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Abstract—Fault tolerance issues related to the implementation
of distributed iterative algorithms via the P2PDC peer-to-peer
distributed computing environment are considered. P2PDC is
a decentralized environment dedicated to task parallel applica-
tions. It has been designed more particularly for the solution
of large scale numerical simulation problems via distributed
iterative algorithms. The environment allows frequent and direct
communications between peers i.e., machines. P2PDC is based
on P2PSAP, a self-adaptive communication protocol. We present
new functionalities of P2PDC aimed at making our environment
more robust. An adaptive fault tolerance mechanism ensures the
robustness of computation to cope with peer faults. We consider
also fault tolerance from an algorithmic point of view: we
concentrate in particular on distributed asynchronous iterative
algorithms that can tolerate some message loss. A series of
computational results is presented and analyzed for a numerical
simulation problem.

Keywords-distributed computing, peer to peer computing, fault
tolerance, task parallel model, numerical simulation.

I. INTRODUCTION

Peer-to-Peer (P2P) applications originally designed for file

sharing, e.g., Gnutella [1] or FreeNet [2] are now considered

to a larger scope from video streaming and system update to

distributed data base and High Performance Computing (HPC)

[3]. In this paper, we concentrate on numerical simulation

applications. In this context, task parallel model and distributed

iterative algorithms i.e., successive approximation methods,

give raise to numerous challenges when implemented on

P2P networks. We can quote: communication management,

scalability, heterogeneity and robustness [4]. Some issues

can be addressed by making extensive use of asynchronous

iterative schemes, whereby computations are carried out in

parallel without order nor synchronization (see [5]). In partic-

ular, asynchronous iterative schemes permit one to consider

distributed computations whereby peers i.e., machines, go at

their own pace according to their intrinsic characteristics and

computational load.

In order to obtain good efficiency of P2P HPC applications,

new transport protocols have to be designed. In [6], a Peer-To-

Peer Self Adaptive communication Protocol (P2PSAP) which

is suited to high performance distributed computing has been

proposed. P2PSAP is based on the Cactus framework whereby

micro protocols can be combined in order to build a desired

communication protocol. P2PSAP chooses dynamically the

most appropriate communication mode between any peers

according to decision taken at application level like scheme of

computation, e.g., synchronous or asynchronous scheme and

elements of context like network topology at transport level.

In [3], a centralized version of P2PDC an environment for

high performance peer-to-peer distributed computing which

makes use of the P2PSAP protocol in order to allow direct

communication between peers has been presented. P2PDC

is devoted to task parallel applications. A first series of

computational results obtained for the obstacle problem on

the NICTA testbed has also been displayed and analyzed in

[3]. A decentralized version of P2PDC with features aimed

at making P2PDC more scalable has been presented in [7].

A hybrid topology manager manages peers efficiently and

facilitates peers collection for HPC applications. A hierarchical

task allocation mechanism accelerates task allocation to peers

and avoids connection bottleneck at submitter.

This paper deals with fault tolerance issues in the imple-

mentation of distributed iterative algorithms via P2PDC. We

present adaptive fault tolerance mechanisms of P2PDC that

ensure the robustness of HPC applications and permit one to

cope with peer failures. We display and analyze several experi-

mental results obtained for a numerical simulation application.

The paper is structured as follows. Related works are pre-

sented in Section II. Some features of the P2PDC environment

are recalled in Section III. Section IV is devoted to fault

tolerance mechanisms in P2PDC. Section V deals with an

example of distributed iterative algorithms for a numerical

simulation problem. Experimental results are presented and

analyzed in Section VI. Section VII deals with conclusions

and future work.

II. RELATED WORK

Recently, middleware like BOINC [8] or OurGrid [9] have

been developed in order to exploit the CPU cycles of com-

puters connected to the network. Those systems are gener-

ally dedicated to applications where tasks are independent

and direct communication between machines is not needed.

MapReduce [10] is a programming model and an associated

implementation for processing and generating large data sets.

Users specify a map function that processes a key/value pair

to generate a set of intermediate key/value pair, and a reduce

function that merges all intermediate values associated with
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the same intermediate key. This programming model is not

appropriate for distributed iterative algorithms with frequent

communication between peers.

P2P-MPI [11] is a framework aimed at developing message-

passing programs in large scale distributed networks of com-

puters. P2P-MPI is developed in Java and makes use of Java

TCP sockets to implement the MPJ (Message Passing for Java)

communication library. P2P-MPI uses a single super-node in

order to manage peer registration and discovery that may

become a bottleneck. P2P-MPI implements a fault tolerance

approach using peer replication that may not be efficient and

appropriate to connected problems, since the number of peers

involved in the computation will multiply greatly. Furthermore,

the coordination protocol ensuring coherence between replicas

has great overhead.

III. P2PDC

In this section, we present briefly the decentralized en-

vironment P2PDC. Reference is made to [7] and [12] for

more details on P2PDC. We recall that P2PDC is an environ-

ment for peer-to-peer distributed computing that is devoted to

task parallel applications. P2PDC is intended in particular to

scientists who want to solve numerical simulation problems

via distributed iterative methods (that lead to frequent direct

data exchanges between peers). P2PDC relies on the use

of the P2PSAP self adaptive communication protocol [6]

and a reduced set of communication operations (P2Psend,

P2Preceive and P2Pwait) in order to facilitate programming.

The programmer cares only about the choice of distributed it-

erative scheme of computation (synchronous or asynchronous)

that he wants to be implemented and does not care about the

communication mode between any two peers. The programmer

has also the possibility to select an hybrid iterative scheme of

computation whereby computations are locally synchronous

and asynchronous at the global level. P2PSAP chooses dy-

namically the most appropriate communication mode between

any two peers according to decision taken at application level

like scheme of computation and elements of context like

network topology at transport level. In the hybrid case, the

communication mode between peers in a group of machines

that are close and that present the same characteristics is

synchronous and the communication mode between peers in

different groups is asynchronous.

The decentralized environment P2PDC is based on a hybrid

topology manager and a hierarchical task allocation mecha-

nism which make P2PDC scalable. In the sequel, a task is

relative to a computation submitted to P2PDC and a subtask
is part of a computation assigned to a given peer.

A. Hybrid topology manager

In the literature, peer-to-peer topologies are designed most

of the time for content sharing systems like Chord [13], Pastry

[14] or CAN [15].

Computational resources discovery is quite different. Com-

putational resources are specified by peer’s characteristics

such as CPU, memory, network bandwidth and so on. Hence,

Server

Zone

Tracker

Peer

Fig. 1. General topology architecture.

search query in P2P HPC applications may have some specific

requirements about peer’s characteristics. The requirements

may be exact (e.g., CPU speed equals to 3.0 GHz) or in range

(e.g., having more than 2Gb of memory). The query will then

return the address of N peers that meet the user requirement

in order to perform a given computation. Moreover, we note

that it is better for peers to be close to each others and to

the submitter since the latency is an important factor that

influences the efficiency.

The topology manager of P2PDC is based on a simple

hybrid architecture which ensures scalability and efficient peer

collection for a given HPC application.

1) General topology architecture: Figure 1 illustrates the

general topology architecture. It consists of a Server, Trackers

and Peers.

• The server manages informations regarding trackers con-

nection and disconnection; it is the contact point of new

nodes joining the overlay network for the first time. When

a tracker or a peer has no particular contact in order

to join the overlay network, it contacts the server in

order to receive a list of closest connected trackers; then

it connects to trackers in the received list. The server

stores also statistic information regarding connection and

disconnection time, resources donated or consumed of all

nodes of the overlay network.

• A tracker manages information regarding a subset of

peers (also called a zone). It collects statistic information

regarding connection and disconnection time, resources

donated or consumed in its zone and periodically sends

these data to the server.

• Peers are donors of computational resources; they are

grouped in zones and managed by the tracker of the zone.

Trackers topology is a line (see Figure 2). Each tracker T i
maintains a list of closest trackers Ni in order to ensure that

trackers are not isolated. There are |Ni|/2 closest trackers

having IP address greater than IP address of owner tracker

and |Ni|/2 closest trackers having IP address smaller than IP

address of owner tracker. Moreover, each tracker maintains

connection with the closest tracker on its right side and left

side.

In a zone, peers publish information regarding processor,

memory, hard disk and current usage state to tracker of the

zone. Peers have to update periodically their usage state.
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Fig. 2. Trackers topology.
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Fig. 3. Allocation graph.

2) IP-based proximity metric: Several proximity metrics

can be used in order to calculate the proximity between peers

in the network like IP path length, AS path length, geographic

distance, and measures related to RTT (see [16]). Each metric

presents advantages and drawbacks. IP-based proximity metric

has been chosen since it makes use of local information (IP

address), it does not consume network resource and it is faster

than other metrics.

3) Initial topology: We assume that the system has ini-

tially a server and some trackers managed by the system

administrator. The core of the system consists of these nodes.

When the number of peers increases, the system administrator

chooses some reliable volunteers (peers) to become trackers.

The choice of trackers relies on on-line time; volunteers with

largest on-line time are chosen. Moreover, trackers are chosen

so as to ensure that the number of peers in the different zones is

well balanced. When the P2PDC environment is downloaded

and installed at a node, the IP address of the server and a list of

trackers are set and stored in the local memory of the node.

The tracker list is updated when the node joins the overlay

network.

B. Hierarchical task allocation

When the submitter has collected enough peers, it divides

peers into groups taking into account proximity of peers. In

each group, a peer is chosen by the submitter to become a

coordinator that will manage other peers in the group. The

number of peers in a group cannot exceed Cmax in order

to ensure efficient management of the coordinator. We have

chosen Cmax = 32. The submitter sends peers list of a group

to the coordinator. Then, the coordinator connects to all peers

in its group and sends a ”reserve” message to peers. When

a peer is reserved for a computation, it sends a message to

its tracker in order to inform the tracker that it is not free

anymore. Figure 3 illustrates the allocation graph.

The submitter decomposes task into subtasks and sends sub-

tasks to coordinators. Subtasks are then sent by coordinators

to peers. Subtasks results are sent in the reverse direction,

i.e., peers send subtask results to coordinators, then each

coordinator transfers the results to the submitter.

We note that hierarchical task allocation presents many

advantages as compared to the case where there is no co-

ordinator. First, hierarchical task allocation is faster since

submitter must not connect successively to all peers in order

to reserve peers and to send subtasks. Submitter has only to

connect to coordinators. Peer reservation and task allocation

are carried out in a distributed way by coordinators. Moreover,

peers grouping is based on proximity. Hence, communication

between coordinator and peers is faster than communication

between submitter and peers. Secondly, the transmission of

computational results to the submitter via coordinators avoids

bottleneck at submitter. Reference is made to [17] for a study

on hierarchical framework for grids.

IV. FAULT TOLERANCE MECHANISMS IN P2PDC

Peer volatility and in particular peer failure is one of the

great challenges in peer-to-peer computing. In peer-to-peer

networks, peers may leave the network at unpredictable rate.

If a peer assigned to a subtask leaves the network, then, the

global task may not terminate or may produce wrong results.

Thus, effective fault tolerance mechanisms are vital in order

to ensure robustness of the application.

There are two main classes of fault tolerance techniques

that can be applied in order to cope with machine failures

in distributed and parallel systems: replication and rollback-
recovery (see [18]). In replication techniques, each process is

replicated on several nodes. A replicated process is called a

replica. If some replicas fail, then the other replicas continue

to process application. Replication techniques can have two

forms: passive replication (only a primary replica processes

the application, other replicas store backup state of the primary

replica) and active replication (all replicas process applica-

tion). Rollback-recovery techniques [19] consist in restoring

the process of a failed node on another node. Rollback-

recovery techniques can be classified into two categories:

checkpoint-based and log-based categories. The checkpoint-
based rollback-recovery consists in taking a snapshot of the

entire system state regularly. Upon a failure, the system is

restored to the most recent snapshot. The checkpoint-based

rollback-recovery can be classified into three subcategories:

uncoordinated checkpointing, coordinated checkpointing and

communication-induced checkpointing. In log-based rollback-
recovery, all communications are logged in a stable storage

in addition to process checkpointing, so that upon a failure,

only a failed process restores to precedent local checkpoint,

performs the same computation as in the initial execution and

receives the same messages from stable storage.

During the resolution, peers can have different roles in

P2PDC: coordinator or worker. Moreover, computations can be

done via different distributed iterative schemes: synchronous,

asynchronous or hybrid. Therefore, fault tolerance mechanisms

have to adapt themselves to peer roles and computational
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schemes. In the sequel, we detail the fault tolerance strategies

we have selected in each case.

For the kind of application studied here, we consider that

replication strategies are not appropriate to workers since they

may lead to an important growth of the number of peers

without any augmentation of the global computing power.

Furthermore, a protocol ensuring coherence between replicas

has great overhead when data exchanges between peers are

frequent.

Log-based rollback-recovery is not appropriate to dis-

tributed iterative algorithms with frequent communications,

since communication logging uses a great volume of stor-

age. Thus, we have chosen to carry out a checkpoint-based

rollback-recovery mechanism in order to cope with worker

failure. This mechanism can adapt itself to different com-

putational schemes. Synchronous iterative schemes need the

synchronization of all workers after each iteration, i.e a global

state of computation must be reached before computation

can continue. Hence, coordinated checkpointing is appropriate

to this case. In the asynchronous case, a global state of

computation is not needed. Each worker can work at his own

pace. Moreover, asynchronous iterative schemes of computa-

tion allow message loss. Thus, uncoordinated checkpointing

is appropriate to asynchronous iterative schemes. We have

implemented a customized checkpointing (programmer defines

what data should be placed into checkpoint and how to

recover from a checkpoint). The coordinator is only devoted

to checkpoint storage of peers in its group since this task may

become a bottleneck.

In order to cope with coordinator failure, we have chosen a

replication strategy since the number of coordinators is small

as compared with the number of workers and coordinators do

not compute any subtask. In the following subsections, we

present in detail the fault tolerant mechanisms that have been

carried out.

1) Checkpoint-based rollback-recovery mechanism for
workers: In a group, workers periodically send heartbeat

messages to their coordinator in order to inform it that they

are still alive. If a coordinator does not receive the heartbeat

message from a worker within a time T , then the coordinator

considers that this worker has failed.

In order to enable fault tolerant functionality of workers,

programmers have to call the P2P checkpoint function in

the code when they want workers to take checkpoints. All

application data that need to be placed into the checkpoint

should be set as parameters of the function. In addition, when

a user starts the submitter, he has to add fault tolerance option

to command line; otherwise, P2P checkpoint function will

have no effect. When fault tolerance option is added, all

peers participating to the computation prepare specific data

for checkpointing/recovery process; coordinators store a copy

of each received subtask so that if a subtask crashes before the

first checkpoint, then the coordinator recovers crashed subtask

from its initial state. In the sequel, we detail checkpoint-based

rollback-recovery processes for the different computational

schemes considered. We assume that there are more available

Submitter

CoordinatorCoordinator

P1 P2 P4P3

(1)(1)(1)

(2) (2)
(3)

(1) Checkpoint
(2) Group Checkpointing done
(3) Global Checkpointing done
(4) Global Checkpointing done

(3)

(4) (4)
(1)

(4) (4)

Fig. 4. Coordinated checkpointing process for synchronous scheme.

free peers than peer failures.

a) Coordinated checkpointing rollback-recovery for dis-
tributed synchronous iterative schemes: Figure 4 displays the

different steps of the coordinated checkpointing process in the

synchronous case.

• (1) When P2P checkpoint function is called at a worker,

the worker creates a checkpoint and sends the checkpoint

to its coordinator. We note that in iterative algorithms,

all peers execute the same code. Moreover, in the case

of synchronous schemes, synchronization between peers

is established via blocking operations of communication;

thus the P2P checkpoint function is called relatively at

the same time on all workers. A worker does not continue

to compute immediately after it has sent a checkpoint;

it must wait for the consistent global checkpoint of

application to be generated.

• (2) Upon reception of a new checkpoint, a coordinator

checks if it has received checkpoints from all workers in

its group. When all checkpoints have been received, the

coordinator notifies the submitter that group checkpoint-

ing is done (see Figure 4).

• (3) When the submitter has received notifications from all

groups, it generates the consistent global checkpoint of

application and notifies all coordinators about the global

checkpoint.

• (4) Each coordinator transfers the global checkpoint noti-

fication to workers in its group and substitutes old check-

points in its local memory to new checkpoints. When a

worker has received the global checkpoint notification, it

replaces the old checkpoint in local memory by the new

checkpoint and continues the computation.

If a worker fails, then the workers that exchange data with

the failed worker are blocked. Figure 5, displays the case

where worker P4 fails and a free peer P5 is available in

the network. The process of rollback and recovery to the last

consistent global checkpoint is described below.

• (1) The coordinator of failed worker P4 notifies the

submitter about peer failure.

• (2) When the submitter has received peer failure notifica-

tion, it sends rollback commands to other coordinators.

• (3) Coordinators transfer rollback commands to workers.

• (4) The coordinator of failed peer finds out a free peer

in the network, i.e P5 and sends failed worker last

checkpoint to new peer that is stored in its local memory.
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Fig. 5. Recovery process upon a worker failure for synchronous scheme.

Submitter

CoordinatorCoordinator

P1 P2 P4P3

(1)(1)(1)

(1) Checkpoint

(1)

Fig. 6. Uncoordinated checkpointing process for asynchronous schemes.

• (5) Workers receiving rollback command stop compu-

tation, load the state of their last checkpoint in local

memory and send rollback done message to coordina-

tors. Similarly, the new worker P5 loads the state from

received checkpoint and sends rollback done message to

coordinator.

• (6) When a coordinator has received rollback done mes-

sages from all peers in the group, it sends group rollback
done message to submitter.

• (7) When the submitter has received group rollback done
messages from all coordinators, it sends restart command

to all coordinators.

• (8) Coordinators transfer start computation messages to

workers and workers start computation from the recov-

ered state.

b) Uncoordinated checkpointing rollback-recovery for
distributed asynchronous iterative schemes: Figure 6 shows

the uncoordinated checkpointing process for asynchronous

schemes. The checkpoint process is very simple since no

coordination is needed in this case.

• (1) When P2P checkpoint function is called at a worker,

the worker creates a checkpoint and sends the check-

point to its coordinator. Then, the worker continues the

computation immediately; moreover the worker does not

store the checkpoint in its local memory, contrarily to

what is done in the synchronous case. We note that

coordinators which receive checkpoints from workers

replace old checkpoints by new checkpoints in their local

memory.

In the asynchronous case, the recovery process upon a

worker failure is very simple, as shown in Figure 7.

• (1) When a worker, e.g., P4, fails no worker is blocked,

Submitter

CoordinatorCoordinator

P1 P2 P4P3 P5

(1)

(1) Checkpoint

Fig. 7. Recovery process upon a worker failure for asynchronous schemes.
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Fig. 8. Replication of coordinators.

since data exchanges are nonblocking. Thus, other work-

ers continue the computation. The coordinator of the

failed worker finds out a free peer in the network, e.g.,

peer P5 and sends the last checkpoint of the worker P4 to

the peer P5. The peer P5 loads the state and immediately

starts the computation from this state.

2) Replication mechanism for coordinators: A passive

replication mechanism is implemented for the coordinators

as shown in Figure 8. Each coordinator, also called primary

coordinator, has a series of backup coordinators. A primary

coordinator communicates with the submitter and workers.

Backup coordinators store the state of the primary coordinator.

Upon a state change of a primary coordinator, e.g., a new

checkpoint or a worker failure, the primary coordinator sends

its new state to backup coordinators. Backup coordinators

periodically send heartbeat messages to the primary coordi-

nator in order to inform it that they are still alive. When

a primary coordinator receives a heartbeat message from a

backup coordinator, it sends an acknowledgement message

to the backup coordinator. If a primary coordinator does

not receive the heartbeat message from a backup coordinator

within a time T , then, it considers that this backup coordi-

nator has failed and looks for a free peer in the network

to become a new backup coordinator. On the other hand,

if backup coordinators do not receive an acknowledgement

message from a primary coordinator within a time T , then,

they consider that the primary coordinator has failed; backup

coordinators elect a backup coordinator to become the new

primary coordinator depending on machines load. Finally, the

new primary coordinator connects to submitter and workers

in the group and starts to manage the group; in addition, the

new primary coordinator looks for a free peer in the network

to become an additional backup coordinator.
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V. DISTRIBUTED ITERATIVE ALGORITHMS

This section deals with several examples of distributed

iterative algorithms that have been carried out via P2PDC.

We concentrate on the solution of the obstacle problem.

A. The obstacle problem
The obstacle problem, belongs to a large class of numerical

simulation problems (see [20]). The obstacle problem occurs in

many domains like mechanics and finance, e.g., Black-Scholes

problem for options pricing.
1) Problem formulation: In the stationary case, the obstacle

problem can be formulated as follows.⎧⎪⎪⎨
⎪⎪⎩

Find u∗ such that
A.u∗ − f ≥ 0, u∗ ≥ φ everywhere in domain Ω,
(A.u∗ − f)(φ− u∗) = 0 everywhere in Ω,
B.C.,

where φ ∈ R
2(or R

3) is an open set, A is an elliptic operator,

φ a given function and B.C. denotes the boundary conditions

on ∂Ω.
In the literature, there are many equivalent formulations of

the obstacle problem like complementary problem, variational

inequality and constrained optimization problem. We consider

here the variational inequality formulation.{
Find u∗ ∈ Ksuch that
∀v ∈ K, 〈A.u∗, v − u∗〉 ≥ 〈f, v − u∗〉,

where K is a closed convex set defined by

K = {v|v ≥ φ everywhere in Ω},
and 〈., .〉 denotes the dot product 〈u, v〉 = ∫

uvdx.
2) Fixed point problem and projected Richardson method:

The discretization of the obstacle problem leads to the follow-

ing fixed point problem whose solution via distributed iterative

algorithms presents many interests.{
Find u∗ ∈ V such that
u∗ = F (u∗), (1)

where V is an Hilbert space and the mapping F : v → F (v)
is a fixed point mapping from V into V .

Let α be a positive integer, for all v ∈ V , we consider the

following block-decomposition of v and the associated block-

decomposition of the mapping F for distributed implementa-

tion purpose:

v = (v1, . . . , vα) ,

F (v) = (F1(v), . . . , Fα(v)) .

We have V = Πa
i=1Vi, where Vi are Hilbert spaces. We

denote by 〈., .〉i the scalar product on Vi and |.|i the associated

norm, i ∈ {1, . . . , α}. For all u, v ∈ V, we denote by

〈u, v〉 = ∑α
i=1〈ui, vi〉i, the scalar product on V and |.| the

associated norm on V . In the sequel, we shall denote by

A a linear continuous operator from V onto V , such that

A.v = (A1.v, . . . , Aα.v) and which satisfies:

∀i ∈ {1, . . . , α}, ∀v ∈ V, 〈Ai.v, vi〉 ≥
α∑

j=1

ni,j |vi|i|vj |j , (2)

where

N = (ni,j)i≤i,j≤α is an M −matrix of size α× α. (3)

The reader is referred to [21] for the definition of M−matrix.

Similarly, we denote by Ki, a closed convex set such that

Ki ⊂ Vi, ∀i ∈ {1, . . . , α}. We denote by K, the closed

convex set such that K = Πa
i=1Ki and b, a vector of V

that can be written as: b = (b1, . . . , bα). For all v ∈ V ,

let PK(v) be the projection of v on K such that PK(v) =
(PK1

(v1), . . . , PKα
(vα)), where PKi

denotes the mapping that

projects elements of Vi onto Ki, ∀i ∈ {1, . . . , α}. For any

δ ∈ R, δ > 0, we define the fixed point mapping Fδ as follows

(see [20]).

∀v ∈ V, Fδ(v) = PK(v − δ(A.v − b)). (4)

3) Parallel projected Richardson method: We consider the

distributed solution of fixed point problem (1) via projected

Richardson method combined with several schemes of com-

putation, e.g., a Jacobi like synchronous scheme: up+1 =
Fδ(u

p), ∀p ∈ N or asynchronous schemes of computation that

can be defined mathematically as follows (see [20]).{
up+1
i = Fi,δ(u

ρ1(p)
1 , ..., u

ρα(p)
α ) if i ∈ s(p),

up+1
i = up

i if i /∈ s(p),
(5)

where{
s(p) ⊂ {1, . . . , α}, s(p) 	= φ, ∀p ∈ N,
{p ∈ N |i ∈ s(p)} is infinite, ∀i ∈ {1, . . . , α}, (6)

and{
ρj(p) ∈ N, 0 ≤ ρj(p) ≤ p, ∀j ∈ {1, . . . , α}, ∀p ∈ N
limp→∞ ρj(p) = +∞, ∀j ∈ {1, . . . , α}. (7)

We note that the use of components of the iterate vector

that can be delayed in (5) and (7) permits one to model

nondeterministic behavior and does not imply inefficacy of

the considered distributed scheme of computation. The con-

vergence of asynchronous projected Richardson method has

been established in [20]. The reader is referred to [5] and

[22] for several studies dealing with convergence issues in

asynchronous iterations.

The choice of scheme of computation, i.e., synchronous,

asynchronous or any combination of both schemes has impor-

tant consequences on the efficiency of the distributed iterative

algorithm. The interest of asynchronous iterations for various

problems including optimization and boundary value problems

has been shown in [5], [20], [23], [24], [25].

We note also that asynchronous schemes of computation

present some interesting fault tolerance properties since they

permit one to cope with message loss that can occur in a

peer-to-peer network. In the asynchronous context, message

loss is not critic: it does not lead to system deadlock and

the information contained in a missing message can be easily

replaced via the one contained in a new message.
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TABLE I
MACHINE SPECIFICATION AND SEQUENTIAL COMPUTATIONAL TIME

Site Cluster Processor Mem. Time
Lyon Sagittaire AMD 2.4 GHz 2 Gb 32166 s

Capricorne AMD 2.0 GHz 2 Gb 33942 s

Sophia Helios AMD 2.2 GHz 4 Gb 33178 s

Sol AMD 2.6 GHz 4 Gb 29400 s

Toulouse Pastel AMD 2.6 GHz 8 Gb 27843 s

Nancy Grelon Intel Xeon 1.6 GHz 2 Gb 32476 s

Orsay Gdx AMD 2.0/2.4 GHz 2 Gb 34636 s

Netgdx AMD 2.0 2 Gb 34711 s

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results obtained

with several distributed iterative schemes of computation car-

ried out via P2PDC for a 3D obstacle problem. We concentrate

on parallelepiped-based domain decomposition methods. Two

cases are considered: a fault-free case and a case with peer

failures. In the former case we concentrate essentially on the

efficiency of the distributed algorithms carried out with the

P2PDC environment; while in the later case, we study the

implemented fault tolerance mechanisms.

A. Platform

Experiments have been carried out on the Grid’5000 testbed

[26], a French platform, that consists of 2970 processors with

a total of 6906 cores distributed over nine sites. Sites of

Grid 5000 have several clusters with different characteristics.

All sites have at least a Gigabyte Ethernet network for local

machines and machines range from 2.5 Gflops up to 10 Gflops.

We have used machines in 8 clusters that belong to 5 sites.

Machine characteristics of each cluster and the corresponding

sequential computational time are presented in Table I.

The topology server is placed on the Toulouse site. A tracker

is launched on each site in order to manage peers of the site.

The submitter is a machine of the Sagittaire cluster in Lyon.

B. Computational experiments in a fault-free context

In this subsection, we display and analyze experimental

results in a fault-free context. We consider a cubic domain

contained in the 3D space, the domain being discretized with

256 x 256 x 256 points.

Table II displays the computational time of distributed

iterative schemes, i.e., synchronous, asynchronous and hy-

brid schemes. Hybrid schemes of computation result from

the combination of synchronous and asynchronous schemes:

synchronous schemes of computation are carried out locally

on peers that are close and present the same characteristics

of clock frequency and memory organization (e.g., peers of

a given cluster) while the global behavior is asynchronous.

We note that when the number of peers is less than 256,

computations are carried out on four clusters at four locations,

i.e., cluster Pastel at Toulouse, cluster Sagittaire at Lyon,

cluster Grelon at Nancy and cluster Gdx at Orsay. For each

experiment, an equal number of peers is used at each site.

TABLE II
DISTRIBUTED CASE, COMPUTATIONAL RESULTS

Peers Method Time Speedup Efficiency
1 - 27843 s 1 1
8 Syn 6152 s 4.53 0.57
8 Asyn 3756 s 7.41 0.93
8 Hybrid 4058 s 6.86 0.86
16 Syn 3222 s 8.64 0.54
16 Asyn 1698 s 16.4 1.03
16 Hybrid 2010 s 13.85 0.87
32 Syn 2049 s 13.59 0.42
32 Asyn 908 s 30.66 0.96
32 Hybrid 1188 s 23.44 0.73
64 Syn 1652 s 16.85 0.26
64 Asyn 457 s 60.93 0.95
64 Hybrid 763 s 36.49 0.57

128 Syn 1338 s 20.81 0.16
128 Asyn 267 s 104.28 0.81
128 Hybrid 510 s 54.59 0.43
256 Syn 1945 s 14.32 0.06
256 Asyn 142 s 196.08 0.77
256 Hybrid 366 s 76.07 0.3

Speedup and efficiency are computed by using the fastest

sequential computational time, i.e with a machine in Toulouse.

Experimental results show that synchronous iterative

schemes of computation carried out via P2PDC do not scale

well up on heterogeneous testbeds. We note also that the

combination of asynchronous iterative schemes of computation

with P2PDC is very efficient. The lack of synchronization

overhead and idle time due to synchronization permits one to

obtain very good efficiency. The efficiency of hybrid iterative

schemes of computation is situated in between efficiencies of

synchronous and asynchronous iterative schemes.

The reader is also referred to [27] for a study related to

evolutive problems in Finance.

C. Fault tolerance experiments

In this subsection, we present and analyze experimental

results in the case where some peer failures occur. Peer failures

are simulated by turning off peers.

1) Coordinator replication overhead: We have run the

obstacle problem on 64 workers in the case where the number

of backup coordinators varies from 2 to 5. We have found that

the overhead of the replication mechanism for coordinators

is small. We have also found that coordinator failure has

negligible impact on the global solution time. This can be ex-

plained by the fact that state changes on primary coordinators

are sent to backup coordinators by an independent thread in

order to minimize the influence on group management process;

moreover, coordinators do not execute any subtask.

2) Worker checkpointing and recovery overhead: We have

run the same obstacle problem as in subsection VI-B, i.e.,

with a domain being discretized with 256 x 256 x 256 points,

on 4, 8, 16, 32 and 64 workers. The machines of the cluster

Sagittaire at Lyon have been used in the cases with 4, 8, 16

and 32 workers; 32 machines of the cluster Sagittaire at Lyon

and 32 machines of the cluster gdx at Orsay have been used

in the case with 64 workers. In each case, we have randomly
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TABLE III
WORKER CHECKPOINTING AND RECOVERY OVERHEAD

Workers Checkpoint Checkpointing time Recovery time

size Sync Async Sync Async

4 32 Mb 1307 ms 372 ms 1251 ms 1257 ms

8 16 Mb 1349 ms 201 ms 628 ms 654 ms

16 8 Mb 1494 ms 101 ms 320 ms 329 ms

32 4 Mb 1631 ms 51 ms 170 ms 174 ms

64 2 Mb 919 ms 27 ms 105 ms 97 ms

generated worker failures. Table III displays the checkpointing

time and recovery time.

The checkpointing time in the synchronous case is greater

than the checkpointing time in the asynchronous case. This

is due to the fact that in the synchronous case, all worker

have to wait for the global checkpoint. Moreover, in the

synchronous case, all workers in a group send checkpoints

to their coordinator nearly at the same time; while workers

send checkpoints to their coordinators at their own pace in

the asynchronous case.

In the synchronous case, the checkpointing time generally

increases with the number of workers. This is due to the

fact that the coordination overhead increases with the number

of workers. However, when the number of workers reaches

64 peers, the checkpointing time decreases, since there are

two groups (two coordinators) and coordinators receive less

checkpoints.

In the asynchronous case, when the number of workers in-

creases, the checkpointing time decreases since the checkpoint

size decreases and there is no coordination.

In case of worker failure, the recovery time in the asyn-

chronous context is slightly greater than in the synchronous

context (we recall that all workers have to rollback in parallel

to the last checkpoint in their local memory in the synchronous

case). In the asynchronous case, the coordinator still has to

receive checkpoints from other workers while the recovery

mechanism is processing; whereas in the synchronous case,

only recovery messages are sent. Thus, sending checkpoint of

failed workers from the coordinator to a new worker takes

more time in the asynchronous case than in the synchronous

case. When the number of workers increases from 32 to 64,

the recovery time in the synchronous case is greater than in

the asynchronous case since machines of two sites, i.e., Lyon

and Orsay, have been used and the coordination overhead has

consequently increased.

3) Impact of worker failures on computational time: In

order to study the impact of worker failures on computational

time, we have considered the solution via 64 workers at two

locations, i.e., Lyon and Orsay, of the same obstacle problem

as in subsection VI-B, i.e., with a domain being discretized

with 256 x 256 x 256 points (we recall that in Table II, the case

with 64 workers corresponds to machines at four locations).

Checkpoints have been taken every 1000 relaxations and

some worker failures have been generated randomly. Figure

9 shows the computational time of distributed synchronous
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Fig. 9. Computational time for different number of worker failures.

and asynchronous iterative schemes of computation when the

number of worker failures varies from 0 to 10.

We note that the computational time increases more with the

number of worker failures in the synchronous case than in the

asynchronous case. In particular, for ten worker failures, the

computational time increases about 10% in the synchronous

case and about 4% in the asynchronous case. In the asyn-

chronous case, all peers but one can continue to compute and

participate to the application when a peer failure occurs and the

fault tolerance mechanism is carried out. In the synchronous

case, all peers must carry out a general rollback procedure and

must synchronize; meanwhile, they are not available anymore

for the application, i.e., computations; moreover, the general

rollback mechanism delays the synchronous iterative scheme

since computations restart at a previous state, i.e., at a previous

iteration number.

The combination of distributed asynchronous iterative

schemes of computation with the P2PDC environment seems

to be at the same time more efficient in a fault free context and

able to cope more efficiently with peer failures. We conclude

this section by recalling that asynchronous iterative schemes

of computation present also intrinsic fault tolerance properties

to deal with messages loss.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a robust version of P2PDC,

a decentralized environment for high performance peer-to-

peer distributed computing that allows direct communication

between peers and that is dedicated to task parallel applica-

tions. We have proposed simple and efficient fault tolerance

mechanisms ensuring the robustness of HPC applications that

adapts to peer roles and computational schemes. We have

displayed and analyzed a set of computational results with

up to 256 peers on the Grid’5000 testbed for a numerical

simulation problem: the obstacle problem. The computational

results show that the decentralized and robust version of

P2PDC permits one to obtain good efficiency for the solution

of numerical simulation problems via distributed iterative

methods. In particular, we note that the combination of par-

allel asynchronous iterative algorithms with P2PDC is very
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efficient. We have obtained an efficiency close to 80% with

256 peers.

On what concerns robustness aspects to cope with peer

faults, we note that the proposed mechanisms have small

impact on computational time specially in the asynchronous

case. The use of asynchronous distributed iterative algorithms

permits also one to cope with message loss.

Presently, we are extending the functionalities of the

P2PSAP protocol so as to use Infiniband networks. This will

permit us to take into account more testbeds. This will permit

us also to reduce solution time. Finally, other applications,

e.g., process engineering and logistics will be considered. We

plan also to support transparent checkpointing whereby check-

pointing/recovering processes are transparent to programmer.
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