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Abstract—The distributed iterative solution of numerical sim-
ulation problems on Infiniband or Ethernet Clusters via the
P2PDC environment is studied. The P2PDC decentralized en-
vironment is dedicated to task parallel applications. It has been
designed for the solution of large scale numerical simulation
problems via distributed iterative algorithms. The P2PDC en-
vironment is based on the P2PSAP self-adaptive communication
protocol. New functionalities of the P2PSAP communication
protocol aimed at using Infiniband clusters are presented. A series
of computational results is presented and analyzed.
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I. INTRODUCTION

In order to obtain good efficiency of High Performance
Computing (HPC) applications, new transport protocols have
to be designed. Existing transport protocols like TCP [1] and
UDP [2] were originally designed to provide ordered and
reliable transmission to the application or datagram service,
respectively and are no longer adapted to real-time and dis-
tributed computing applications. We also note that TCP and
UDP cannot reconfigure their own structure. Moreover, the
message-based transport protocol seems better suited to HPC
applications than the classical stream-based communication.

Recently, new transport protocols have been standardized
like SCTP [3] and DCCP [4]. Nevertheless, these protocols
still do not offer the modularity needed in the context of HPC.

The P2PSAP self-adaptive communication protocol [5] and
P2PDC distributed computing environment [6] have originally
been designed for peer-to-peer HPC applications. The P2PSAP
self-adaptive communication protocol is based on the Cactus
framework whereby composite protocols and micro-protocols
are combined in order to build a desired communication pro-
tocol [7]. In this paper, we concentrate on new functionalities
of the P2PSAP communication protocol aimed at using Infini-
band clusters. The impact of the underlying network on the
distributed solution of numerical simulation problems is also
studied. We consider distributed synchronous or asynchronous
iterative algorithms. We recall that asynchronous iterations
are relative to a very general model whereby computations
are carried out in parallel without order nor synchronization
(see [8]). They permit one to consider distributed iterative

computations where machines go at their own pace according
to their intrinsic characteristics and computational load.

The paper is structured as follows. Related work is presented
in Section II. Section III is devoted to new features of the
P2PSAP protocol aimed at using Infiniband networks. Section
IV deals with distributed iterative algorithms for the solution
of a numerical simulation problem and displays experimental
results. Section V deals with conclusions and future work.

II. RELATED WORK

MPICH Madeleine [9] has been designed for testbeds with
several types of networks. Nevertheless, the modification of
internal transport protocol mechanisms in function of elements
of context like iterative schemes of computation and network
topology is not allowed with MPICH Madeleine.

P2P-MPI [10] is a framework aimed at developing message-
passing programs in large scale distributed networks of com-
puters. P2P-MPI is developed in Java and makes use of Java
TCP sockets to implement the MPJ (Message Passing for Java)
communication library. P2P-MPI uses a single super-node in
order to manage machine registration and discovery that may
become a bottleneck. P2P-MPI implements a fault tolerance
approach using machine replication that may not be efficient
and appropriate to connected problems, since the number of
machines involved in the computation will multiply greatly.

The P2PDC decentralized environment was originally de-
signed for peer-to-peer distributed computing. It is particu-
larly dedicated to task parallel applications. The environment
P2PDC is intended in particular to scientists who want to solve
numerical simulation problems via distributed iterative meth-
ods that lead to direct and frequent data exchanges between
machines like synchronous or asynchronous iterative methods
[8]. The P2PDC environment relies on the P2PSAP self-
adaptive communication protocol that implements a reduced
set of communication operations (P2Psend, P2Preceive and
P2Pwait) in order to facilitate programming [5]. The pro-
grammer cares only about the choice of distributed scheme of
computation, e.g., synchronous or asynchronous, that he wants
to be implemented and does not care about the communication
mode between any two machines. The P2PSAP communi-
cation protocol chooses dynamically the most appropriate
communication mode between any two machines according to



Fig. 1. P2PSAP protocol architecture.

Fig. 2. Data channel communication stack.

decision taken at application level like scheme of computation
and elements of context like network topology at transport
level. The P2PSAP protocol can also reconfigure itself dynam-
ically to match the very nature of a given algorithm like in
the case of the distributed solution of nonstationary problems
whereby some synchronizations are needed at every time steps
even if an asynchronous scheme of computation has been
selected to solve each subproblem. Reference is made to [11]
and [6] for studies related to the centralized and decentralized
versions of the P2PDC environment, respectively.

III. P2PSAP AND INFINIBAND

The P2PSAP communication protocol has a socket interface
and two channels: a control channel and a data channel (see
Figure 1). The control channel manages session opening and
closure; it captures context information and (re)configures the
data channel at opening or operation time; it is also responsible

for coordination between machines during reconfiguration pro-
cess. The data channel is a stack of composite protocols based
on the Cactus framework (see [7]). The data channel transfers
data packets between machines. The stack of protocols is
globaly divided into two layers: a transport layer which is an
extension called CTP* of the Configurable Transport Protocol
(CTP) [12] and a physical layer that was first designed for
IP/Ethernet networks and thanks to the work presented in this
paper can encompass also Infiniband networks (see Figure
1). Thus, our contribution concerns the design and insertion
of an Infiniband physical layer inside the stack of protocols.
We aim also at facilitating self-adaptation of the P2PSAP
protocol according to the iterative scheme of computation
considered, e.g., synchronous or asynchronous, the location of
machines, i.e., in a cluster or in different clusters and the type
of network used, e.g., Ethernet or Infiniband. According to the
Cactus point of view, the added Infiniband physical layer is
a composite protocol that implements communication on the
underlying Infiniband network.

We recall that a machine is connected to an Infiniband
network via a Host Channel Adapter (HCA) that can have
several ports identified by a Local ID (LID) and a Global
ID (GID). The transport, network and data link layers are
implemented in the silicon of the HCA. The HCA uses internal
Direct Memory Access (DMA) engine in order to transfer
or retrieve data directly to or from the main memory of
a machine. During the application, several communication
requests are created that contain information like address
of the communication buffer and data size. Each request is
transmitted to the appropriate Send Queue (SQ) or Receive
Queue (RQ) via the Infiniband Verbs interface. The HCA
executes the requests according to the order they are posted
and stores the results called Completion Queue Elements
(CQE) in the appropriate Completion Queue (CQ).

The insertion of a new layer in the data channel communi-
cation stack is not independant of the control channel since it
configures and manages the data channel. The control channel
detects the type of underlying network at session opening.
If the underlying network is Infiniband, then the resources
(LID, GID, SQ, RQ, CQ and communication buffers) that are
called Queue Pair (QP) context in Infiniband specifications
(see [13]) and that are used by the Infiniband composite
protocol IB of the data channel are created once for the
entire communication duration by the control channel at data
channel opening since each consumed Infiniband Verb has a
nonnegligible overhead; this is particularly true if the Verb
necessitates a kernel transition of the operating system like the
memory region registration Verb that is used to allocate mem-
ory to communication buffer. The data channel is an Infiniband
Reliable Connected (RC) channel in the case of synchronous
communication or an Infiniband Unreliable Connected (UC)
channel in the case of asynchronous communication since
asynchronous iterations can tolerate message loss. We note
that the creation of communication resources is not sufficient
to establish a RC or an UC Infiniband channel. Each machine
must also know some information regarding the remote QP



context. This information includes LID, GID, QP Number
(QPN) in addition to initial packet sequence number which
is randomly generated by control channel. The exchange of
this information is done via the control channel prior to
any communication operation of the data channel. As soon
as a machine obtains information regarding the remote QP
context, the machine will enter the Ready To Receive (RTR)
state and then the Ready To Send (RTS) state. During the
configuration of data channel, the control channel passes the
RTS QP Context to the IB Layer.

The stack of protocols relative to the Infiniband network is
as follows: CTP*/IB/Verbs/Infiniband (see Figure 2), where
CTP* takes into account Synchronous and Asynchronous
micro-protocols. IB is the composite protocol that implements
Infiniband communications using resources initially created by
the control channel. CTP* contains only basic micro-protocols:
TransportDrive that adds port identifiers to each CTP* seg-
ment, Resize for segmentation/reassembly and Synchronous
or Asynchronous. Functionalities like congestion control, flow
control, and error recovery required for synchronous commu-
nication are implemented by the HCA in order to reduce CPU
protocol overhead. The micro-protocol composition of CTP*
depends on the context, i.e., the type of iterative scheme,
e.g., synchronous or asynchronous, the location of machines,
e.g., intra or inter cluster and the type of underlying network,
e.g., Infiniband or Ethernet. Table I shows micro-protocols
composition of CTP* in the different contexts.

Unlike in the Ethernet asynchronous context, the Ethernet
synchronous context requires reliability in order to ensure that
application is not going to be blocked by message loss. This is
ensured via SequencedSegment, Retransmit, RTTEstimation,
PositiveAck and DuplicateAck micro-protocols. Moreover,
this context requires an order delivery property which is
ensured via the ReliableFIFO micro-protocol. In order to
behave fairly with other flows, congestion control is also re-
quired in the case with inter clusters communications whereby
we must have reliable flows, this is ensured via Window
Congestion Control (denoted by WindCongCtrl) and TCP
NewReno Congestion Advoidance (TCPNewRenoCA) micro-
protocols. In the Ethernet asynchronous context with inter
clusters communications whereby we have unreliable flows,
congestion control is ensured via DCCPAck, DCCP Window
Congestion Control (DCCPWindCCtrl) and TCP Congestion
Avoidance (TCPCongAvoid) micro-protocols.

The composite protocol IB that we have carried out essen-
tially implements two operations of communication:

- the PUSH operation which sends a CTP* segment on the
Infiniband network (see Figure 3);

- the POP operation which retrieves a CTP* segment from
the network and delivers it to the upper layer (see Figure 4).

Sending a message via Infiniband consists in building and
posting a Send Work Request (SWR). The physical memory
addresses contained in the Work Queue Element (WQE) must
be registered by the consumer. Here, the consumer is the IB
composite protocol which performs a mapping between the
socket addresses known by CTP* sessions and QP contexts

TABLE I
TRANSPORT LAYER OF P2PSAP, COMPOSITION OF MICRO-PROTOCOLS,

Context synchronous asynchronous
intra inter intra inter

Micro-protocols IB Eth IB Eth IB Eth IB Eth
TransportDrive X X X X X X X X

Resize X X X X X X X X
Synchronous X X X X

Asynchronous X X X X
SequencedSegment X X

PositiveAck X X
Retransmit X X

RTTEstimation X X
ReliableFIFO X X
DuplicateAck X
WindCongCtrl X

TCPNewRenoCA X
DCCPAck X

DCCPWindCCtrl X
TCPCongAvoid X

known by HCA. However, waiting for a message to be
generated by CTP* before registering a memory region will
add a delay to message processing before the transmission
over the network. The Resize micro-protocol is introduced in
CTP* sessions in order to give a precise value of the maximum
size of a CTP* segment to the IB layer, making possible static
registration.

At data channel establishment, the control channel registers
a memory region that serves as communication buffers. This
pinned region is divided into two parts: a send buffer and a
receive buffer. Figure 3 displays how data are stored in the
buffer in order to send a segment. In the sequel, we detail
the management of free spaces in the buffer. The send buffer
is divided into 1000 blocks with 8128 bytes. Each block can
contain only one CTP* segment with 8128 bytes. For each
CTP* segment to send, the Infiniband composite protocol IB
looks for a free block in the send buffer in order to store the
data; the data are then written in the block. The address of the
block and the size of the segment are included in the SWR
posted to the SQ. A thread continuously polls the CQ. When
a Completion Queue Element (CQE) containing the identifier
(ID) of a SWR is retrieved from CQ, the block that was used
by this SWR can be reused without any risk of inconsistency
between two successive writings on this block. A relation
between the SWR ID and the block position in the send buffer
allows the process which continuously polls the CQ to find out
the block and set it free by inserting its position at the end of
the list of free blocks.

Note that registration overhead is reduced by reusing blocks
of the send buffer. The number of blocks is limited to 1000
in order to guarantee a reasonable memory consumption. A
linked list is used to store the position of free blocks in order
to accelerate the search for free blocks. The IB layer uses
always the block whose position is at the head of the linked
list to post a SWR, the head is then moved to the next item;
this position is inserted at the end of the list when the SWR
Completion is retrieved from the CQ. So, the IB layer always
keeps track of the position of free blocks in the send buffer



Fig. 3. PUSH operation.

and does not waste time to find out a free block. Figure 3
illustrates the process:

- the search for a free block (step 1);
- writing the data segment in the free block, building and

posting a SWR (step 2);
- retrieving the result of a SWR from CQ and releasing the

block used (step 3).
Figure 4 displays how IB retrieves data from the receive

buffer. The receive buffer is initially divided into 1000 blocks
with 8128 bytes (see step 1). At data channel establishment,
the control channel posts 1000 RWR (Receive Work Request)
to RQ. Each RWR contains a block address. When the HCA
receives the data, it consumes the first WQE in the RQ, writes
the data in the block and places a CQE in the CQ. When IB
retrieves a CQE, it calculates the position of the block from
the ID of Receive WQE (RWQE) consumed (step 2). The
data of the segment contained in the block that was found
are copied to another memory location. This allows the reuse
of the address of this block in another RWR built and posted
immediately (step 3) simultaneously with the delivering of the
segment to CTP* after a demultiplexing operation required to
find out the appropriate session at higher level, i.e., the CTP*
session (step 4).

IV. EXPERIMENTAL RESULTS

We consider the obstacle problem which occurs in mechan-
ics and finance and can be formulated as follows.

Find u∗ such that
A.u∗ − f ≥ 0, u∗ ≥ φ everywhere in domain Ω,
(A.u∗ − f)(φ− u∗) = 0 everywhere in Ω,
B.C.,

where φ ∈ R2(or R3) is an open set, A is an elliptic operator,
φ a given function and B.C. are the boundary conditions on

Fig. 4. POP operation.

TABLE II
MACHINE CHARACTERISTICS AND SEQUENTIAL COMPUTATIONAL TIME

Site Cluster Processor Mem. Time
Nancy Graphene Intel Xeon 2.53 GHz 16 Gb 9523 s

∂Ω. The discretization of the obstacle problem leads to the
following fixed point problem.{

Find u∗ ∈ V such that
u∗ = F (u∗),

(1)

where V is an Hilbert space and the mapping F : v → F (v)
is a fixed point mapping from V into V . We consider the
distributed solution of fixed point problem (1) via the projected
Richardson method combined with several iterative schemes
of computation; reference is made to [11] for the mathemat-
ical formulation of synchronous and asynchronous projected
Richardson methods. The convergence of asynchronous pro-
jected Richardson method has been established in [14]. The
choice of scheme of computation has important consequences
on the efficiency of the distributed iterative algorithm. The
interest of asynchronous iterations for various problems in-
cluding boundary value problems and optimization has been
shown in [8], [15], [16], [17], [18], [19].

We display now and analyze experimental results. We con-
centrate on distributed synchronous and asynchronous iterative
algorithms carried out via P2PDC and P2PSAP for a 3D obsta-
cle problem and parallelepiped-based domain. We consider a
cubic domain with 2563 points. Experiments have been carried
out on the Graphene cluster of the Grid’5000 testbed [20].
Machine characteristics and the sequential computational time
are given in Table II. Table III displays the computational time
of synchronous and asynchronous distributed algorithms on
cluster Graphene with up to 64 machines and 1 Gb/s Ethernet



TABLE III
DISTRIBUTED CASE, COMPUTATIONAL TIMES

synchronous asynchronous
Machines Infiniband Ethernet Infiniband Ethernet

4 2543 s 2862 s 2749 s 2794 s
8 1399 s 1794 s 1410 s 1420 s
16 770 s 1118 s 710 s 733 s
32 437 s 711 s 360 s 376 s
64 247 s 448 s 180 s 192 s

Fig. 5. Efficiency of distributed iterative algorithms.

or 20 Gb/s Infiniband network. Figure 5 shows the efficiency
of synchronous and asynchronous distributed algorithms on
Infiniband or Ethernet network; the different iterative methods
are denoted by synIBA, asynIBA, synETH and asynETH,
respectively. Experimental results show that synchronous iter-
ative algorithms carried out on Ethernet network do not scale
up well. Their efficiency with 64 machines of the same cluster
is close to 30 % (see Figure 5). The new functionalities of
P2PSAP aimed at using Infiniband networks permit one to
improve the efficiency of synchronous iterative algorithms (the
increment is up to 30%). This is mainly due to the reduction
of synchronization overhead and fastest communication with
Infiniband. Infiniband has low latency and high bandwidth;
the Infiniband Adapter has also capability to bypass kernel
which off-loads some protocol processing from the CPU; this
saves CPU cycles to the benefit of computation. We note also
that the combination of asynchronous iterative algorithms with
P2PDC is very efficient due to the lack of synchronization
overhead and idle time resulting from synchronization. The
implementation of these algorithms on Infiniband network
permit one to further improve their efficiency.

V. CONCLUSION AND FUTURE WORK

We have proposed extensions to the P2PSAP communica-
tion protocol in order to natively use Infiniband network for
HPC applications. These new features have permitted us to
improve the efficiency of all distributed iterative algorithms
that we have carried out, i.e., synchronous and asynchronous
algorithms. In particular, we note that the combination of asyn-
chronous iterative algorithms with P2PDC using Infiniband is

very efficient: the efficiency is close to 82% with 64 machines.
We are presently working on improvements to the Infiniband

functionalities of the P2PSAP protocol in order to acceler-
ate data transmission by bypassing fragmentation/reassembly
at CTP* level to finally have only one send request per
message instead of one request per CTP* segment. Leaving
this functionality to HCA will reduce CPU time wasted in
protocol handling. We also plan to deal with heterogeneity.
More precisely, we will manage communications between
Ethernet clusters and Infiniband clusters and between distants
Infiniband clusters connected via an IP/Ethernet network.
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