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Copulas based on Marshall-Olkin machinery

Fabrizio Duranté and Séphane Girard and Gildas Mazo

Abstract We present a general construction principle for copulasishaspired by
the celebrated Marshall-Olkin exponential model. Frors tféneral construction
method we derive special sub—classes of copulas that ceuldséful in different
situations and recall their main properties. Moreover, igeuss possible estimation
strategy for the proposed copulas. The presented resalexpected to be useful in
the construction of stochastic models for lifetimes (engreliability theory) or in
credit risk models.

1 Introduction

The study of multivariate probability distribution funati has been one of the clas-
sical topics in the statistical literature once it was retpgd at large that the inde-
pendence assumption cannot describe conveniently theibebéa random system
composed by several components. Since then, differemhpischave been done in
order to provide more flexible methods to describe the wanétlependence-types
that may occur in practice. Unfortunately, the study of kigimensional models
is not that simple when the dimension goes beyond 2 and tlge raftthese mod-
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els is still not rich enough for the users to choose one thatfies all the desired
properties.

One of the few examples of high—dimensional models that e used in
an ample spectrum of situations is provided by the Mars@diin distribution,
introduced in [24] and, hence, developed through variomegsizations (as it can
be noticed by reading the other contributions to this volume

The starting point of the present work is to combine the gandea provided by
Marshall-Olkin distributions with a copula-based apptodspecifically, we pro-
vide a general construction principle, the so—called Mais®lkin machinery, that
generates many of the families of copulas that have beentig@®nsidered in the
literature. The methodology is discussed in detail by medisgveral illustrations.
Moreover, possible fitting strategies for the proposed Espare also presented.

2 Marshall-Olkin machinery

Consider a system composeddy 2 components with a random lifetime. We are
mainly interested in the deriving an interpretable modeltfe system supposing
that the lifetime of each component may be influenced by a#véctors, com-
monly indicated ashocks Such shocks can be, for instance, events happening in
the environment where the system is working, or simply carcdiesed by dete-
rioration of one or more components. In a different contékg credit risk, one
may think that the system is a portfolio of assets, while thacks represent arrival
times of economic catastrophes influencing the default ef anseveral assets in
the portfolio.

To provide a suitable stochastic model for such situatitets(Q,.#,P) be a
given probability space.

e Ford > 2, consider the r.v.¥, ..., X4 such that eacl; is distributed according
toad.f.F, X ~ F. EachX; can be interpreted as a shock that may effect only the
i—th component of the system, i.e. the idiosyncratic shock.

e Let.” # 0 be a collection of subse8C {1,2,...,d} with |§ > 2, i.e..” C

can be interpreted as an (external) shock that may affedttiobastic behavior
of all the system components with index S, i.e. the systemic shock.

e Assume a given dependence among the introduced randonrvectand Z,
i.e. suppose the existence of a given coplauch that, according to Sklar’s
Theorem [32], one has

(X,Z) ~C((R)i=1,..d, (Gs)se.7)- 1)

The copulaC describes how the shocksandZ are related each other.

e Fori=1,...,d, assume the existence of a linking functigithat expresses how
the effects produced by the shogkand all the shock&s with i € Sare combined
together and acts on theth component.
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Given all these assumptions, we ddbrshall-Olkin machineranyd—dimensional
stochastic modeY = (Vi,...,Yy) that has the stochastic representation:

Yi = i (X, Zs: ies)- 2)

Such a general framework includes most of the so—calledksimatlels presented
in the literature. Notably, Marshall-Olkin multivariatexpponential) distribution is
simply derived from the previous framework by assuming that

d
X2~ 5 ) Gs |, 3)
( ) ('r‘ ) (D;éSe!{_JZ ..... d} S

i.e. all the involved r.v.’s are mutually independent, eXchnd eactZs have expo-
nential survival distributiony; = max.

However, it includes also various Marshall-Olkin type gafieed families, in-
cluding, for instance, the family presented in [19] thatlisaoned by assuming that
Xi's are not identically distributed (see also [28]).

By suitable modifications, Marshall-Olkin machinery careld@pted in order to
obtain general construction methods for copulas. In faetgrowing use of copulas
in applied problems always requires the introduction ofaidamilies that may
underline special features like tail dependence, asynmsetetc. Specifically, in
order to ensure that the distribution function(di,...,Yy) of Eq. (2) is a copula
it could be convenient to select &f's and allGg's with support on[0,1] and, in
addition, ¢ with range in[0,1]. Obviously, one has also to check that eatlis
uniformly distributed in[0, 1]. We callMarshall-Olkin machinenany construction
methods for copulas that is based on previous argumenthelfotlowing we are
interested in presenting some specific classes generatbéshyechanism.

Provided that the copul@ and the marginal d.f.'s of Eq. (1) can be easily sim-
ulated, distribution functions (in particular, copulagngrated by Marshall-Olkin
machinery can be easily simulated. However, if no condsaane require on the
choice of.#, such distributions are specified by (at lea$tparameters, namely

e d parameters related ¥§’s;
e 29 _d—1 parameters related &'s;
e (atleast) one parameter related to the cogula

Hence, such a kind of model soon becomes unhandy as the daneénsreases.
Therefore, we are interested in flexible subclasses gesteiat Marshall-Olkin
machinery with fewer parameters that are better suited ifgin-tlimensional ap-
plications.
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3 Copulas generated by one independent shock

To provide a preliminary class generated by Marshall-Otkgchanism, consider
the case when the system is subjected to individual shockeraglobal shock that
is independent of the previous ones. In such a case, copalabeneasily obtained
in view of the following result.

Theorem 1.For d > 2, consider the continuous rX = (Xq,...,Xq) having copula
C and such that each;Xs distributed according to a d.f. F supported ¢ 1].
Consider the r.v. Z with probability d.f. G such that Z is ipdedent oK. For every
i=1,...,d, set

Y; := max{X,Z}.

If G(t) =t/F(t) fort €]0,1], then the d.f. ofYs,...,Yy) is a copula, given by

C(u) = G(u)) -C(F (), ..., F(ug)), (4)
where Yy = min; u.

Proof. The expression of can be obtained by direct calculation. Moreover, since
C is obviously a d.f., the proof consists of showing that thvamate margins o€

are uniform o0, 1). However, this is a straightforward consequence of thelggua
F({t)G(t)=ton(0,1). O

Models of type (4) can be also deduced from [29].

Remark 1In the assumption of Theorem 1, sinGehas to be a d.f. it follows that
t <F(t) forall't € [0,1]. Moreover, the conditioh/F (t) being increasing is equiv-
alent (assuming differentiability d¥) to (log(t))’ > (log(F(t)))’ on (0, 1). Finally,
notice that ifF is concave, theh+— t/F(t) is increasing orf0, 1) (see, e.g., [25]).

Remark 21t is worth noticing that the copulé in (4) can be rewritten as
C(u) =min(G(w),...,G(ug)) -C(F (uy),...,F (ug)).

Intuitively, itis the product of the comonotonicity copig (u) = min{ug, Uy, ..., ug}
and the copul& with some suitable transformation of the respective arqume
This way of combining copulas was considered, for the batarcase, in [4, 12],
and for the general case in [20, Theorem 2.1].

As it can be seen from Figure 1, the main feature of copulagef4) is that they
have a singular component along the main diagonal of thelaammain[0, 1]9. In
general, if the r.vX has copuleC of type (4), thenP(X; = Xp = --- = Xgq) > 0.
This feature could be of great interest when the major isstie inodel a vector of
lifetimes and it is desirable that defaults of two or more poments may occur at
the same time with a non-zero probability.
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Fig. 1 Trivariate Clayton copula (left) and its modification of ty(@§ with F (t) =t1~%, a = 0.60
(right).

Roughly speaking, a model of type (4) tends to increase thtiy@dependence.
In fact, sinceF is a d.f. such thaF(t) >t on [0, 1], C > C pointwise, which cor-
responds to the positive lower orthant dependent orderdgstweopulas (see, e.g.,
[16]). However,C need not be positive dependent, &> Iy pointwise. For in-
stance, consider the random sample from the copula deddrilféigure 2. As can
be noticed, there is no mass probability around the pdir?) and, hence, such a
copula cannot be greater thah.

Fig. 2 Copula of type (4) with one shock generatedfft) = t1~%, a = 0.50, andC equal to
Fréchet lower bound copulab.
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3.1 The bivariate case

Now, consider the simple bivariate case related to copulasieorem 1 by assum-
ing, in addition, tha€ equals the independence coplila Specifically, we assume
that there exist three independent r.Xis X,, Z whose support is contained @, 1]
such that;, ~ F ,i =1,2, andZ ~ G(t) =t/F(t). Fori = 1,2, we define the new
stochastic model

Yi = max(%, 2).

Then the d.f. ofY is given by

C(ug,uz) = min(ug,up)F (max(u, up)), (5)
Copulas of this type may be rewritten in the form

= d(max(ug, Up))

C(ug,U2) = min(ug, up) max(Us, 1)

whered(t) = C(t,t) is the so-calledliagonal section of (see, for instance, [6]). We
refer to [1] for other re-writings. As known, {lU1,U,) are distributed according to
a copulaC, then the diagonal section 6fcontains the information about the order
statistics mifU1,U,) and maxUs,Us). In fact, for everyt € [0, 1]

(6)

P(maxUy,Up) <t) = 8(t),
P(min(Ug,Up) <t) = 2t — 3(t).

Since the d.fF related to our shock model equd#)/t on (0,1], it follows that it
determines the behaviour of order statisticélf, Uz). In the case of lifetimes mod-
els, this is equivalent to say that the survival of a (biv@)igystem is completely
driven by one single shodk.

The equivalence of the formulations (5) and (6) suggestspwasible ways for
constructing a bivariate models of type (4) by either asagk or J. In both cases,
additional assumptions must be given in order to ensurettigabbtained model
describes a bona fide copula. These conditions are illestiagre (for the proof,
see [8]).

Theorem 2.LetC be a function of typé4). Setd := F(t)/t on (0,1]. ThenC is a
copula if, and only if, the functiongs, ns : (0,1] — [0, 1] given by

() ()

$s(t):=——,  nslt):=—3"

are increasing and decreasing, respectively.

Notice that both the independence copflila(u;, uz) = uiuz and the comono-
tonicity copulaMz(ug, uz) = min(ug, up) are examples of copulas of type (5), gener-
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ated byF (t) =t andF(t) = 1, respectively. Moreover, an algorithm for simulating
such copulas is illustrated in [11, Algorithm 1]. Relatedidam samples are de-
picted in Figure 3. Another example of copulas of type (5)igg by the bivariate
Sato copula of [21], generated Byt) = (2—t%/@)~7 for everya > 0.

1.0

< 000, o
% oooo @@o% Oo%g) %90 o

o
%° o 0@
o o
os&:%osoﬁg ® @0 o ©
0© o 0® °°9

T T T
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Fig. 3 Copulas of type (4) generated Byt) =t~ with a = 0.25 (left) anda = 0.75 (right).
These are members of Cuadras-adgmily of copulas.

Copulas of type (5) can be interpreted as the exchangeablgiivariant under
permutation of their arguments) members of the family psggbin [23, Proposi-
tion 3.1]. Since this latter reference was the first work tiet explicitly provided
sufficient conditions to obtain copulas of type (5), they edso be referred to as
exchangeable Marshall copuldshortly, EM copulas), as done in [9]. Notice that
EM copulas are also known under the naseenilinear copulasa term used in [8],
and justified by the fact that the these copulas are lineagadaitable segments of
their domains (see Figure 4).

EM copulas can model positive quadrant dependence, i.&. ERtcopula is
greater than/, pointwise. Actually, they even satisfy the stronger pusitde-
pendence notion called TP2 (see [5]). Following [7] this lie that, if (X,Y)
is an exchangeable vector with EM copula, then the vectoesidual lifetimes
(X,Y | X>tY >t)attimet >0 is also TP2 and, a fortiori, positive quadrant de-
pendent. Roughly speaking, the positive dependence bettiegesidual lifetimes
of the system is (qualitatively) preserved at the incredisge.

Another feature of interest in EM copulas is a kind of staidif this class with
respect of certain operation. Usually, risk estimatiorcpriures require the calcula-
tion of risk functions (like Value-at-Risk) with respectd¢ome specific information
about the dependence. In particular, in this respect, wgopefower bounds for cop-
ulas with some specified feature are relevant (see, e.qg.2[133]). Now, the class
of all EM copulas is both a convex and log-convex set in thelaf all bivariate
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Fig. 4 The dotted lines indicates the typical segments where theatestrof the EM copula to
these sets is linear.

copulas. Moreover, it is also closed under pointwise suprand infima operations.
Just to provide an example, notice that the class of biwAathimedean copulas
is neither convex nor closed under suprema and infima.

3.2 The multivariate case

Copulas of type (5) can be easily extended in any dimensiofadt, consider the
general case related to copulas of Theorem 1 by assumindgditicn, thatC equals
the independence copul®. Specifically, we assume that there et 1) inde-
pendent r.v.sX;, Xy, . .., X4, Z whose support is contained B, 1] such thaiX; ~ F,
i=12,andZ ~ G(t) =t/F(t). Fori =1,2,...,d, we define the new stochastic
modelY, whereY; = max(X,Z). Then the d.f. ofY is given by

B d
C(u) =upy BF(U[i])a (7)

whereuy, ..., g denote the components (fi,...,Uq) rearranged in increasing

order. SinceY has uniform univariate marginalé, is a copula. Moreover, the fol-
lowing characterization holds (see [10]).

Theorem 3.Let F: [0,1] — [0,1] be a continuous d.f., and, for every-d2, letC be

the function defined k7). TherCis a d—copula if, and only if, the function+ @
is decreasing or0, 1].

Example 1Let a € [0,1] and consideFq (t) = at + @, with @ := 1— a. ThenC,
of type (7) is given by
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_ d
Cr,(u)=u (auj +a).
1 ill il

In particular, ford = 2, we obtain a convex combination of the copulgsandMs,.

Example 2Let a € [0,1] and consider the functioR, (t) = t?. ThenCg, of type

(7) is given by
d

Cr, (u) = (min(ug, Uz, ..., uy)) ¥ _|‘lui“.

It generalizes th€uadras-Aug familyof bivariate copulas [3]. Further generaliza-
tion of this family is also included in [22].

Copulas of type (7) have some distinguished features., Hirsy are exchange-
able, a fact that could represented a limitation in someiegpbns. Second, their
tail behavior is only driven by the generator functibn To make this statement
precise, consider the following extremal dependence oefitiintroduced in [13].

Definition 1. Let X be a random vector with univariate margifs,...,Fy. Let
Fmin := mini F(X) and Fnax ;= max F(X). The lower extremal dependence co-
efficient(LEDC) and theupper extremal dependence coeffici@BdEDC) of X are
given, respectively, by

t—0t t—1-

if the limits exist.

Notice that, in the bivariate case, LEDC and UEDC closelgtesl to the lower
and upper tail dependence coefficients (write: LTDC and UTD&Spectively),
which are given by

. C(t,t . 1-2t4+C(t,t
AL = lim €Y and Ay = lim A
t—0+ t—1- 1-t

The following result holds [10]. Notice that non—trivial DEE occurs only wherkr
is discontinuous at O.

Theorem 4. LetC be a copula of typ€7) generated by a differentiable F. Then, the
LEDC and UEDC are, respectively, given by

— (F(0+>)n*1 B 1—F’(17)
TILCUFeE YT

&L

Although copulas of type (7) seem a quite natural genetaizaf EM copulas,
for practical purposes their main inconvenience is that onk functiorF describes
thed—dimensional dependence.

To overcome such oversimplification, a convenient gereatitin has been pro-
vided in [21]. Basically, copulas of type (7) have been edezhto the form
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B d
C(u) =upy .|1F|(U[i]), (8)

for suitable functiond~, ..., Fq. Interestingly, a subclass of the considered copu-
las also can be interpreted in terms of exceedance times ioicegasing additive
stochastic process across independent exponentialitiggables.

In order to go beyond exchangeable models, keeping a cérdatability and/or
simplicity of the involved formulas, a possible strategwlicbbe to combine in a
suitable way pairwise copulas of type (7) in order to buildaugeneral model. This
is pursued, for instance, in [11] and [26], by using as bagddlock Marshall-Olkin
copulas. Both procedures are described in Section 4.

4 Combining Marshall-Olkin bivariate copulas to get flexible
multivariate models

Motivated by the fact that bivariate dependencies are rféituli to check out, it
may be of interest to construct a multivariate copula sueh d¢fach of its bivariate
margins depends upon a suitable parameter. For exampéyifod [11], one could
introduce a multivariate (extreme-value) copula such #zath bivariate marginal
Cij belongs to the Cuadras-A@damily:

Cij (ui, uj) = M(ui, uj) '~ Ma(ui, up) ™.

To this end, following a Marshall-Olkin machinery, one maysider the following
stochastic representation of r.v.'s whose support is @oedsin [0, 1):

e Ford > 2, consider the r.v.X, ..., X4 such that eacl; is distributed according
toad.f.R(t) =t Zi#ki fori=1,2,...,d.

e Fori,je{1,2,...,d},i < |, consider the r.\z;; distributed according tG;; (t) =
tAii,

e We assume independence among<dland allZ'’s.

Fori=1,2,...,d, we define the new r..¥ whose components are given by
Yi =max(X,Zi, .., Zi(j-1),Z(j+1),- - Zid) -

Basically,Y; is determined by the interplay among the individual shcland all
the pairwise shocks related to theh component of a system. Then the d.fYois
given by
CPY(u) = - Tl [ (min{u;, u;})™
i|:| I i<] o
Here, for evenyi, j € {1,...,d} andi < j, Ajj € [0,1] andAjj = Aji. Moreover, if,
for everyi € {1,...,d}, z?zl#i)\ij < 1, thenCP¥ is a multivariated-copula (that
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is also an extreme—value copula). This copula has Cuadugé-Bivariate margins
and, therefore, may admit non—-zero UTDCs. However, evénsfrhodel is nonex-
changeable, the constraints given on the parameters aver® srawback. For in-
stance, whemnl = 3, one of the constraint is that, + A13 < 1. Therefore, the two
pairs(Xg, X2) and(X, X3) cannot have a large UTDC together. In the simplified case
where all the parameteds;’s are equal to a common valdec [0, 1], the copulaCP"
reduces to

d )
pr(u) _ uﬁi-]—/\('—l)

with the constrainf < z1;.

Another way of combining Marshall-Olkin bivariate copul#tgat does not suffer
from any constraints, and that still yield a flexible modegsahence proposed in
[26] and it is given next.

LetYy,V1,...,Yq be standard uniform random variables such that the codadina
of (Y1,...,Yq) are conditionally independent givefy. The variableY, plays the
role of a latent, or unobserved, factor. Let us w@g the distribution of(Yo,Y;)
andC;jo(-|up) the conditional distribution o¥; givenYp = up, fori =1,...,d. The
copulasCy; are called thdinking copulasbecause they link the factofy to the
variables of interesY,. It is easy to see that the distribution @, ...,Yy) is given
by the so calle@ne-factor copuld18]

1
Clu) = /0 C1jo(Uz|Uo) - - - Cyjo(Ud |Uo) d L. 9)

When one choosddy to be of type (5) with generatds, the integral (9) can be
calculated. This permits to exhibit interesting propextier this class of copulas.
Thus, calculating the integral yields

d 1d d
(]I:LU(])) /U(d) JI:LFJ' (X)dX+ F(]_)(U(z)) <II:LF(]-)(U(J-))> (10)

d k-1 d e U kle/ 4
—|—kz3<JrLU(J)> <JI:L (J)(U(J))> '/u(k—l) ]DI (]-)(X) x} ,

whereF) = Fy ;) ando is the permutation ofl,...,d) such thauy, = ug;). The
particularity of this copula lies in the fact that it depertsthe generators through
their reordering underlain by the permutation This feature gives its flexibility
to the model. Observe also th@fu) writes asu;) multiplied by a functional of
U2),-- -, U, form that is similar to (7). Interestingly, all the bivateacopulas de-
rived from this model have a simple form as stated below.

C(u) = ug

Proposition 1. Let G;j be a bivariate margin 0o{10). Then G is a copula of typ&5)
with generator
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Fig. 5 Random sample of 1000 points from a 3—copula of type (10) withdtas-Au@ generators
with parameters$ay, a2, a3) = (0.9,0.9,0.1). The figure shows the three bivariate margins.

1
Fi () = ROF 0 +t [ R 0F0gax

By Proposition 1, the class of copulas (10) can be viewed asnarglization
in higher dimension of the bivariate copulas of type (5). btaver, the LTDC and
UTDC coefficients are given by

ALjj = Fi(0)Fj(0) andAy,ij = (1~ F'(17))(1 - F{(17)).
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Example 3 (Fechet generatorsiet F(t) = ait +1— o, a; € [0,1]. By Proposi-
tion 1,F;j is given by

Rjt) = (1-(1-a)(1-aj)t+(1-a)(1-aj).
The LTDC and UTDC are respectively given by
ALij = Aujj = (1—ai)(1—aj).

Example 4 (Cuadras-A&penerators)Let F(t) =t% a; € [0, 1]. By Proposition 1,
Fij is given by

ai+aj __ aigj aiaj i . .
Fi(t) = t4iTai (1 OHGFl) lara 1 ifai+a;#1
t(1—(1—a)alogt) ifa=a;=1-a.

The LTDC and UTDC are respectively given by
/\L,ij =0 and/\u,ij = (17 Gi)(lf a,—).

In the cased = 3, Figure 5 depicts a simulated sample of 1000 observatioms f
this copula with parametéo;, ap, as) = (0.9,0.9,0.1).

Unlike copulas of type (7), the copulas of type (10) are nahexgeable. They
are determined byl generators, ..., Fy, which combine together to give a more
flexible dependence structure. Taking various paramedrlies, as illustrated in
Example 3 and 4, allows to obtain various tail dependencies.

5 Some comments about statistical inference procedures

The construction principle presented above provides espthlat are not absolutely
continuous (up to trivial cases) with respect to the rettiicof the Lebesgue mea-
sure to the copula domain. Thus, statistical procedurdsdigaires density of the
related distribution can not be applied. Moreover, the gmes of a singular com-
ponent often causes the presence of points where the dezvab not exist, a fact
that should also considered for the direct applicabilitgtatistical techniques based
on moments’ method (see, for instance, [14]).

In this section, we present instead a method to estimatedtameters of the
copulas encountered in this paper, which is based on soraetregsults in [27].

et (1) (1) 0 0
n n
X xSy o x )

be a sample afiindependent and identically distributdelariate observations from
(Xa,...,X%q4), @a random vector distributed accordingRaand with copuleC, where
C = Cy belongs to a parametric family indexed by a parameter vegter® <
RY, g < d. The estimator is defined as
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6 = argmin(f —r(8)) "W (F —r(8)), (11)
6eco

wherer'= (f12,...,fg_14),r(8) = (r1,2(8),...,r4-1.4(0)) andW is a positive def-
inite (weight) matrix with full rank; the coordinate ;(0) is to be replaced by a
dependence coefficient betweX¥nandX;, andri j by its empirical estimator — for
instance, the Spearman’s rho or the Kendall's tau. The agpr(l1) can be viewed
as an extension to the multivariate case of the Spearman’s Kendall's tau in-
version method [15]. The asymptotic propertieséolhave been studied in [27] in
the case where the copulas do not have partial derivatigei$,imthe case of the
copulas in this article. In particular, it was shown thatdennatural identifiability
conditions on the copulaé,exists, is unique with probability tending to 1@s- oo,
and in that case, is consistent ayfd(6 — 6) tends to a Gaussian distribution.

For the purpose of illustration, we present here a real-dpfdication of the
method by using a dataset consisting of 3 gauge stationsevdrarual maximum
flood data were recorded in northwestern Apennines and fiégian Liguria basins
(Italy): Airole, Merelli, and Poggi. The dataset is the samsed in [11] to which we
refer for more detailed description.

In order to fit the dependence among these three gauge statieruse the class
of copulas given by

3
— 1-6 in (U8 i =
C(ug,up,u3) = <i|:lu, ) i=rrllzrjg(u, ), 6¢€]0,1,i=1,23.

Such a copula can be also seen as generated by Marshall+dkininery, by as-
suming thatX andZ are independent r.v.'s of lengthwhose copula is given bfig
andMy, respectively andG; are power functions, angi = max.

The estimator (11) coordinat®s, 6, and 63 are given by

~ 1 1 1 1
9|:(1+A__+A_ —,\_),
2 Ti,j Tik Tjk

where thef; j are the pairwise sample Kendalf'scoefficients. Notice that, as con-
sequence of [27, Proposition 2], when the number of paraséteequal to the
number of pairsl(d — 1) /2, then the estimator given by (11) does not depend on the
weights.

These previous estimates help to quantify the criticallteaad return periods
corresponding to this dataset (see, e.g., [30, 31]). Indigdy, a critical levelp
corresponding to a return periddis defined through the relationship

1

=1 rcEM), R <p PO

whereYi,...,Yq are the r.v’s of interest anBy,...,Fq their respective univariate
marginals. The return period can be interpreted as the ged¢irae elapsing between
two dangerous events. For instante; 30 years means that the event happens once
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every 30 years in average. Figure 6 shows the estimatedatiiévels, along with
confidence intervals, associated to the fitted dataset.

eeeeeeeeeeee

Fig. 6 Critical levels forT = 2,...,40 together with 95% confidence intervals.

6 Conclusions

We have presented a construction principle of copulasshaspired by the seminal
Marshall-Olkin idea of constructing shock models. The ¢apobtained in this way
have some distinguished properties:

e they have an interpretation in terms of (local or global)cits

e they enlarge known families of copulas by including asynrinetopula (in the
tails) and/or non—exchangeability;

e they have a natural sampling strategy;

e they can be used to build models with singular componentscizhiat is useful
when modeling joint defaults of different lifetimes (i.eedit risk).

e they can be fitted to real data with simple novel methodology.
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We think that all these properties make these constructippealing in several
applications.
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