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On the minimal shift in the shifted L aplacian
preconditioner for multigrid to work

Pierre-Henri Cocquét, Martin J. Gandér

1 Introduction

Multigrid is an excellent iterative solver for discretizeliptic problems with diffu-
sive nature, see [12] and the references therein. It is alahat substantial research
was devoted to extend the multigrid method for solving thétheltz equation

—Au—Ku=f inQ 1)

with the same efficiency, but it turned out that this is a veffyadilt task. Textbooks
mention that there are substantial difficulties, see [3ep&?], [11, page 212], [12,
page 400], and also the review [7] for why in general iteeativethods have diffi-
culties when applied to the Helmholtz equation (1).

Motivated by the early proposition in [2] to use the Laplacta precondition
the Helmholtz equation, the shifted Laplacian has been cated over the past
decade as a way of making multigrid work for the indefinite rhllebltz equation,
see [6, 10, 1, 5, 4] and references therein. The idea is to thieifwave number
into the complex plane to obtain a good preconditioner for@dd<¢ method when
solving (1). The hope is that due to the shift, it becomesiptesso use standard
multigrid to invert the preconditioner, and if the shift istrtoo big, it is still an
effective preconditioner for the Helmholtz equation witheal wave number. This
implies however two conflicting requirements: the shiftgladdoe not too large for
the shifted preconditioner to be a good preconditionerjiesttbuld be large enough
for multigrid to work. It was already indicated in [7] thati$ not possible to satisfy
both these requirements, see also [4]. It was then rigoyqusived in [9] that the
preconditioner is effective, i.e. iteration numbers stayided independently of the
wave numbek if the shift is at most of the size of the wavenumber. We prosesh
rigorously for a one dimensional model problem that if theptex shift is less than
the size of the wavenumber squared, multigrid will not wdtris therefore not pos-
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sible to solve the shifted Laplace preconditioner with mguid in the regime where
it is a good preconditioner. We also show that if the compleft $s of the size
of the wave number squared and the constant is large endweghntultigrid will
solve the preconditioner independently of the wave nurkb&or a different shift
idea as a dispersion correction, where the shift is real aedbtains in one dimen-
sion a multigrid solver with standard components that sotiie original Helmholtz
problem (1) independently of the wave number, see [8].

2 Model problem and discretization

To study the shifted Laplacian preconditioner for the Haditthequation (1) in 1d,
we consider the 1d shifted Helmholtz equation

—u'(x) — (K +ig)u(x) = f(x) xin (0,1) (2)

with homogeneous Dirichlet boundary conditian®) = u(1) = 0. We discretize
(2) using a standard 3-point centered finite difference @ypration on a uniform
mesh withn interior grid points and mesh site=1/(n+ 1) to get a linear system
Apu = f with system matrix

Ao = cotridiag(~1,2— (€ +ie)h?, ~1) @)

It is this system matrix which is used as a preconditiones@iving (1), and there-
fore following the idea of the shifted Laplacian precordigr, systems with this
matrix have to be solved effectively using multigrid. We lgza here in detail a two
grid method: we use a Jacobi smoother,

Umyp1 = Um~+ wD~1(f — Apum),

whereD = diag(A), andw is a relaxation parameter, which we choose here based
on the optimal choice of the case without relaxation, segt¢e
2— (K2 +ig)h?

T3 (K+ig)h?

For the coarse correction, we assumte be a power of two minus one, and use the
extension operator based on interpolation,
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and for the restrictiofy;! = %(IQ)T, with the coarse grid matrix obtained by Galerkin
projection,Ay = IﬁAhl,ﬂ. The resulting two grid operator witty pre-smoothing
andv, post-smoothing steps is then of the form

T:=(I—wD 1A 1 (1 —IRAZHH AL (I — wD~2A,) V2. (4)
Using the subspaces
spar{v?,vﬂ}, Spar{Vg,VEfl}, L) Spar{VRIaVRIJrZ}v Spar{VRIJrl} (5)

defined by the eigenfunctions 8§, given byv? = [sinj¢mh|}_,, j=1,...,n, one
can block diagonalize the two grid operator (4), see [8]. @abgon of T on these
one- and two-dimensional subspaces is represented by dbk Biagonal matrix
diag(T1,..., TN, Tnp1) With

AD AD
4 2
g 0 v2 1_Cjﬁ stlzﬁ o 0 Vi Vi+Vs
Ti= 0 oy AD Xh, 0 oy s TNt = OnG1 s (6)
J J
cisian 1-sizh
wherecj := cosiZ, s 1= sinlZ, j = 1,....N, 0 1= 1- (1~ 2:2 ?I?Z'ﬁie)il?)’ j=
1,...,n,and
4 ,jnh . .
)\J-h::ﬁssz—(kz—i—le), i=1,....n, 7)
4 o jmH : :
M= Ssifi——(K+ig),  j=1,...N, (8)
H 2
are the eigenvalues &, andAy, with ' := N+ 1— j denoting the complementary

mode index. To prove convergence of the two grid method, asddprove that the
spectral radius of; is smaller than one for afl = 1,...,N + 1, since this implies
that the spectral radius of the two grid operafois less than one. We will show
in the next section that if the shift is not large enough, thecsral radius off will
actually be bigger than one, and hence the two grid methodatbe convergent.
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3 Analysis

We first study the case of a shift= Ck? %, 0 < & < 2. The following theorem
shows that with such a shift, it is not possible to obtain stbuultigrid conver-
gence, because for any small mesh parantetérere exists a wavenumber of the
Helmholtz equation for which the two grid method diverges.

Theorem 1 (Diver gence with too small shift). Assume that we are performing=
v1 4 v, smoothing steps and that= Ck2~% for 2> & > 0. Then, for h small enough,
there exists a wavenumbe(tiy such that the spectral radius of the two grid method

satisfies
35/2\" 1
PiT) = (ﬁ) #9(i35):

and hence the two grid method diverges for this mesh size amdrnwmber.

Proof. Denoting byy; the eigenvalues of the iteration operaiowe have

Using the block diagonal form of the two-grid iteration niratve have obtained in
(6), we have in particular

p(T) > |onth? = |1- " = |unal”,

with

1
(3—K2h?)2 1 C2hAKk4-25
We now wish to find the maximum dfi1| as a function of the wavenumbler
Taking a derivative with respect tq we obtain

|Unt1| i= 7 9)

@i 2h?(C?k?3h? — 2C%k?h? — 2k?9+2h? 4 6k?9)

2
Ok pn-(K)[7) (C2KAhA + hAK4125 _ 6K212012 | OK23)2

and hence the maximum is reached@t) satisfying
C?K?(5 — 2)h? — 2k?5+2h? 4 6k?% = 0. (10)

Since this equation can not be solved in closed form, we coengu asymptotic
expansion ok(h) for small mesh sizé. We make the Ansatz

k() = < +o(%)

and obtain foh small enough the expansions
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Substituting the above expressions into the equation @@fied byk(h) and con-
sidering only the leading order terms, we find

1 2542 _ 5,25 1)_
m(60:0 ~2ag®) +o =5 ) =0,

and therefore

a0 =3,

and one can check that this is indeed asymptotically a maxinwle now replace
the asymptotic expansion &th) into the expression foi.-1(k(h))| given in (9).
Sincek(h)h = /34 0(1), a Taylor expansion shows that

1 35/2 1
p(T) > |I~1N+1(k(h))| = \/(3_ k(h)2h2)2+c2h4k(h)4725 - 3Chd +0 (F) ,

which gives the result.

Remark 1In our proof, we only gave the first term of the asymptotic exgian of
k(h), since this was sufficient to obtain divergence. One coulgdver compute the
asymptotic expansion also to any order without additioiféitdlties.

Now we study the case= Ck?. Substituting this value into the blocks (6) of the
block diagonal representation, we notice that the mati@mEome homogeneous
functions of the produdth. One can therefore study the spectral radius directly as
a function ofkh > 0 andc; € (0,1), using trigonometric formulas to replace the
dependency os;. We show in Figure 1 on the left far, = 1, v, = 0 the maximum
over allkh of the spectral radius of the matrik as a function ofC for £ = CI2.

We clearly see that fa€ small, multigrid does not converge. Fodarger however,

we get convergence. The valGé where the spectral radius equals one can be com-
puted, it isC* = 0.3850. We show on the right in Figure 1 the spectrum of the tdock
Tj, represented as a continuous functiorcp€ (0,1) andkh for C = C*, and one
can clearly see where the maximum value one is reached.

Remark 2The valueC* is larger than the limiting valu€ = 1/3 found from the
limiting case a® goes to zero in Theorem 1 for which divergence can be guaran-
teed. This is because Theorem 1 only provides a lower bounsltfich divergence
can be guaranteed. As we see from the sharper analysis aliogence even set

in a bit earlier.

Remark 3From Figure 1 on the left, we also see that mak@hgery large will
eventually not lead to further improvement, the curve haaymptote which one
can compute to be at/B. Hence, the best contraction factor one can achieve with
the two grid method applied to the shifted Helmholtz equatiith shifte = Ck? for

C large in our example is/B. Note also that the two grid convergence is uniform in
k as soon a€ > C*.
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Fig. 1 Maximum overkh of the spectral radius of the two grid operator for shif= Ck® as a
function ofC on the left, and foC = 0.3850 the spectrum as a functionldfandc; on the right

4 Numerical Experiments

We present in this section several numerical illustratioh§heorem 1 and our
additional estimate for the shift = Ck?. We assume that the source term in the
shifted Helmholtz equation (2) is= 0 givingu = 0 as the unique solution. We use
for our simulations the parameters

1 V3
n=511 h= 517 k= ho v=1,
so that we are in the regime of Theorem 1 where divergencddathauobserved
if the shift is not sufficient. We perform twenty iterationktbe two grid method
applied to the shifted problem, starting with a random @higiuess.

We first illustrate the result of Theorem 1. We cho@se 0.45 in the shifte =
Ck2~2. Figure (2) shows the relative error of the two-grid schegrsus the number
of iterations for various values @&. We see that the two grid method converges for
0 = 0, but diverges for all other valugs> 0. For the value oh = 1/512 in our
experiment, and the constadit= 0.45, we see that the two grid method would still
converge for a very small, but positive valuedfThis is not in disagreement with
Theorem 1, which only makes a statementtf@mall enough.

We next show an experiment to illustrate that even with th# sh= Ck?, the
constant still needs to be bigger thah= 0.3850 for the two grid method to con-
verge, see also Remark 2. In Figure 3 we show the relative egreus the iteration
index for various values df in this case. We observe that 16r< C* the multigrid
method does not converge, the shift is not enoughCEeiC* however the multigrid
method converges, and convergence gets fasteiraseases, as expected. There is
however a limit, as we have seen in Remark 3, the contradiciof of the two grid
method will not be better tharyB.
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Fig. 2 Relative error versus iteration index f6r= 0.45 and various values @ = 0.2
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Fig. 3 Relative error versus iteration index fér= 0 and various values &

5 Conclusions

We have analyzed for the shifted Helmholtz operator howdaghift of the form

€ = Ck¥ 9 has to be to obtain a uniformly convergent two grid method.hafee
proved for a one dimensional model problem that uniform eogence in the
wavenumbek is not possible i® > 0. Ford = 0, we have shown that if the constant
C > C* =0.3850, then uniform convergence in the wavenunkean be achieved.
Our results are for the particular case of a one dimensiamdllem with a second
order finite difference discretization, using a Galerkimise grid correction with
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full weighting and a Jacobi smoother with particular retzom@parameter. Using a
different relaxation parameter, for exampbe= 2/3, leads to slightly worse results
in this case, e.gC* becomes approximately. 76 instead of 8850. Our analysis
can be generalized, for example to higher dimensions, @rdatiscretizations.
There is therefore indeed a big gap in the requirements fimguke shifted
Laplacian as a preconditioner when solving discretizedrtheltz problems: for
multigrid to invert the preconditioner efficiently, the &hneeds to beD(k?), but
to prove that the preconditioner is effective, the shiftdegtto be at mosD(k),
see [9], where numerical experiments also indicate thatdakiimate is sharp. Any
compromise with the shift, i.e. using a shift©fk”) with a € (1,2), will therefore
lead to a preconditioner which is outside the requirememésiould like to impose.
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