in the output of FDR-IAPC(Y) if
and only if Y is in the output of FDR-IAPC(X). How-
ever, in practice, this may not always be true, particu-
larly when working in high-dimensional domains (Peifia,
2008). By loosening the criteria by which two nodes are
said adjacent, the effective restrictions on the size of the
neighborhood are now far less severe. The decentral-
ized search has a significant impact on the accuracy of
HPC as we shall see in in the experiments. We proved in



(Rodrigues de Morais & Aussem, 2010a) that the orig-
inal HPC(T) is consistent, i.e. its output converges in
probability to PCy , if the hypothesis tests are consis-
tent. The proof also applies to the modified version pre-
sented here.

We now discuss the subroutines in more detail. FDR-
IAPC (Algorithm 2) is a fast incremental method that
receives a data set D and a target node 7 as its input
and promptly returns a rough estimation of PCr, hence
the term “weak” PC learner. In this study, we use FDR-
IAPC because it aims at controlling the expected pro-
portion of false discoveries (i.e., false positive nodes in
PCr) among all the discoveries made. FDR-IAPC is a
straightforward extension of the algorithm IJAMBFDR
developed by Jose Pefia in (Pefia, 2008), which is itself
a modification of the incremental association Markov
boundary algorithm (IAMB) (Tsamardinos et al., 2003),
to control the expected proportion of false discover-
ies (i.e., false positive nodes) in the estimated Markov
boundary. FDR-IAPC simply removes, at lines 3-6, the
spouses SPr from the estimated Markov boundary MBr
output by IAMBFDR at line 1, and returns PCr assum-
ing the faithfulness condition.

The subroutines DE-PCS (Algorithm 3) and DE-SPS
(Algorithm 4) search a superset of PCy and SPr respec-
tively with a severe restriction on the maximum condi-
tioning size (|Z| <= 1 in DE-PCS and |Z| <= 2 in DE-
SPS) in order to significantly increase the reliability of
the tests. The variable filtering has two advantages :
i) it allows HPC to scale to hundreds of thousands of
variables by restricting the search to a subset of relevant
variables, and ii) it eliminates many true or approximate
deterministic relationships that produce many false neg-
ative errors in the output of the algorithm, as explained
in (Rodrigues de Morais & Aussem, 2010b,a). DE-SPS
works in two steps. First, a growing phase (lines 4-8)
adds the variables that are d-separated from the target
but still remain associated with the target when condi-
tioned on another variable from PCSy. The shrinking
phase (lines 9-16) discards irrelevant variables that are
ancestors or descendants of a target’s spouse. Pruning
such irrelevant variables speeds up HPC.

3.2. Hybrid HPC (H2PC)

In this section, we discuss the SS phase. The follow-
ing discussion draws strongly on (Tsamardinos et al.,
2006) as the SS phase in Hybrid HPC and MMHC
are exactly the same. The idea of constraining the
search to improve time-efficiency first appeared in the
Sparse Candidate algorithm (Friedman et al., 1999b).
It results in efficiency improvements over the (uncon-
strained) greedy search. All recent hybrid algorithms

Algorithm 1 HPC

Require: T': target; D: data set; U: set of variables
Ensure: PCy: Parents and Children of T

: [PCSr,dSep] « DE-PCS(T, D, U)

: SPSy « DE-SPS(T, D, U, PCSy, dSep)

: PCr « FDR-IAPC(T, D, (T UPCS7 USPS7))

: for all X € PCS; \ PCr do

if T € FDR-IAPC(X, D, (T U PCSr U SPSy)) then
PCT — PCT uUX

end if

: end for

PRI ANEANE Il

Algorithm 2 FDR-IAPC
Require: T7': target; D: data set; U: set of variables
Ensure: PCy;: Parents and children of T';

* Learn the Markov boundary of T

: MBy « IAMBFDR(X, D, U)
* Remove spouses of T from MBr

: PC; — MB;

: for all X € MB; do

if 3Z € (MB7 \ X) such that T L X | Z then
PCr « PCr \ X

end if

: end for

Algorithm 3 DE-PCS

Require: T': target; D: data set; U: set of variables;

Ensure: PCSy: parents and children superset of T'; dSep: d-
separating sets;

Phase I: Remove X if T L X
: PCS; « U\T
: for all X € PCS7 do
if (T L X) then
PCS; <« PCS; \ X
dSep(X) < 0
end if
: end for

NN R Ry

Phase II: Remove X if T L X|Y
8: for all X € PCS; do
9: for all Y € PCS7 \ X do

10: if (T L X|Y)then
11: PCS; <« PCS7 \ X
12: dSep(X) « Y

13: break loop FOR
14: end if

15: end for

16: end for




Algorithm 4 DE-SPS

Require: 7: target; 9: data set; U: the set of variables;
PCSy7: parents and children superset of T; dSep: d-
separating sets;

Ensure: SPSr: Superset of the spouses of T';

1: SPS; <0
2: for all X € PCSy do
3 SPSY « 0
4:  forallY e U\ {T UPCS7} do
5: if (T L Y|dSep(Y) U X) then
6: SPS} « SPSfuUY
7 end if
8:  end for
9: forall Y € SPS} do
10: for all Z € SPS} \ Y do
11: if (T L Y|IXUZ)then
12: SPSY « SPSY\ Y
13: break loop FOR
14: end if
15: end for
16:  end for
17:  SPS; « SPS; U SPS¥
18: end for
Algorithm 5 Hybrid HPC

Require: 9: data set; U: set of variables
Ensure: A DAG G on the variables U

1: for all pair of nodes X, Y € U do
2: Add X inPCy and Add Y in PCy if X € HPC(Y) and
Y € HPC(X)
3: end for
4: Starting from an empty graph, perform greedy hill-
climbing with operators add-edge, delete-edge, reverse-
edge. Only try operator add-edge X — Y if Y € PCy

build on this idea, but employ a sound algorithm for
identifying the candidate parent sets. The Hybrid HPC
first identifies the parents and children set of each vari-
able, then performs a greedy hill-climbing search in the
space of BN. The search begins with an empty graph.
The edge addition, deletion, or direction reversal that
leads to the largest increase in score (the BDeu score
with uniform prior was used) is taken and the search
continues in a similar fashion recursively. The impor-
tant difference from standard greedy search is that the
search is constrained to only consider adding an edge if
it was discovered by HPC in the first phase. We extend
the greedy search with a TABU list (Friedman et al.,
1999b). The list keeps the last 100 structures explored.
Instead of applying the best local change, the best lo-
cal change that results in a structure not on the list is
performed in an attempt to escape local maxima. When
15 changes occur without an increase in the maximum
score ever encountered during search, the algorithm ter-
minates. The overall best scoring structure is then re-
turned. Clearly, the more false positives the heuristic al-
lows to enter candidate PC set, the more computational
burden is imposed in the SS phase.

4. Experimental validation on synthetic data

Before we proceed to the experiments on real-world
multi-label data with H2PC, we first conduct an exper-
imental comparison of H2PC against MMHC on syn-
thetic data sets sampled from eight well-known bench-
marks with various data sizes in order to gauge the prac-
tical relevance of the H2PC. These BNs that have been
previously used as benchmarks for BN learning algo-
rithms (see Table 1 for details). Results are reported in
terms of various performance indicators to investigate
how well the network generalizes to new data and how
well the learned dependence structure matches the true
structure of the benchmark network. We implemented
H2PC in R (R Core Team, 2013) and integrated the code
into the bnlearn package from (Scutari, 2010). MMHC
was implemented by Marco Scutari in bnlearn. The
source code of H2PC as well as all data sets used for
the empirical tests are publicly available 2. The thresh-
old considered for the type I error of the test is 0.05.
Our experiments were carried out on PC with Intel(R)
Core(TM) i5-3470M CPU @3.20 GHz 4Go RAM run-
ning under Linux 64 bits.

We do not claim that those data sets resemble real-
world problems, however, they make it possible to com-

’https://github.com/madbix/bnlearn-clone-3.4



Table 1: Description of the BN benchmarks used in the experiments.

network  #var. # edges max. degree domain min/med/max

in/out range  PC set size

child 20 25 2/7 2-6 1/2/8
insurance 27 52 3/7 2-5 1/3/9
mildew 35 46 3/3 3-100 1/2/5
alarm 37 46 4/5 2-4 1/2/6

hailfinder 56 66 4/16 2-11 1/1.5/17
muninl 186 273 3/15 2-21 1/3/15
pigs 441 592 2/39 3-3 1/2/41
link 724 1125 3/14 2-4 0/2/17

pare the outputs of the algorithms with the known struc-
ture. All BN benchmarks (structure and probability ta-
bles) were downloaded from the bnlearn repository?.
Ten sample sizes have been considered: 50, 100, 200,
500, 1000, 2000, 5000, 10000, 20000 and 50000. All
experiments are repeated 10 times for each sample size
and each BN. We investigate the behavior of both algo-
rithms using the same parametric tests as a reference.

4.1. Performance indicators

We first investigate the quality of the skeleton re-
turned by H2PC during the CB phase. To this end, we
measure the false positive edge ratio, the precision (i.e.,
the number of true positive edges in the output divided
by the number of edges in the output), the recall (i.e., the
number of true positive edges divided the true number
of edges) and a combination of precision and recall de-
fined as +/(1 — precision)* + (1 — recall)?, to measure
the Euclidean distance from perfect precision and re-
call, as proposed in (Pefia et al., 2007). Second, to as-
sess the quality of the final DAG output at the end of
the SS phase, we report the five performance indicators
(Scutari & Brogini, 2012) described below:

e the posterior density of the network for the data
it was learned from, as a measure of goodness of
fit. It is known as the Bayesian Dirichlet equivalent
score (BDeu) from (Heckerman et al., 1995; Bun-
tine, 1991) and has a single parameter, the equiv-
alent sample size, which can be thought of as the
size of an imaginary sample supporting the prior
distribution. The equivalent sample size was set to
10 as suggested in (Koller & Friedman, 2009);

e the BIC score (Schwarz, 1978) of the network for
the data it was learned from, again as a measure of
goodness of fit;

3 http:fwww.bnlearn.com/bnrepository

o the posterior density of the network for a new data
set, as a measure of how well the network general-
izes to new data;

e the BIC score of the network for a new data set,
again as a measure of how well the network gener-
alizes to new data;

o the Structural Hamming Distance (SHD) between
the learned and the true structure of the network,
as a measure of the quality of the learned depen-
dence structure. The SHD between two PDAGS is
defined as the number of the following operators
required to make the PDAGs match: add or delete
an undirected edge, and add, remove, or reverse the
orientation of an edge.

For each data set sampled from the true probability
distribution of the benchmark, we first learn a network
structure with the H2PC and MMHC and then we com-
pute the relevant performance indicators for each pair
of network structures. The data set used to assess how
well the network generalizes to new data is generated
again from the true probability structure of the bench-
mark networks and contains 50000 observations.

Notice that using the BDeu score as a metric of recon-
struction quality has the following two problems. First,
the score corresponds to the a posteriori probability of a
network only under certain conditions (e.g., a Dirichlet
distribution of the hyper parameters); it is unknown to
what degree these assumptions hold in distributions en-
countered in practice. Second, the score is highly sensi-
tive to the equivalent sample size (set to 10 in our exper-
iments) and depends on the network priors used. Since,
typically, the same arbitrary value of this parameter is
used both during learning and for scoring the learned
network, the metric favors algorithms that use the BDeu
score for learning. In fact, the BDeu score does not rely
on the structure of the original, gold standard network at
all; instead it employs several assumptions to score the
networks. For those reasons, in addition to the score we
also report the BIC score and the SHD metric.

4.2. Results

In Figure 1, we report the quality of the skeleton ob-
tained with HPC over that obtained with MMPC (be-
fore the SS phase) as a function of the sample size.
Results for each benchmark are not shown here in de-
tail due to space restrictions. For sake of conciseness,
the performance values are averaged over the 8 bench-
marks depicted in Table 1. The increase factor for a
given performance indicator is expressed as the ratio of
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Figure 1: Quality of the skeleton obtained with HPC over that obtained with MMPC (after the CB phase). The 2 first figures present mean values
aggregated over the 8 benchmarks. The 4 last figures present increase factors of HPC / MMPC, with the median, quartile, and most extreme values
(green boxplots), along with the mean value (black line).



the performance value obtained with HPC over that ob-
tained with MMPC (the gold standard). Note that for
some indicators, an increase is actually not an improve-
ment but is worse (e.g., false positive rate, Euclidean
distance). For clarity, we mention explicitly on the sub-
plots whether an increase factor > 1 should be inter-
preted as an improvement or not. Regarding the qual-
ity of the superstructure, the advantages of HPC against
MMPC are noticeable. As observed, HPC consistently
increases the recall and reduces the rate of false neg-
ative edges. As expected this benefit comes at a lit-
tle expense in terms of false positive edges. HPC also
improves the Euclidean distance from perfect precision
and recall on all benchmarks, while increasing the num-
ber of independence tests and thus the running time in
the CB phase (see number of statistical tests). It is worth
noting that HPC is capable of reducing by 50% the Eu-
clidean distance with 50000 samples (lower left plot).
These results are very much in line with other exper-
iments presented in (Rodrigues de Morais & Aussem,
2010a; Villanueva & Maciel, 2012).

In Figure 2, we report the quality of the final DAG ob-
tained with H2PC over that obtained with MMHC (af-
ter the SS phase) as a function of the sample size. Re-
garding BDeu and BIC on both training and test data,
the improvements are noteworthy. The results in terms
of goodness of fit to training data and new data using
H2PC clearly dominate those obtained using MMHC,
whatever the sample size considered, hence its ability to
generalize better. Regarding the quality of the network
structure itself (i.e., how close is the DAG to the true
dependence structure of the data), this is pretty much
a dead heat between the 2 algorithms on small sam-
ple sizes (i.e., 50 and 100), however we found H2PC
to perform significantly better on larger sample sizes.
The SHD increase factor decays rapidly (lower is bet-
ter) as the sample size increases (lower left plot). For
50 000 samples, the SHD is on average only 50% that of
MMHC. Regarding the computational burden involved,
we may observe from Table 2 that H2PC has a little
computational overhead compared to MMHC. The run-
ning time increase factor grows somewhat linearly with
the sample size. With 50000 samples, H2PC is approxi-
mately 10 times slower on average than MMHC. This is
mainly due to the computational expense incurred in ob-
taining larger PC sets with HPC, compared to MMPC.

5. Application to multi-label learning

In this section, we address the problem of multi-
label learning with H2PC. MLC is a challenging prob-
lem in many real-world application domains, where
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each instance can be assigned simultaneously to mul-
tiple binary labels (DembczyAski et al., 2012; Read
et al., 2009; Madjarov et al., 2012; Kocev et al., 2007,
Tsoumakas et al., 2010b). Formally, learning from
multi-label examples amounts to finding a mapping
from a space of features to a space of labels. We shall
assume throughout that X (a random vector in R9) is the
feature set, Y (a random vector in {0, 1}") is the label
set, U =X UY and p a probability distribution defined
over U. Given a multi-label training set D, the goal of
multi-label learning is to find a function which is able
to map any unseen example to its proper set of labels.
From the Bayesian point of view, this problem amounts
to modeling the conditional joint distribution p(Y | X).

5.1. Related work

This MLC problem may be tackled in various ways
(Luaces et al., 2012; Alvares-Cherman et al., 2011;
Read et al., 2009; Blockeel et al., 1998; Kocev et al.,
2007). Each of these approaches is supposed to capture
- to some extent - the relationships between labels. The
two most straightforward meta-learning methods (Mad-
jarov et al., 2012) are: Binary Relevance (BR) (Luaces
et al., 2012) and Label Powerset (LP) (Tsoumakas &
Vlahavas, 2007; Tsoumakas et al., 2010b). Both meth-
ods can be regarded as opposite in the sense that BR
does consider each label independently, while LP con-
siders the whole label set at once (one multi-class prob-
lem). An important question remains: what shall we
capture from the statistical relationships between labels
exactly to solve the multi-label classification problem?
The problem attracted a great deal of interest (Dem-
bczy;\ski etal., 2012; Zhang & Zhang, 2010). It is well
beyond the scope and purpose of this paper to delve
deeper into these approaches, we point the reader to
(Dembczy/&ski et al., 2012; Tsoumakas et al., 2010b)
for a review. The second fundamental problem that we
wish to address involves finding an optimal feature sub-
set selection of a label set, w.r.t an Information The-
ory criterion Koller & Sahami (1996). As in the single-
label case, multi-label feature selection has been studied
recently and has encountered some success (Gu et al.,
2011; Spolaor et al., 2013).

5.2. Label powerset decomposition

We shall first introduce the concept of label powerset
that will play a pivotal role in the factorization of the
conditional distribution p(Y | X).

Definition 1. Y;» C Y is called a label powerset iff
Y;p L Y\ Yrp | X. Additionally, Y;p is said minimal
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Figure 2: Quality of the final DAG obtained with H2PC over that obtained with MMHC (after the SS phase). The 6 figures present increase factors
of HPC / MMPC, with the median, quartile, and most extreme values (green boxplots), along with the mean value (black line).
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Table 2: Total running time ratio R (H2PC/MMHC). White cells indicate a ratio R < 1 (in favor of H2PC), while shaded cells indicate a ratio R > 1

(in favor of MMHC). The darker, the larger the ratio.

Sample Size

Network
50 100 200 500 1000 2000 5000 10000 20000 50000
hild 0.94 0.87 1.14 1.99 2.26 2.12 2.36 2.58 1.75 1.78
¢ +0.1 +0.1 +0.1 +0.2 +0.1 +0.2 +0.4 +0.3 +0.6 +0.5
insurance 0.96 1.09 1.56 2.93 3.06 3.48 3.69 4.10 3.76 3.75
+0.1 +0.1 +0.1 +0.2 +0.3 +0.4 +0.3 +0.4 +0.6 +0.5
mildew 0.77 0.80 0.79 0.94 1.01 1.23 1.74 2.14 3.26 6.20
+0.1 +0.1 +0.1 +0.1 +0.1 +0.1 +0.2 +0.2 +0.6 +1.0
| 0.88 1.11 1.75 2.43 2.55 2.71 2.65 2.80 2.49 2.18
alarm +0.1  +0.1 0.1 0.1 0.1 =01 =02 =02  +03 06
hailfinder 0.85 0.85 1.40 1.69 1.83 2.06 2.13 2.12 1.95 1.96
+0.1 +0.1 +0.1 +0.1 +0.1 +0.1 +0.1 +0.2 +0.2 +0.6
muninl 0.77 0.85 0.93 1.35 2.11 4.30 12.92 23.32 24.95 24.76
+0.0 +0.0 +0.0 +0.0 +0.0 0.2 +0.7 +2.6 +5.1 +6.7
o5 0.80 0.80 4.55 4.71 5.00 5.62 7.63 11.10 14.02 11.74
pig 00 +00 0.1 0.1 =02 =02 =03 =06 +1.7  *32
link 1.16 1.93 2.76 5.55 7.04 8.19 10.00 13.87 15.32 24.74
+0.0 +0.0 +0.0 +0.1 +0.2 +0.2 +0.3 +0.4 +2.5 +4.2
1 0.89 1.04 1.86 2.70 3.11 3.71 5.39 7.75 8.44 9.64
a +0.1 +0.1 +1.2 +1.5 +1.9 +2.2 +4.0 +7.3 +8.4 +9.7

if it is non empty and has no label powerset as proper
subset.
L L
max p(y | X) = [ | max p(yee, 1%) = [ | max p(yzp, | myp)
Let LP denote the set of all powersets defined over y =1 Y =1 Y

U, and minLLP the set of all minimal label powersets.
It is easily shown {Y,0} € LP. The key idea behind
label powersets is the decomposition of the conditional
distribution of the labels into a product of factors

L L
pOY IX) = [ p(Yip, 1X) = [ | p(Yip, | Mip)

J=1 J=1

where {Y.p,,...,Yrp,} is a partition of label power-
sets and MLp], is a Markov blanket of Yij in X. From
the above definition, we have Y p, 1L Yij | X, Vi#j.

In the framework of MLC, one can consider a multi-
tude of loss functions. In this study, we focus on a non
label-wise decomposable loss function called the sub-
set 0/1 loss which generalizes the well-known 0/1 loss
from the conventional to the multi-label setting. The
risk-minimizing prediction for subset 0/1 loss is sim-
ply given by the mode of the distribution (Dembczy;\ski
et al., 2012). Therefore, we seek a factorization into a
product of minimal factors in order to facilitate the esti-
mation of the mode of the conditional distribution (also
called the most probable explanation (MPE)):
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The next section aims to obtain theoretical results for
the characterization of the minimal label powersets Yp,
and their Markov boundaries M, p; from a DAG, in or-
der to be able to estimate the MPE more effectively.

5.3. Label powerset characterization

In this section, we show that minimal label powersets
can be depicted graphically when p is faithful to a DAG,

Theorem 6. Suppose p is faithful to a DAG G. Then,
Y; and Y; belong to the same minimal label powerset if
and only if there exists an undirected path in G between
nodes Y; and Y; in'Y such that all intermediate nodes Z
are either (i) Z € Y, or (ii) Z € X and Z has two parents
inY (ie. acollider of the formY, — X < Y,).

The proof is given in the Appendix. We shall now
address the following questions: What is the Markov
boundary in X of a minimal label powerset? Answering
this question for general distributions is not trivial. We
establish a useful relation between a label powerset and
its Markov boundary in X when p is faithful to a DAG,



Theorem 7. Suppose p is faithful to a DAG G. Let
Ypr = {Y1,Y2,...,Y,} be a label powerset. Then, its
Markov boundary M in U is also its Markov boundary
in X, and is given in G by M = | J_|{PCy, USPy,} \ Y.

The proof is given in the Appendix.

5.4. Experimental setup

The MLC problem is decomposed into a series of
multi-class classification problems, where each multi-
class variable encodes one label powerset, with as many
classes as the number of possible combinations of la-
bels, or those present in the training data. At this point,
it should be noted that the LP method is a special case of
this framework since the whole label set is a particular
label powerset (not necessarily minimal though). The
above procedure can been summarized as follows:

1. Learn the BN local graph G around the label set;

2. Read off G the minimal label powersets and their
respective Markov boundaries;

3. Train an independent multi-class classifier on each
minimal LP, with the input space restricted to its
Markov boundary in G;

4. Aggregate the prediction of each classifier
to output the most probable explanation, i.e.
arg max, p(y | x).

To assess separately the quality of the minimal label
powerset decomposition and the feature subset selection
with Markov boundaries, we investigate 4 scenarios:

e BR without feature selection (denoted BR): a clas-
sifier is trained on each single label with all fea-
tures as input. This is the simplest approach as it
does not exploit any label dependency. It serves as
a baseline learner for comparison purposes.

e BR with feature selection (denoted BR+MB): a
classifier is trained on each single label with the
input space restricted to its Markov boundary in
G. Compared to the previous strategy, we evaluate
here the effectiveness of the feature selection task.

e Minimum label powerset method without feature
selection (denoted MLP): the minimal label pow-
ersets are obtained from the DAG. All features are
used as inputs.

e Minimum label powerset method with feature se-
lection (denoted MLP+MB): the minimal label
powersets are obtained from the DAG. the input
space is restricted to the Markov boundary of the
labels in that powerset.
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We use the same base learner in each meta-learning
method: the well-known Random Forest classifier
(Breiman, 2001). RF achieves good performance in
standard classification as well as in multi-label prob-
lems (Kocev et al., 2007; Madjarov et al., 2012), and
is able to handle both continuous and discrete data eas-
ily, which is much appreciated. The standard RF imple-
mentation in R (Liaw & Wiener, 2002)* was used. For
practical purposes, we restricted the forest size of RF to
100 trees, and left the other parameters to their default
values.

5.4.1. Data and performance indicators

A total of 10 multi-label data sets are collected for
experiments in this section, whose characteristics are
summarized in Table 3. These data sets come from
different problem domains including text, biology, and
music. They can be found on the Mulan® repository,
except for image which comes from Zhou® (Maron &
Ratan, 1998). Let D be the multi-label data set, we use
|DI, dim(D), L(D), F(D) to represent the number of ex-
amples, number of features, number of possible labels,
and feature type respectively. DL(D) = |{Y|dx : (x,Y) €
D}| counts the number of distinct label combinations ap-
pearing in the data set. Continues values are binarized
during the BN structure learning phase.

Table 3: Data sets characteristics

data set domain |D| dim(D) F(D) L(D) DL(D)
emotions music 593 72 cont. 6 27
yeast biology 2417 103 cont. 14 198
image images 2000 135 cont. 5 20
scene images 2407 294 cont. 6 15
slashdot  text 3782 1079 disc. 22 156
genbase biology 662 1186 disc. 27 32
medical  text 978 1449 disc. 45 94
enron text 1702 1001 disc. 53 753
bibtex text 7395 1836 disc. 159 2856
corel5k  images 5000 499 disc. 374 3175

The performance of a multi-label classifier can be
assessed by several evaluation measures (Tsoumakas
et al., 2010a). We focus on maximizing a non-
decomposable score function: the global accuracy (also
termed subset accuracy, complement of the 0/1-loss),
which measures the correct classification rate of the
whole label set (exact match of all labels required).

“http://cran.r-project.org/web/packages/
randomForest

Shttp://mulan.sourceforge.net/datasets.html

Shttp://lamda.nju.edu.cn/data_MIMLimage.ashx



Note that the global accuracy implicitly takes into ac-
count the label correlations. It is therefore a very strict
evaluation measure as it requires an exact match of the
predicted and the true set of labels. It was recently
proved in (DembczyAski et al., 2012) that BR is opti-
mal for decomposable loss functions (e.g., the hamming
loss), while non-decomposable loss functions (e.g. sub-
set loss) inherently require the knowledge of the label
conditional distribution. 10-fold cross-validation was
performed for the evaluation of the MLC methods.

5.4.2. Results

Table 4 reports the outputs of H2PC and MMHC, Ta-
ble 5 shows the global accuracy of each method on the
10 data sets. Table 6 reports the running time and the
average node degree of the labels in the DAGs obtained
with both methods. Figures 3 up to 7 display graph-
ically the local DAG structures around the labels, ob-
tained with H2PC and MMHC, for illustration purposes.

Several conclusions may be drawn from these exper-
iments. First, we may observe by inspection of the av-
erage degree of the label nodes in Table 6 that several
DAGs are densely connected, like scene or bibtex, while
others are rather sparse, like genbase, medical, corel5k.
The DAGs displayed in Figures 3 up to 7 lend them-
selves to interpretation. They can be used for encod-
ing as well as portraying the conditional independen-
cies, and the d-sep criterion can be used to read them
off the graph. Many label powersets that are reported
in Table 4 can be identified by graphical inspection of
the DAGs. For instance, the two label powersets in
yeast (Figure 3, bottom plot) are clearly noticeable in
both DAGs. Clearly, BNs have a number of advantages
over alternative methods. They lay bare useful infor-
mation about the label dependencies which is crucial if
one is interested in gaining an understanding of the un-
derlying domain. It is however well beyond the scope
of this paper to delve deeper into the DAG interpreta-
tion. Overall, it appears that the structures recovered
by H2PC are significantly denser, compared to MMHC.
On bibtex and enron, the increase of the average label
degree is the most spectacular. On bibtex (resp. enron),
the average label degree has raised from 2.6 to 6.4 (resp.
from 1.2 to 3.3). This result is in nice agreement with
the experiments in the previous section, as H2PC was
shown to consistently reduce the rate of false negative
edges with respect to MMHC (at the cost of a slightly
higher false discovery rate).

Second, Table 4 is very instructive as it reveals that
on emotions, image, and scene, the MLP approach boils
down to the LP scheme. This is easily seen as there is
only one minimal label powerset extracted on average.
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In contrast, on genbase the MLP approach boils down
to the simple BR scheme. This is confirmed by inspect-
ing Table 5: the performances of MMHC and H2PC
(without feature selection) are equal. An interesting ob-
servation upon looking at the distribution of the label
powerset size shows that for the remaining data sets, the
MLP mostly decomposes the label set in two parts: one
on which it performs BR and the other one on which
it performs LP. Take for instance enron, it can be seen
from Table 4 that there are approximately 23 label sin-
gletons and a powerset of 30 labels with H2PC for a to-
tal of 53 labels. The gain in performance with MLP over
BR, our baseline learner, can be ascribed to the quality
of the label powerset decomposition as BR is ignoring
label dependencies. As expected, the results using MLP
clearly dominate those obtained using BR on all data
sets except genbase. The DAGs display the minimum
label powersets and their relevant features.

Third, H2PC compares favorably to MMHC. On
scene for instance, the accuracy of MLP+MB has raised
from 20% (with MMHC) to 56% (with H2PC). On
yeast, it has raised from 7% to 23%. Without feature
selection, the difference in global accuracy is less pro-
nounced but still in favor of H2PC. A Wilcoxon signed
rank paired test reveals statistically significant improve-
ments of H2PC over MMHC in the MLP approach with-
out feature selection (p < 0.02). This trend is more pro-
nounced when the feature selection is used (p < 0.001),
using MLP-MB. Note however that the LP decompo-
sition for H2PC and MMHC on yeast and image are
strictly identical, hence the same accuracy values in Ta-
ble 5 in the MLP column.

Fourth, regarding the utility of the feature selection,
it is difficult to reach any conclusion. Whether BR or
MLP is used, the use of the selected features as inputs
to the classification model is not shown greatly benefi-
cial in terms of global accuracy on average. The per-
formance of BR and our MLP with all the features out-
performs that with the selected features in 6 data sets
but the feature selection leads to actual improvements
in 3 data sets. The difference in accuracy with and with-
out the feature selection was not shown to be statisti-
cally significant (p > 0.20 with a Wilcoxon signed rank
paired test). Surprisingly, the feature selection did ex-
ceptionally well on genbase. On this data set, the in-
crease in accuracy is the most impressive: it raised from
7% to 98% which is atypical. The dramatic increase in
accuracy on genbase is due solely to the restricted fea-
ture set as input to the classification model. This is also
observed on medical, to a lesser extent though. Inter-
estingly, on large and densely connected networks (e.g.
bibtex, slashdot and corel5K), the feature selection per-



formed very well in terms of global accuracy and signif-
icantly reduced the input space which is noticeable. On
emotions, yeast, image, scene and genbase, the method
reduced the feature set down to nearly 1/100 its origi-
nal size. The feature selection should be evaluated in
view of its effectiveness at balancing the increasing er-
ror and the decreasing computational burden by drasti-
cally reducing the feature space. We should also keep
in mind that the feature relevance cannot be defined in-
dependently of the learner and the model-performance
metric (e.g., the loss function used). Admittedly, our
feature selection based on the Markov boundaries is not
necessarily optimal for the base MLC learner used here,
namely the Random Forest model.

As far as the overall running time performance is con-
cerned, we see from Table 6 that for both methods, the
running time grows somewhat exponentially with the
size of the Markov boundary and the number of fea-
tures, hence the considerable rise in total running time
on bibtex. H2PC takes almost 200 times longer on bib-
tex (1826 variables) and enron (1001 variables) which
is quite considerable but still affordable (44 hours of
single-CPU time on bibtex and 13 hours on enron). We
also observe that the size of the parent set with H2PC
is 2.5 (on bibtex) and 3.6 (on enron) times larger than
that of MMHC (which may hurt interpretability). In
fact, the running time is known to increase exponen-
tially with the parent set size of the true underlying net-
work. This is mainly due the computational overhead
of greedy search-and-score procedure with larger par-
ent sets which is the most promising part to optimize in
terms of computational gains as we discuss in the Con-
clusion.

6. Discussion & practical applications

Our prime conclusion is that H2PC is a promising
approach to constructing BN global or local structures
around specific nodes of interest, with potentially thou-
sands of variables. Concentrating on higher recall val-
ues while keeping the false positive rate as low as possi-
ble pays off in terms of goodness of fit and structure ac-
curacy. Historically, the main practical difficulty in the
application of BN structure discovery approaches has
been a lack of suitable computing resources and relevant
accessible software. The number of variables which can
be included in exact BN analysis is still limited. As a
guide, this might be less than about 40 variables for ex-
act structural search techniques (Perrier et al., 2008; Ko-
jima et al., 2010). In contrast, constraint-based heuris-
tics like the one presented in this study is capable of pro-
cessing many thousands of features within hours on a
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Table 4: Distribution of the number and the size of the minimal label
powersets output by H2PC (top) and MMHC (bottom). On each data
set: mean number of powersets, minimum/median/maximum number
of labels per powerset, and minimum/median/maximum number of
distinct classes per powerset. The total number of labels and distinct
labels combinations is recalled for convenience.

H2PC
#labels / LP # classes / LP

dataset #LPs min/med/max LD min/med/max bLD)
emotions 1.0+ 0.0 6/6/6 6) 26/27/27 27
yeast 20+0.0 2/7/12 (14) 3/64/135 (198)
image 1.0+ 0.0 5/5/5 ) 19/20/20 (20)
scene 1.0+0.0 6/6/6 ©6) 14/15/15 (15)
slashdot 9.5+0.8 1/1/14 (22) 1/2/111 (156)
genbase  26.9 +£0.3 1/1/2 27 1/2/2 (32)
medical 38.6+ 1.8 1/1/6 (45) 1/2/10 (94)
enron 245+1.9 1/1/30 (53) 1/2/334 (753)
bibtex 39.6+43 1/1/112  (159) 2/2/1588 (2856)
corel5k 97.7+39 1/1/263 (374) 1/2/2749 (3175)

MMHC
#labels / LP # classes /| LP

dataset #LPs min/med/max LD min/med/max bLD)
emotions 1.2+04 1/6/6 6) 2/26/27 27
yeast 20+0.0 1/7/13 (14) 2/89/186  (198)
image 1.0+ 0.0 5/5/5 ) 19/20/20 (20)
scene 1.0+0.0 6/6/6 ©6) 14/15/15 (15)
slashdot  15.1 £0.6 1/1/9 (22) 1/2/46 (156)
genbase  27.0 £0.0 1/1/1 27 1/2/2 (32)
medical 41714 1/1/4 (45) 1/2/7 (94)
enron 36.8 +£2.7 1/1/12 (53) 1/2/119 (753)
bibtex 772 +£3.1 1/1/28 (159) 2/2/233  (2856)
corelSk 1653 +55 1/1/177 (374) 1/2/2294 (3175)

Table 5: Global classification accuracies using 4 learning methods
(BR, MLP, BR+MB, MLP+MB) based on the DAG obtained with
H2PC and MMHC. Best values between H2PC and MMHC are bold-
faced.

dataset  BR MLP BR+MB MLP+MB

MMHC H2PC MMHC H2PC MMHC H2PC
emotions 0.327 0.371 0.391 0.147 0.266 0.189 0.285
yeast 0.169 0.273 0.271 0.062 0.155 0.073 0.233
image 0.342 0.504 0.504 0227 0.252 0308 0.360
scene 0.580 0.733 0.733 0.123 0.361 0.199 0.565
slashdot 0.355 0.419 0474 0274 0373 0.278 0.439
genbase  0.069 0.069 0.069 0974 0976 0974 0.976
medical 0.454 0.499 0502 0.630 0.651 0.636 0.669
enron 0.134 0.165 0.180 0.024 0.079 0.079 0.157
bibtex 0.108 0.115 0.167 0.120 0.133 0.121 0.177
corel5k  0.002 0.030 0.043 0.000 0.002 0.010 0.034




Table 6: DAG learning time (in seconds) and average degree of the
label nodes.

dataset . MMHC . H2PC

time  label degree time label degree
emotions 1.5 26+ 1.1 16.2 47+1.8
yeast 9.0 30+1.6 90.9 50+29
image 3.1 40+0.8 28.4 46+1.0
scene 9.9 3.1+£1.0 662.9 6.6 +1.8
slashdot 44.8 27+14 822.3 40+52
genbase 12.5 1.0+0.3 12.4 1.1+0.3
medical 43.8 1.7+1.1 334.8 29+24
enron 199.8 1.2+1.5 47863.0 43+£52
bibtex 960.8 26+1.3  159469.6 6.4+10.3
corelSk 169.6 1.5+14 2513.0 29+28

personal computer, while maintaining a very high struc-
tural accuracy. H2PC and MMHC could potentially
handle up to 10,000 labels in a few days of single-CPU
time and far less by parallelizing the skeleton identifica-
tion algorithm as discussed in (Tsamardinos et al., 20006;
Villanueva & Maciel, 2014).

The advantages in terms of structure accuracy and its
ability to scale to thousands of variables opens up many
avenues of future possible applications of H2PC in var-
ious domains as we shall discuss next. For example,
BNs have especially proven to be useful abstractions in
computational biology (Nagarajan et al., 2013; Scutari
& Nagarajan, 2013; Prestat et al., 2013; Aussem et al.,
2012, 2010; Pefia, 2008; Pefa et al., 2005). Identify-
ing the gene network is crucial for understanding the
behavior of the cell which, in turn, can lead to better di-
agnosis and treatment of diseases. This is also of great
importance for characterizing the function of genes and
the proteins they encode in determining traits, psychol-
ogy, or development of an organism. Genome sequenc-
ing uses high-throughput techniques like DNA microar-
rays, proteomics, metabolomics and mutation analysis
to describe the function and interactions of thousands
of genes (Zhang & Zhou., 2006). Learning BN models
of gene networks from these huge data is still a difficult
task (Badea, 2004; Bernard & Hartemink, 2005; Fried-
man et al., 1999a; Ott et al., 2004; Peer et al., 2001). In
these studies, the authors had decide in advance which
genes were included in the learning process, in all the
cases less than 1000, and which genes were excluded
from it (Pefia, 2008). H2PC overcome the problem by
focusing the search around a targeted gene: the key step
is the identification of the vicinity of a node X (Pefia
et al., 2005).

Our second objective in this study was to demonstrate
the potential utility of hybrid BN structure discovery to
multi-label learning. In multi-label data where many
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inter-dependencies between the labels may be present,
explicitly modeling all relationships between the labels
is intuitively far more reasonable (as demonstrated in
our experiments). BNs explicitly account for such inter-
dependencies and the DAG allows us to identify an op-
timal set of predictors for every label powerset. The ex-
periments presented here support the conclusion that lo-
cal structural learning in the form of local neighborhood
induction and Markov blanket is a theoretically well-
motivated approach that can serve as a powerful learn-
ing framework for label dependency analysis geared
toward multi-label learning. Multi-label scenarios are
found in many application domains, such as multimedia
annotation (Snoek et al., 2006; Trohidis et al., 2008), tag
recommendation, text categorization (McCallum, 1999;
Zhang & Zhou., 2006), protein function classification
(Roth & Fischer, 2007), and antiretroviral drug catego-
rization (Borchani et al., 2013).

7. Conclusion & avenues for future research

We first discussed a hybrid algorithm for global
or local (around target nodes) BN structure learn-
ing called Hybrid HPC (H2PC). Our extensive experi-
ments showed that H2PC outperforms the state-of-the-
art MMHC by a significant margin in terms of edge
recall without sacrificing the number of extra edges,
which is crucial for the soundness of the super-structure
used during the second stage of hybrid methods, like
the ones proposed in (Perrier et al., 2008; Kojima
et al.,, 2010). The code of H2PC is open-source and
publicly available online at https://github.com/
madbix/bnlearn-clone-3.4. Second, we discussed
an application of H2PC to the multi-label learning prob-
lem which is a challenging problem in many real-world
application domains. We established theoretical results,
under the faithfulness condition, in order to characterize
graphically the so-called minimal label powersets that
appear as irreducible factors in the joint distribution and
their respective Markov boundaries. As far as we know,
this is the first investigation of Markov boundary princi-
ples to the optimal variable/feature selection problem in
multi-label learning. These formal results offer a simple
guideline to characterize graphically : i) the minimal la-
bel powerset decomposition, (i.e. into minimal subsets
Y.p € Ysuchthat Y;p L Y\ Y.p | X), and ii) the
minimal subset of features, w.r.t an Information Theory
criterion, needed to predict each label powerset, thereby
reducing the input space and the computational burden
of the multi-label classification. The theoretical analysis
laid the foundation for a practical multi-label classifica-
tion procedure. Another set of experiments were carried



out on a broad range of multi-label data sets from dif-
ferent problem domains to demonstrate its effectiveness.
H2PC was shown to outperform MMHC by a significant
margin in terms of global accuracy.

We suggest several avenues for future research. As
far as BN structure learning is concerned, future work
will aim at: 1) ascertaining which independence test
(e.g. tests targeting specific distributions, employing
parametric assumptions etc.) is most suited to the data
at hand (Tsamardinos & Borboudakis, 2010; Scutari,
2011); 2) controlling the false discovery rate of the
edges in the graph output by H2PC (Pefia, 2008) espe-
cially when dealing with more nodes than samples, e.g.
learning gene networks from gene expression data. In
this study, H2PC was run independently on each node
without keeping track of the dependencies found previ-
ously. This lead to some loss of efficiency due to re-
dundant calculations. The optimization of the H2PC
code is currently being undertaken to lower the compu-
tational cost while maintaining its performance. These
optimizations will include the use of a cache to store
the (in)dependencies and the use of a global structure.
Other interesting research avenues to explore are exten-
sions and modifications to the greedy search-and-score
procedure which is the most promising part to optimize
in terms of computational gains. Regarding the multi-
label learning problem, experiments with several thou-
sands of labels are currently been conducted and will
be reported in due course. We also intend to work on
relaxing the faithfulness assumption and derive a prac-
tical multi-label classification algorithm based on H2PC
that is correct under milder assumptions underlying the
joint distribution (e.g. Composition, Intersection). This
needs further substantiation through more analysis.
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Appendix
Lemma 8. VYLP,7 Yij € LP, then YLP,» N Yij € LP.

Proor. To keep the notation uncluttered and for the sake
of simplicity, consider a partition {Y1, Y2, Y3, Y4} of Y
such that Y;p, = YUY, , YLp/. =Y,UY;. From
the label powerset assumption for Y;p, and Yij, we
have (Y; UY;) L (Y3UYy) | Xand (Y, UY3) 1L
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(Y1 UY4) | X. From the Decomposition, we have that
Y, L (Y3 UYy) | X. Using the Weak union, we obtain
that Y, 1L Yy | (Y3 U Y4 UX) . From these two facts,
we can use the Contraction property to show that Y, L
(Y1 UY3UYy) | X. Therefore, Yo = Yyp, N YLp/. isa
label powerset by definition.

Lemma 9. Let Y; and Y; denote two distinct labels in
Y and define by Y p, and YLp/. their respective minimal
label powerset. Then we have,

IZ Y\ (Y, VL (V) A Y} (XUZ) = Yip, = Yoo,

Proor. Let us suppose Y p, # Yij. By the label pow-
erset definition for Y, p,, we have Y;p, L Y\ Y;p, | X.
As Yip, N YLP/. = ( owing to Lemma 8, we have
that Y; ¢ Yp,. YZ C Y\ {Y;,Y;}, Z can be decom-
posed as Z; U Z; such that Z; = Z N (Yyp, \ {¥;}) and
Z; = 7\ Z; . Using the Decomposition property, we
have that ({Y;}UZ;) 1L ({Y;} UZ;) | X . Using the Weak
union property, we have that {¥;} 1 {Y;} | (X UZ). As
this is true VZ C Y\ {Y;, Y;}, then IZ CcY\{Y, YLy /
L {Y;} | (X UZ), which completes the proof.

Lemma 10. Consider Y p a minimal label powerset.
Then, if p satisfies the Composition property, Z L Yrp\
Z|X

Proor. By contradiction, suppose a nonempty Z exists,
suchthat Z L Y;p \ Z | X . From the label powerset
assumption of Yzp, we have that Y;p L Y\ Yp | X
. From these two facts, we can use the Composition
property to show that Z 1L Y \ Z | X which contradicts
the minimal label powerset assumption of Y;p. This
concludes the proof.

Theorem 7. Suppose p is faithful to a DAG G. Then,
Y; and Y; belong to the same minimal label powerset if
and only if there exists an undirected path in G between
nodes Y; and Y; in'Y such that all intermediate nodes Z
are either (i) Z € Y, or (ii) Z € X and Z has two parents
inY (ie. acollider of the formY, — X < Y,).

Proor. Suppose such a path exists. By conditioning on
all the intermediate colliders Yy in Y of the form ¥, —
Yi « Y, along an undirected path in G between nodes
Y;and Y;, we ensure that 3Z C Y\ {Y;, Yj},M(Y;, Y;|
X U Z). Due to the faithfulness, this is equivalent to
{Y;} L {Y;}| (XUZ). From Lemma 9, we conclude that
Y; and Y; belong to the same minimal label powerset.



To show the inverse, note that owing to Lemma 10, we
know that there exists no partition {Z;, Z;} of Z such that
(YU Z) L ({Y;} UZj) | X. Due to the faithfulness,
there exists at least a link between ({Y;} UZ;) and ({Y;}U
Z ;) in the DAG, hence by recursion, there exists a path
between Y; and Y; such that all intermediate nodes Z are
either (i) Z € Y, or (ii)) Z € X and Z has two parents in
Y (i.e. a collider of the form Y, — X « ¥,).

Theorem 8. Suppose p is faithful to a DAG G. Let
Y = {Y1,Y2,...,Y,} be a label powerset. Then, its
Markov boundary M in U is also its Markov boundary
in X, and is given in G by M = | J_|{PCy, USPy,} \ Y.

Proor. First, we prove that M is a Markov boundary
of Yzp in U. Define M; the Markov boundary of Y; in
U, and M’; = M; \ Y. From Theorem 5, M; is given
in G by M; = PCy, U SPy,. We may now prove that
M’ U---UM’, is a Markov boundary of {Y1, Y2, ..., V,}
in U. We show first that the statement holds for n = 2
and then conclude that it holds for all n» by induction.
Let W denote U \ (Y; UY, UM’y UM’,), and define
Y, = {Y1} and Y, = {Y2}. From the Markov blanket
assumption for Y; we have Y; L U\ (Y; UM)) | M,
. Using the Weak Union property, we obtain that Y; 1L
W | M UM, UY;. Similarly we can derive Y, L
W | M, UM’ UY; . Combining these two statements
yields YUY, L W | M’} UM’; due to the Intersection
property. Let M = M’ UM, the last expression can be
formulatedas Y; UY, 1L U\ (Y; UY, UM) | M which
is the definition of a Markov blanket of Y; U Y, in U.
We shall now prove that M is minimal. Let us suppose
that it is not the case, i.e., 3Z ¢ M such that Y U Y, 1L
ZU(U\(Y UY,UM)) | M\Z. Define Z; = ZNnM, and
Z, = ZnM,, we may apply the Weak Union property to
getY, L Z; | (M\Z)UY,UZ,U(U\(YUM)) which can
be rewritten more compactly as Y; 1L Z; | (M \ Z;) U
(U\ (Y1 UM))) . From the Markov blanket assumption,
we have Y; L U\ (Y; UM;) | M; . We may now
apply the Intersection property on these two statements
toobtain Yy L Z;U(U\(Y;UM))) | M{\Z; . Similarly,
we can derive Y, L Zo U (U\ (Y, UMy)) | M\ Z; .
From the Markov boundary assumption of M; and M,
we have necessarily Z; = () and Z, = 0, which in turn
yields Z = 0. To conclude for any n > 2, it suffices to set
Y, = U;;ll{Yj} and Y, = {Y,} to conclude by induction.

Second, we prove that M is a Markov blanket of Y;p
in X. Define Z = M NY. From the label powerset
definition, we have Y;p L Y \ Yzp | X . Using the
Weak Union property, we obtain Yyp 1L Z | U\(YpUZ)
which can be reformulated as Y;p 1L Z | (U \ (Y p U
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M))U(M\Z) . Now, the Markov blanket assumption for
Y;pinUyields Y;p L U\ (Y.p UM) | M which can be
rewrittenas Yyp L U\ (Y,pUM) | M\ Z)UZ . From
the Intersection property, we get Yyp L ZU U\ (Y pU
M)) | M\ Z . From the Markov boundary assumption
of M in U, we know that there exists no proper subset
of M which satisfies this statement, and therefore Z =
M NY = 0. From the Markov blanket assumption of M
in U, we have Yzp L U\ (Y,p UM) | M. Using the
Decomposition property, we obtain Y;p L X\ M | M
which, together with the assumption M N'Y = 0, is the
definition of a Markov blanket of Y, p in X.

Finally, we prove that M is a Markov boundary of
Y,p in X. Let us suppose that it is not the case, i.e.,
dZ c Msuchthat Y;p L ZUX\M) | M\ Z

From the label powerset assumption of Y;p, we
have Y;p 1L Y \ Yzp | X which can be rewritten as
Yip LY\Yp | X\M)UM\ Z)UZ . Due to the
Contraction property, combining these two statements
yields Yp L ZU U\ MU Yrp) | M\ Z . From
the Markov boundary assumption of M in U, we have
necessarily Z = 0, which suffices to prove that M is a
Markov boundary of Y;p in X.
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Figure 3: The local BN structures learned by MMHC (left plot) and H2PC (right plot) on a single cross-validation split, on Emotions and Yeast.
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Figure 4: The local BN structures learned by MMHC (left plot) and H2PC (right plot) on a single cross-validation split, on Image and Scene.
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Figure 5: The local BN structures learned by MMHC (left plot) and H2PC (right plot) on a single cross-validation split, on Slashdot and Genbase.
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Figure 6: The local BN structures learned by MMHC (left plot) and H2PC (right plot) on a single cross-validation split, on Medical and Enron.
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(a) Bibtex

(b) Corel5k

Figure 7: The local BN structures learned by MMHC (left plot) and H2PC (right plot) on a single cross-validation split, on Bibtex and Corel5k.
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