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Copulas based on Marshall–Olkin machinery

Fabrizio Durante∗ and St́ephane Girard and Gildas Mazo

Abstract We present a general construction principle for copulas that is inspired by
the celebrated Marshall–Olkin exponential model. From this general construction
method we derive special sub–classes of copulas that could be useful in different
situations and recall their main properties. Moreover, we discuss possible estimation
strategy for the proposed copulas. The presented results are expected to be useful in
the construction of stochastic models for lifetimes (e.g. in reliability theory) or in
credit risk models.

1 Introduction

The study of multivariate probability distribution function has been one of the clas-
sical topics in the statistical literature once it was recognized at large that the inde-
pendence assumption cannot describe conveniently the behavior of a random system
composed by several components. Since then, different attempts have been done in
order to provide more flexible methods to describe the variety of dependence-types
that may occur in practice. Unfortunately, the study of high–dimensional models
is not that simple when the dimension goes beyond 2 and the range of these mod-
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els is still not rich enough for the users to choose one that satisfies all the desired
properties.

One of the few examples of high–dimensional models that havebeen used in
an ample spectrum of situations is provided by the Marshall–Olkin distribution,
introduced in [24] and, hence, developed through various generalizations (as it can
be noticed by reading the other contributions to this volume).

The starting point of the present work is to combine the general idea provided by
Marshall–Olkin distributions with a copula-based approach. Specifically, we pro-
vide a general construction principle, the so–called Marshall–Olkin machinery, that
generates many of the families of copulas that have been recently considered in the
literature. The methodology is discussed in detail by meansof several illustrations.
Moreover, possible fitting strategies for the proposed copulas are also presented.

2 Marshall–Olkin machinery

Consider a system composed byd ≥ 2 components with a random lifetime. We are
mainly interested in the deriving an interpretable model for the system supposing
that the lifetime of each component may be influenced by adverse factors, com-
monly indicated asshocks. Such shocks can be, for instance, events happening in
the environment where the system is working, or simply can becaused by dete-
rioration of one or more components. In a different context,like credit risk, one
may think that the system is a portfolio of assets, while the shocks represent arrival
times of economic catastrophes influencing the default of one or several assets in
the portfolio.

To provide a suitable stochastic model for such situations,let (Ω ,F ,P) be a
given probability space.

• Ford ≥ 2, consider the r.v.’sX1, . . . ,Xd such that eachXi is distributed according
to a d.f.Fi , Xi ∼ Fi . EachXi can be interpreted as a shock that may effect only the
i–th component of the system, i.e. the idiosyncratic shock.

• Let S 6= /0 be a collection of subsetsS⊆ {1,2, . . . ,d} with |S| ≥ 2, i.e. S ⊆
2{1,2,...,d}. For eachS∈S consider the r.v.’sZS with probability d.f.GS. Such aZS

can be interpreted as an (external) shock that may affect thestochastic behavior
of all the system components with indexi ∈ S, i.e. the systemic shock.

• Assume a given dependence among the introduced random vectors X and Z,
i.e. suppose the existence of a given copulaC such that, according to Sklar’s
Theorem [32], one has

(X,Z)∼C((Fi)i=1,...,d,(GS)S∈S ). (1)

The copulaC describes how the shocksX andZ are related each other.
• For i = 1, . . . ,d, assume the existence of a linking functionψi that expresses how

the effects produced by the shockXi and all the shocksZS with i ∈Sare combined
together and acts on thei–th component.
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Given all these assumptions, we callMarshall–Olkin machineryanyd–dimensional
stochastic modelY = (Y1, . . . ,Yd) that has the stochastic representation:

Yi = ψi(Xi ,ZS: i∈S). (2)

Such a general framework includes most of the so–called shock models presented
in the literature. Notably, Marshall–Olkin multivariate (exponential) distribution is
simply derived from the previous framework by assuming that

(X,Z)∼
(

d

∏
i=1

Fi

)
·


 ∏

/06=S∈2{1,2,...,d}
GS


 , (3)

i.e. all the involved r.v.’s are mutually independent, eachXi and eachZS have expo-
nential survival distribution,ψi = max.

However, it includes also various Marshall–Olkin type generalized families, in-
cluding, for instance, the family presented in [19] that is obtained by assuming that
Xi ’s are not identically distributed (see also [28]).

By suitable modifications, Marshall–Olkin machinery can beadapted in order to
obtain general construction methods for copulas. In fact, the growing use of copulas
in applied problems always requires the introduction of novel families that may
underline special features like tail dependence, asymmetries, etc. Specifically, in
order to ensure that the distribution function of(Y1, . . . ,Yd) of Eq. (2) is a copula
it could be convenient to select allXi ’s and allGS’s with support on[0,1] and, in
addition,ψi with range in[0,1]. Obviously, one has also to check that eachYi is
uniformly distributed in[0,1]. We callMarshall–Olkin machineryany construction
methods for copulas that is based on previous arguments. In the following we are
interested in presenting some specific classes generated bythis mechanism.

Provided that the copulaC and the marginal d.f.’s of Eq. (1) can be easily sim-
ulated, distribution functions (in particular, copulas) generated by Marshall–Olkin
machinery can be easily simulated. However, if no constraints are require on the
choice ofS , such distributions are specified by (at least) 2d parameters, namely

• d parameters related toXi ’s;
• 2d −d−1 parameters related toZS’s;
• (at least) one parameter related to the copulaC.

Hence, such a kind of model soon becomes unhandy as the dimension increases.
Therefore, we are interested in flexible subclasses generated by Marshall–Olkin
machinery with fewer parameters that are better suited for high-dimensional ap-
plications.
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3 Copulas generated by one independent shock

To provide a preliminary class generated by Marshall–Olkinmechanism, consider
the case when the system is subjected to individual shocks and one global shock that
is independent of the previous ones. In such a case, copulas may be easily obtained
in view of the following result.

Theorem 1.For d ≥ 2, consider the continuous r.v.X = (X1, . . . ,Xd) having copula
C and such that each Xi is distributed according to a d.f. F supported on[0,1].
Consider the r.v. Z with probability d.f. G such that Z is independent ofX. For every
i = 1, . . . ,d, set

Yi := max{Xi ,Z}.
If G(t) = t/F(t) for t ∈]0,1], then the d.f. of(Y1, . . . ,Yd) is a copula, given by

C̃(u) = G(u(1)) ·C(F(u1), . . . ,F(ud)), (4)

where u(1) = mini ui .

Proof. The expression of̃C can be obtained by direct calculation. Moreover, since
C̃ is obviously a d.f., the proof consists of showing that the univariate margins of̃C
are uniform on(0,1). However, this is a straightforward consequence of the equality
F(t)G(t) = t on (0,1). ⊓⊔

Models of type (4) can be also deduced from [29].

Remark 1.In the assumption of Theorem 1, sinceG has to be a d.f. it follows that
t ≤ F(t) for all t ∈ [0,1]. Moreover, the conditiont/F(t) being increasing is equiv-
alent (assuming differentiability ofF) to (log(t))′ ≥ (log(F(t)))′ on (0,1). Finally,
notice that ifF is concave, thent 7→ t/F(t) is increasing on(0,1) (see, e.g., [25]).

Remark 2.It is worth noticing that the copulãC in (4) can be rewritten as

C̃(u) = min(G(u1), . . . ,G(ud)) ·C(F(u1), . . . ,F(ud)).

Intuitively, it is the product of the comonotonicity copulaMd(u)=min{u1,u2, . . . ,ud}
and the copulaC with some suitable transformation of the respective arguments.
This way of combining copulas was considered, for the bivariate case, in [4, 12],
and for the general case in [20, Theorem 2.1].

As it can be seen from Figure 1, the main feature of copulas of type (4) is that they
have a singular component along the main diagonal of the copula domain[0,1]d. In
general, if the r.v.X has copulaC̃ of type (4), thenP(X1 = X2 = · · · = Xd) > 0.
This feature could be of great interest when the major issue is to model a vector of
lifetimes and it is desirable that defaults of two or more components may occur at
the same time with a non-zero probability.
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Fig. 1 Trivariate Clayton copula (left) and its modification of type(4) with F(t) = t1−α , α = 0.60
(right).

Roughly speaking, a model of type (4) tends to increase the positive dependence.
In fact, sinceF is a d.f. such thatF(t) ≥ t on [0,1], C̃ ≥ C pointwise, which cor-
responds to the positive lower orthant dependent order between copulas (see, e.g.,
[16]). However,C̃ need not be positive dependent, i.e.C ≥ Πd pointwise. For in-
stance, consider the random sample from the copula described in Figure 2. As can
be noticed, there is no mass probability around the point(0,0) and, hence, such a
copula cannot be greater thanΠ2.
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Fig. 2 Copula of type (4) with one shock generated byF(t) = t1−α , α = 0.50, andC equal to
Fréchet lower bound copulaW2.
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3.1 The bivariate case

Now, consider the simple bivariate case related to copulas of Theorem 1 by assum-
ing, in addition, thatC equals the independence copulaΠ2. Specifically, we assume
that there exist three independent r.v.’sX1,X2,Z whose support is contained in[0,1]
such thatXi ∼ F , i = 1,2, andZ ∼ G(t) = t/F(t). For i = 1,2, we define the new
stochastic model

Yi = max(Xi ,Z).

Then the d.f. ofY is given by

C̃(u1,u2) = min(u1,u2)F(max(u1,u2)), (5)

Copulas of this type may be rewritten in the form

C̃(u1,u2) = min(u1,u2)
δ (max(u1,u2))

max(u1,u2)
(6)

whereδ (t) = C̃(t, t) is the so-calleddiagonal section of̃C (see, for instance, [6]). We
refer to [1] for other re-writings. As known, if(U1,U2) are distributed according to
a copulaC, then the diagonal section ofC contains the information about the order
statistics min(U1,U2) and max(U1,U2). In fact, for everyt ∈ [0,1]

P(max(U1,U2)≤ t) = δ (t),
P(min(U1,U2)≤ t) = 2t −δ (t).

Since the d.f.F related to our shock model equalsδ (t)/t on (0,1], it follows that it
determines the behaviour of order statistics of(U1,U2). In the case of lifetimes mod-
els, this is equivalent to say that the survival of a (bivariate) system is completely
driven by one single shockF .

The equivalence of the formulations (5) and (6) suggests twopossible ways for
constructing a bivariate models of type (4) by either assigning F or δ . In both cases,
additional assumptions must be given in order to ensure thatthe obtained model
describes a bona fide copula. These conditions are illustrated here (for the proof,
see [8]).

Theorem 2.Let C̃ be a function of type(4). Setδ := F(t)/t on (0,1]. ThenC̃ is a
copula if, and only if, the functionsϕδ , ηδ : (0,1]→ [0,1] given by

ϕδ (t) :=
δ (t)

t
, ηδ (t) :=

δ (t)
t2

are increasing and decreasing, respectively.

Notice that both the independence copulaΠ2(u1,u2) = u1u2 and the comono-
tonicity copulaM2(u1,u2) = min(u1,u2) are examples of copulas of type (5), gener-
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ated byF(t) = t andF(t) = 1, respectively. Moreover, an algorithm for simulating
such copulas is illustrated in [11, Algorithm 1]. Related random samples are de-
picted in Figure 3. Another example of copulas of type (5) is given by the bivariate
Sato copula of [21], generated byF(t) = (2− t1/α)−α for everyα > 0.
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Fig. 3 Copulas of type (4) generated byF(t) = t1−α with α = 0.25 (left) andα = 0.75 (right).
These are members of Cuadras-Augé family of copulas.

Copulas of type (5) can be interpreted as the exchangeable (i.e., invariant under
permutation of their arguments) members of the family proposed in [23, Proposi-
tion 3.1]. Since this latter reference was the first work thathas explicitly provided
sufficient conditions to obtain copulas of type (5), they canalso be referred to as
exchangeable Marshall copulas(shortly, EM copulas), as done in [9]. Notice that
EM copulas are also known under the namesemilinear copulas, a term used in [8],
and justified by the fact that the these copulas are linear along suitable segments of
their domains (see Figure 4).

EM copulas can model positive quadrant dependence, i.e. each EM copula is
greater thanΠ2 pointwise. Actually, they even satisfy the stronger positive de-
pendence notion called TP2 (see [5]). Following [7] this implies that, if (X,Y)
is an exchangeable vector with EM copula, then the vector of residual lifetimes
(X,Y | X > t,Y > t) at timet > 0 is also TP2 and, a fortiori, positive quadrant de-
pendent. Roughly speaking, the positive dependence between the residual lifetimes
of the system is (qualitatively) preserved at the increase of age.

Another feature of interest in EM copulas is a kind of stability of this class with
respect of certain operation. Usually, risk estimation procedures require the calcula-
tion of risk functions (like Value-at-Risk) with respect tosome specific information
about the dependence. In particular, in this respect, upperand lower bounds for cop-
ulas with some specified feature are relevant (see, e.g., [17, 2, 33]). Now, the class
of all EM copulas is both a convex and log-convex set in the class of all bivariate
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0

1

1

Fig. 4 The dotted lines indicates the typical segments where the restriction of the EM copula to
these sets is linear.

copulas. Moreover, it is also closed under pointwise suprema and infima operations.
Just to provide an example, notice that the class of bivariate Archimedean copulas
is neither convex nor closed under suprema and infima.

3.2 The multivariate case

Copulas of type (5) can be easily extended in any dimension. In fact, consider the
general case related to copulas of Theorem 1 by assuming, in addition, thatC equals
the independence copulaΠ2. Specifically, we assume that there exist(d+1) inde-
pendent r.v.’sX1,X2, . . . ,Xd,Z whose support is contained in[0,1] such thatXi ∼ F ,
i = 1,2, andZ ∼ G(t) = t/F(t). For i = 1,2, . . . ,d, we define the new stochastic
modelY, whereYi = max(Xi ,Z). Then the d.f. ofY is given by

C̃(u) = u[1]
d

∏
i=2

F(u[i]), (7)

whereu[1], . . . ,u[d] denote the components of(u1, . . . ,ud) rearranged in increasing

order. SinceY has uniform univariate marginals,̃C is a copula. Moreover, the fol-
lowing characterization holds (see [10]).

Theorem 3.Let F : [0,1]→ [0,1] be a continuous d.f., and, for every d≥ 2, letC̃ be

the function defined by(7). ThenC̃ is a d–copula if, and only if, the function t→ F(t)
t

is decreasing on(0,1].

Example 1.Let α ∈ [0,1] and considerFα(t) = αt +α, with α := 1−α. ThenC̃Fα
of type (7) is given by
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C̃Fα (u) = u[1]
d

∏
i=2

(αu[i]+α).

In particular, ford = 2, we obtain a convex combination of the copulasΠ2 andM2.

Example 2.Let α ∈ [0,1] and consider the functionFα(t) = tα . ThenC̃Fα of type
(7) is given by

C̃Fα (u) = (min(u1,u2, . . . ,un))
1−α

d

∏
i=1

uα
i .

It generalizes theCuadras-Auǵe familyof bivariate copulas [3]. Further generaliza-
tion of this family is also included in [22].

Copulas of type (7) have some distinguished features. First, they are exchange-
able, a fact that could represented a limitation in some applications. Second, their
tail behavior is only driven by the generator functionF . To make this statement
precise, consider the following extremal dependence coefficient introduced in [13].

Definition 1. Let X be a random vector with univariate marginsF1, . . . ,Fd. Let
Fmin := mini Fi(Xi) and Fmax := maxi Fi(Xi). The lower extremal dependence co-
efficient(LEDC) and theupper extremal dependence coefficient(UEDC) of X are
given, respectively, by

εL := lim
t→0+

P[Fmax≤ t|Fmin ≤ t], εU := lim
t→1−

P[Fmin > t|Fmax> t],

if the limits exist.

Notice that, in the bivariate case, LEDC and UEDC closely related to the lower
and upper tail dependence coefficients (write: LTDC and UTDC, respectively),
which are given by

λL = lim
t→0+

C(t, t)
t

and λU = lim
t→1−

1−2t +C(t, t)
1− t

.

The following result holds [10]. Notice that non–trivial LEDC occurs only whenF
is discontinuous at 0.

Theorem 4.LetC̃ be a copula of type(7) generated by a differentiable F. Then, the
LEDC and UEDC are, respectively, given by

εL =
(F(0+))n−1

∑n
i=1(−1)i−1

(n
i

)
(F(0+))i−1

, εU =
1−F ′(1−)

1+(n−1)F ′(1−)
.

Although copulas of type (7) seem a quite natural generalization of EM copulas,
for practical purposes their main inconvenience is that only one functionF describes
thed–dimensional dependence.

To overcome such oversimplification, a convenient generalization has been pro-
vided in [21]. Basically, copulas of type (7) have been extended to the form
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C̃(u) = u[1]
d

∏
i=2

Fi(u[i]), (8)

for suitable functionsF2, . . . ,Fd. Interestingly, a subclass of the considered copu-
las also can be interpreted in terms of exceedance times of anincreasing additive
stochastic process across independent exponential trigger variables.

In order to go beyond exchangeable models, keeping a certaintractability and/or
simplicity of the involved formulas, a possible strategy could be to combine in a
suitable way pairwise copulas of type (7) in order to build upa general model. This
is pursued, for instance, in [11] and [26], by using as building block Marshall–Olkin
copulas. Both procedures are described in Section 4.

4 Combining Marshall-Olkin bivariate copulas to get flexible
multivariate models

Motivated by the fact that bivariate dependencies are not difficult to check out, it
may be of interest to construct a multivariate copula such that each of its bivariate
margins depends upon a suitable parameter. For example, following [11], one could
introduce a multivariate (extreme-value) copula such thateach bivariate marginal
Ci j belongs to the Cuadras-Augé family:

Ci j (ui ,u j) = Π2(ui ,u j)
1−λi j M2(ui ,u j)

λi j .

To this end, following a Marshall–Olkin machinery, one may consider the following
stochastic representation of r.v.’s whose support is contained in[0,1]:

• Ford ≥ 2, consider the r.v.’sX1, . . . ,Xd such that eachXi is distributed according
to a d.f.Fi(t) = t1−∑ j 6=i λi j for i = 1,2, . . . ,d.

• For i, j ∈ {1,2, . . . ,d}, i < j, consider the r.v.Zi j distributed according toGi j (t) =
tλi j .

• We assume independence among allX’s and allZ’s.

For i = 1,2, . . . ,d, we define the new r.v.Y whose components are given by

Yi = max
(
Xi ,Zi1, . . . ,Zi( j−1),Zi( j+1), . . . ,Zid

)
.

Basically,Yi is determined by the interplay among the individual shockXi and all
the pairwise shocks related to thei–th component of a system. Then the d.f. ofY is
given by

Cpw(u) =
d

∏
i=1

u
1−∑ j 6=i λi j
i ∏

i< j
(min{ui ,u j})λi j .

Here, for everyi, j ∈ {1, . . . ,d} and i < j, λi j ∈ [0,1] andλi j = λ ji . Moreover, if,
for every i ∈ {1, . . . ,d}, ∑d

j=1, j 6=i λi j ≤ 1, thenCpw is a multivariated-copula (that
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is also an extreme–value copula). This copula has Cuadras-Augé bivariate margins
and, therefore, may admit non–zero UTDCs. However, even if this model is nonex-
changeable, the constraints given on the parameters are a severe drawback. For in-
stance, whend = 3, one of the constraint is thatλ12+λ13 ≤ 1. Therefore, the two
pairs(X1,X2) and(X1,X3) cannot have a large UTDC together. In the simplified case
where all the parametersλi j ’s are equal to a common valueλ ∈ [0,1], the copulaCpw

reduces to

Cpw(u) =
d

∏
i=1

u1−λ (i−1)
[i]

with the constraintλ ≤ 1
d−1.

Another way of combining Marshall-Olkin bivariate copulas, that does not suffer
from any constraints, and that still yield a flexible model, was hence proposed in
[26] and it is given next.

LetY0,Y1, . . . ,Yd be standard uniform random variables such that the coordinates
of (Y1, . . . ,Yd) are conditionally independent givenY0. The variableY0 plays the
role of a latent, or unobserved, factor. Let us writeC0i the distribution of(Y0,Yi)
andCi|0(·|u0) the conditional distribution ofYi givenY0 = u0, for i = 1, . . . ,d. The
copulasC0i are called thelinking copulasbecause they link the factorY0 to the
variables of interestYi . It is easy to see that the distribution of(Y1, . . . ,Yd) is given
by the so calledone-factor copula[18]

C(u) =
∫ 1

0
C1|0(u1|u0) . . .Cd|0(ud|u0)du0. (9)

When one choosesC0i to be of type (5) with generatorFi , the integral (9) can be
calculated. This permits to exhibit interesting properties for this class of copulas.
Thus, calculating the integral yields

C(u) = u(1)

[(
d

∏
j=2

u( j)

)∫ 1

u(d)

d

∏
j=1

F ′
j (x)dx+F(1)(u(2))

(
d

∏
j=2

F( j)(u( j))

)
(10)

+
d

∑
k=3

(
k−1

∏
j=2

u( j)

)(
d

∏
j=k

F( j)(u( j))

)∫ u(k)

u(k−1)

k−1

∏
j=1

F ′
( j)(x)dx

]
,

whereF(i) := Fσ(i) andσ is the permutation of(1, . . . ,d) such thatuσ(i) = u(i). The
particularity of this copula lies in the fact that it dependson the generators through
their reordering underlain by the permutationσ . This feature gives its flexibility
to the model. Observe also thatC(u) writes asu(1) multiplied by a functional of
u(2), . . . ,u(d), form that is similar to (7). Interestingly, all the bivariate copulas de-
rived from this model have a simple form as stated below.

Proposition 1. Let Ci j be a bivariate margin of(10). Then Ci j is a copula of type(5)
with generator
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Fig. 5 Random sample of 1000 points from a 3–copula of type (10) with Cuadras-Auǵe generators
with parameters(α1,α2,α3) = (0.9,0.9,0.1). The figure shows the three bivariate margins.

Fi j (t) = Fi(t)Fj(t)+ t
∫ 1

t
F ′

i (x)F
′
j (x)dx.

By Proposition 1, the class of copulas (10) can be viewed as a generalization
in higher dimension of the bivariate copulas of type (5). Moreover, the LTDC and
UTDC coefficients are given by

λL,i j = Fi(0)Fj(0) andλU,i j = (1−F ′
i (1

−))(1−F ′
j (1

−)).
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Example 3 (Fŕechet generators).Let Fi(t) = αit + 1−αi , αi ∈ [0,1]. By Proposi-
tion 1,Fi j is given by

Fi j (t) = (1− (1−αi)(1−α j)) t +(1−αi)(1−α j).

The LTDC and UTDC are respectively given by

λL,i j = λU,i j = (1−αi)(1−α j).

Example 4 (Cuadras-Augé generators).Let Fi(t) = tαi , αi ∈ [0,1]. By Proposition 1,
Fi j is given by

Fi j (t) =

{
tαi+α j

(
1− αiα j

αi+α j−1

)
+ t

αiα j
αi+α j−1 if αi +α j 6= 1

t(1− (1−α)α logt) if α = α j = 1−αi .

The LTDC and UTDC are respectively given by

λL,i j = 0 andλU,i j = (1−αi)(1−α j).

In the cased = 3, Figure 5 depicts a simulated sample of 1000 observations from
this copula with parameter(α1,α2,α3) = (0.9,0.9,0.1).

Unlike copulas of type (7), the copulas of type (10) are not exchangeable. They
are determined byd generatorsF1, . . . ,Fd, which combine together to give a more
flexible dependence structure. Taking various parametric families, as illustrated in
Example 3 and 4, allows to obtain various tail dependencies.

5 Some comments about statistical inference procedures

The construction principle presented above provides copulas that are not absolutely
continuous (up to trivial cases) with respect to the restriction of the Lebesgue mea-
sure to the copula domain. Thus, statistical procedures that requires density of the
related distribution can not be applied. Moreover, the presence of a singular com-
ponent often causes the presence of points where the derivatives do not exist, a fact
that should also considered for the direct applicability ofstatistical techniques based
on moments’ method (see, for instance, [14]).

In this section, we present instead a method to estimate the parameters of the
copulas encountered in this paper, which is based on some recent results in [27].

Let
(X(1)

1 , . . . ,X(1)
d ), . . . ,(X(n)

1 , . . . ,X(n)
d )

be a sample ofn independent and identically distributedd-variate observations from
(X1, . . . ,Xd), a random vector distributed according toF and with copulaC, where
C ≡ Cθ belongs to a parametric family indexed by a parameter vectorθ ∈ Θ ∈
R

q, q≤ d. The estimator is defined as
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θ̂ = argmin
θ∈Θ

(r̂ − r(θ))T Ŵ (r̂ − r(θ)) , (11)

where ˆr = (r̂1,2, . . . , r̂d−1,d), r(θ) = (r1,2(θ), . . . , rd−1,d(θ)) andŴ is a positive def-
inite (weight) matrix with full rank; the coordinater i, j(θ) is to be replaced by a
dependence coefficient betweenXi andXj , and ˆr i, j by its empirical estimator – for
instance, the Spearman’s rho or the Kendall’s tau. The approach (11) can be viewed
as an extension to the multivariate case of the Spearman’s rho / Kendall’s tau in-
version method [15]. The asymptotic properties ofθ̂ have been studied in [27] in
the case where the copulas do not have partial derivatives, as it is the case of the
copulas in this article. In particular, it was shown that, under natural identifiability
conditions on the copulas,θ̂ exists, is unique with probability tending to 1 asn→∞,
and in that case, is consistent and

√
n(θ̂ −θ) tends to a Gaussian distribution.

For the purpose of illustration, we present here a real-dataapplication of the
method by using a dataset consisting of 3 gauge stations where annual maximum
flood data were recorded in northwestern Apennines and Thyrrhenian Liguria basins
(Italy): Airole, Merelli, and Poggi. The dataset is the sameused in [11] to which we
refer for more detailed description.

In order to fit the dependence among these three gauge stations, we use the class
of copulas given by

C(u1,u2,u3) =

(
3

∏
i=1

u1−θi
i

)
min

i=1,2,3
(uθi

i ), θi ∈ [0,1], i = 1,2,3.

Such a copula can be also seen as generated by Marshall–Olkinmachinery, by as-
suming thatX andZ are independent r.v.’s of lengthd whose copula is given byΠd

andMd, respectively,Fi andGi are power functions, andψ = max.
The estimator (11) coordinatesθ̂1, θ̂2 andθ̂3 are given by

θ̂i =
1
2

(
1+

1
τ̂ i, j

+
1
τ̂ i,k

− 1
τ̂ j,k

)
,

where theτ̂i, j are the pairwise sample Kendall’sτ coefficients. Notice that, as con-
sequence of [27, Proposition 2], when the number of parameters is equal to the
number of pairsd(d−1)/2, then the estimator given by (11) does not depend on the
weights.

These previous estimates help to quantify the critical levels and return periods
corresponding to this dataset (see, e.g., [30, 31]). In hydrology, a critical levelp
corresponding to a return periodT is defined through the relationship

T =
1

1−P(C(F1(Y1), . . . ,Fd(Yd))≤ p)
, p∈ [0,1],

whereY1, . . . ,Yd are the r.v.’s of interest andF1, . . . ,Fd their respective univariate
marginals. The return period can be interpreted as the average time elapsing between
two dangerous events. For instance,T = 30 years means that the event happens once
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every 30 years in average. Figure 6 shows the estimated critical levels, along with
confidence intervals, associated to the fitted dataset.
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Fig. 6 Critical levels forT = 2, . . . ,40 together with 95% confidence intervals.

6 Conclusions

We have presented a construction principle of copulas that is inspired by the seminal
Marshall–Olkin idea of constructing shock models. The copulas obtained in this way
have some distinguished properties:

• they have an interpretation in terms of (local or global) shocks;
• they enlarge known families of copulas by including asymmetric copula (in the

tails) and/or non–exchangeability;
• they have a natural sampling strategy;
• they can be used to build models with singular components, a fact that is useful

when modeling joint defaults of different lifetimes (i.e. credit risk).
• they can be fitted to real data with simple novel methodology.
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We think that all these properties make these constructionsappealing in several
applications.
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