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Introduction

The study of multivariate probability distribution function has been one of the classical topics in the statistical literature once it was recognized at large that the independence assumption cannot describe conveniently the behavior of a random system composed by several components. Since then, different attempts have been done in order to provide more flexible methods to describe the variety of dependence-types that may occur in practice. Unfortunately, the study of high-dimensional models is not that simple when the dimension goes beyond 2 and the range of these mod-els is still not rich enough for the users to choose one that satisfies all the desired properties.

One of the few examples of high-dimensional models that have been used in an ample spectrum of situations is provided by the Marshall-Olkin distribution, introduced in [START_REF] Marshall | A multivariate exponential distribution[END_REF] and, hence, developed through various generalizations (as it can be noticed by reading the other contributions to this volume).

The starting point of the present work is to combine the general idea provided by Marshall-Olkin distributions with a copula-based approach. Specifically, we provide a general construction principle, the so-called Marshall-Olkin machinery, that generates many of the families of copulas that have been recently considered in the literature. The methodology is discussed in detail by means of several illustrations. Moreover, possible fitting strategies for the proposed copulas are also presented.

Marshall-Olkin machinery

Consider a system composed by d ≥ 2 components with a random lifetime. We are mainly interested in the deriving an interpretable model for the system supposing that the lifetime of each component may be influenced by adverse factors, commonly indicated as shocks. Such shocks can be, for instance, events happening in the environment where the system is working, or simply can be caused by deterioration of one or more components. In a different context, like credit risk, one may think that the system is a portfolio of assets, while the shocks represent arrival times of economic catastrophes influencing the default of one or several assets in the portfolio.

To provide a suitable stochastic model for such situations, let (Ω , F , P) be a given probability space.

• For d ≥ 2, consider the r.v.'s X 1 , . . . , X d such that each X i is distributed according to a d.f. F i , X i ∼ F i . Each X i can be interpreted as a shock that may effect only the i-th component of the system, i.e. the idiosyncratic shock. • Let S = / 0 be a collection of subsets S ⊆ {1, 2, . . . , d} with |S| ≥ 2, i.e. S ⊆ 2 {1,2,...,d} . For each S ∈ S consider the r.v.'s Z S with probability d.f. G S . Such a Z S can be interpreted as an (external) shock that may affect the stochastic behavior of all the system components with index i ∈ S, i.e. the systemic shock.

• Assume a given dependence among the introduced random vectors X and Z, i.e. suppose the existence of a given copula C such that, according to Sklar's Theorem [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF], one has

(X, Z) ∼ C((F i ) i=1,...,d , (G S ) S∈S ). (1) 
The copula C describes how the shocks X and Z are related each other. • For i = 1, . . . , d, assume the existence of a linking function ψ i that expresses how the effects produced by the shock X i and all the shocks Z S with i ∈ S are combined together and acts on the i-th component.

Given all these assumptions, we call Marshall-Olkin machinery any d-dimensional stochastic model Y = (Y 1 , . . . ,Y d ) that has the stochastic representation:

Y i = ψ i (X i , Z S : i∈S ). (2) 
Such a general framework includes most of the so-called shock models presented in the literature. Notably, Marshall-Olkin multivariate (exponential) distribution is simply derived from the previous framework by assuming that

(X, Z) ∼ d ∏ i=1 F i •   ∏ / 0 =S∈2 {1,2,...,d} G S   , (3) 
i.e. all the involved r.v.'s are mutually independent, each X i and each Z S have exponential survival distribution, ψ i = max. However, it includes also various Marshall-Olkin type generalized families, including, for instance, the family presented in [START_REF] Li | Generalized Marshall-Olkin distributions and related bivariate aging properties[END_REF] that is obtained by assuming that X i 's are not identically distributed (see also [START_REF] Muliere | Characterization of a Marshall-Olkin type class of distributions[END_REF]).

By suitable modifications, Marshall-Olkin machinery can be adapted in order to obtain general construction methods for copulas. In fact, the growing use of copulas in applied problems always requires the introduction of novel families that may underline special features like tail dependence, asymmetries, etc. Specifically, in order to ensure that the distribution function of (Y 1 , . . . ,Y d ) of Eq. ( 2) is a copula it could be convenient to select all X i 's and all G S 's with support on [0, 1] and, in addition, ψ i with range in [0, 1]. Obviously, one has also to check that each Y i is uniformly distributed in [0, 1]. We call Marshall-Olkin machinery any construction methods for copulas that is based on previous arguments. In the following we are interested in presenting some specific classes generated by this mechanism.

Provided that the copula C and the marginal d.f.'s of Eq. ( 1) can be easily simulated, distribution functions (in particular, copulas) generated by Marshall-Olkin machinery can be easily simulated. However, if no constraints are require on the choice of S , such distributions are specified by (at least) 2 d parameters, namely

• d parameters related to X i 's; • 2 dd -1 parameters related to Z S 's; • (at least) one parameter related to the copula C.

Hence, such a kind of model soon becomes unhandy as the dimension increases. Therefore, we are interested in flexible subclasses generated by Marshall-Olkin machinery with fewer parameters that are better suited for high-dimensional applications.

Copulas generated by one independent shock

To provide a preliminary class generated by Marshall-Olkin mechanism, consider the case when the system is subjected to individual shocks and one global shock that is independent of the previous ones. In such a case, copulas may be easily obtained in view of the following result. Theorem 1. For d ≥ 2, consider the continuous r.v. X = (X 1 , . . . , X d ) having copula C and such that each X i is distributed according to a d.f. F supported on [0, 1]. Consider the r.v. Z with probability d.f. G such that Z is independent of X. For every i = 1, . . . , d, set

Y i := max{X i , Z}. If G(t) = t/F(t) for t ∈]0, 1], then the d.f. of (Y 1 , . . . ,Y d ) is a copula, given by C(u) = G(u (1) ) •C(F(u 1 ), . . . , F(u d )), (4) 
where u (1) = min i u i .

Proof. The expression of C can be obtained by direct calculation. Moreover, since C is obviously a d.f., the proof consists of showing that the univariate margins of C are uniform on (0, 1). However, this is a straightforward consequence of the equality

F(t)G(t) = t on (0, 1). ⊓ ⊔
Models of type ( 4) can be also deduced from [START_REF] Pinto | Extended Marshall-Olkin model and its dual version[END_REF].

Remark 1. In the assumption of Theorem 1, since G has to be a d.f. it follows that t ≤ F(t) for all t ∈ [0, 1]. Moreover, the condition t/F(t) being increasing is equivalent (assuming differentiability of F) to (log(t)) ′ ≥ (log(F(t))) ′ on (0, 1). Finally, notice that if F is concave, then t → t/F(t) is increasing on (0, 1) (see, e.g., [START_REF] Marshall | Inequalities: theory of majorization and its applications[END_REF]).

Remark 2. It is worth noticing that the copula C in (4) can be rewritten as

C(u) = min(G(u 1 ), . . . , G(u d )) •C(F(u 1 ), . . . , F(u d )).
Intuitively, it is the product of the comonotonicity copula M d (u) = min{u 1 , u 2 , . . . , u d } and the copula C with some suitable transformation of the respective arguments. This way of combining copulas was considered, for the bivariate case, in [START_REF] Durante | Generalized composition of binary aggregation operators[END_REF][START_REF] Durante | On the characterization of a class of binary operations on bivariate distribution functions[END_REF], and for the general case in [START_REF] Liebscher | Construction of asymmetric multivariate copulas[END_REF]Theorem 2.1].

As it can be seen from Figure 1, the main feature of copulas of type ( 4) is that they have a singular component along the main diagonal of the copula domain

[0, 1] d . In general, if the r.v. X has copula C of type (4), then P(X 1 = X 2 = • • • = X d ) > 0.
This feature could be of great interest when the major issue is to model a vector of lifetimes and it is desirable that defaults of two or more components may occur at the same time with a non-zero probability. 

F(t) = t 1-α , α = 0.60 (right).
Roughly speaking, a model of type (4) tends to increase the positive dependence. In fact, since F is a d.f. such that F(t) ≥ t on [0, 1], C ≥ C pointwise, which corresponds to the positive lower orthant dependent order between copulas (see, e.g., [START_REF] Joe | Dependence Modeling with Copulas[END_REF]). However, C need not be positive dependent, i.e. C ≥ Π d pointwise. For in- stance, consider the random sample from the copula described in Figure 2. As can be noticed, there is no mass probability around the point (0, 0) and, hence, such a copula cannot be greater than Π 2 . 

The bivariate case

Now, consider the simple bivariate case related to copulas of Theorem 1 by assuming, in addition, that C equals the independence copula Π 2 . Specifically, we assume that there exist three independent r.v.'s

X 1 , X 2 , Z whose support is contained in [0, 1] such that X i ∼ F , i = 1, 2, and Z ∼ G(t) = t/F(t). For i = 1, 2, we define the new stochastic model Y i = max(X i , Z).
Then the d.f. of Y is given by

C(u 1 , u 2 ) = min(u 1 , u 2 )F(max(u 1 , u 2 )), (5) 
Copulas of this type may be rewritten in the form

C(u 1 , u 2 ) = min(u 1 , u 2 ) δ (max(u 1 , u 2 )) max(u 1 , u 2 ) (6) 
where δ (t) = C(t,t) is the so-called diagonal section of C (see, for instance, [START_REF] Durante | Copulas, diagonals and tail dependence[END_REF]). We refer to [START_REF] Amblard | A new extension of bivariate FGM copulas[END_REF] for other re-writings. As known, if (U 1 ,U 2 ) are distributed according to a copula C, then the diagonal section of C contains the information about the order statistics min(U 1 ,U 2 ) and max(U 1 ,U 2 ). In fact, for every t ∈ [0, 1]

P(max(U 1 ,U 2 ) ≤ t) = δ (t), P(min(U 1 ,U 2 ) ≤ t) = 2t -δ (t).
Since the d.f. F related to our shock model equals δ (t)/t on (0, 1], it follows that it determines the behaviour of order statistics of (U 1 ,U 2 ). In the case of lifetimes models, this is equivalent to say that the survival of a (bivariate) system is completely driven by one single shock F. The equivalence of the formulations ( 5) and ( 6) suggests two possible ways for constructing a bivariate models of type (4) by either assigning F or δ . In both cases, additional assumptions must be given in order to ensure that the obtained model describes a bona fide copula. These conditions are illustrated here (for the proof, see [START_REF] Durante | Semilinear copulas[END_REF]).

Theorem 2. Let C be a function of type [START_REF] Durante | Generalized composition of binary aggregation operators[END_REF]. Set δ := F(t)/t on (0, 1]. Then C is a copula if, and only if, the functions ϕ δ , η δ :

(0, 1] → [0, 1] given by ϕ δ (t) := δ (t) t , η δ (t) := δ (t) t 2
are increasing and decreasing, respectively.

Notice that both the independence copula Π 2 (u 1 , u 2 ) = u 1 u 2 and the comono- tonicity copula M 2 (u 1 , u 2 ) = min(u 1 , u 2 ) are examples of copulas of type ( 5), gener-ated by F(t) = t and F(t) = 1, respectively. Moreover, an algorithm for simulating such copulas is illustrated in [11, Algorithm 1]. Related random samples are depicted in Figure 3. Another example of copulas of type ( 5) is given by the bivariate Sato copula of [START_REF] Mai | Exchangeable exogenous shock models[END_REF], generated by F(t) = (2t 1/α ) -α for every α > 0. Copulas of type ( 5) can be interpreted as the exchangeable (i.e., invariant under permutation of their arguments) members of the family proposed in [23, Proposition 3.1]. Since this latter reference was the first work that has explicitly provided sufficient conditions to obtain copulas of type [START_REF] Durante | A new class of symmetric bivariate copulas[END_REF], they can also be referred to as exchangeable Marshall copulas (shortly, EM copulas), as done in [START_REF] Durante | Estimation procedures for exchangeable Marshall copulas with hydrological application[END_REF]. Notice that EM copulas are also known under the name semilinear copulas, a term used in [START_REF] Durante | Semilinear copulas[END_REF], and justified by the fact that the these copulas are linear along suitable segments of their domains (see Figure 4).

EM copulas can model positive quadrant dependence, i.e. each EM copula is greater than Π 2 pointwise. Actually, they even satisfy the stronger positive de- pendence notion called TP2 (see [START_REF] Durante | A new class of symmetric bivariate copulas[END_REF]). Following [START_REF] Durante | Threshold copulas and positive dependence[END_REF] this implies that, if (X,Y ) is an exchangeable vector with EM copula, then the vector of residual lifetimes (X,Y | X > t,Y > t) at time t > 0 is also TP2 and, a fortiori, positive quadrant dependent. Roughly speaking, the positive dependence between the residual lifetimes of the system is (qualitatively) preserved at the increase of age.

Another feature of interest in EM copulas is a kind of stability of this class with respect of certain operation. Usually, risk estimation procedures require the calculation of risk functions (like Value-at-Risk) with respect to some specific information about the dependence. In particular, in this respect, upper and lower bounds for copulas with some specified feature are relevant (see, e.g., [START_REF] Kaas | Worst VaR scenarios with given marginals and measures of association[END_REF][START_REF] Bernard | Bounds on capital requirements for bivariate risk with given marginals and partial information on the dependence[END_REF][START_REF] Tankov | Improved Fréchet bounds and model-free pricing of multi-asset options[END_REF]). Now, the class of all EM copulas is both a convex and log-convex set in the class of all bivariate 0 1 1 Fig. [START_REF] Durante | Generalized composition of binary aggregation operators[END_REF] The dotted lines indicates the typical segments where the restriction of the EM copula to these sets is linear.

copulas. Moreover, it is also closed under pointwise suprema and infima operations. Just to provide an example, notice that the class of bivariate Archimedean copulas is neither convex nor closed under suprema and infima.

The multivariate case

Copulas of type ( 5) can be easily extended in any dimension. In fact, consider the general case related to copulas of Theorem 1 by assuming, in addition, that C equals the independence copula Π 2 . Specifically, we assume that there exist (d + 1) inde- pendent r.v.'s X 1 , X 2 , . . . , X d , Z whose support is contained in [0, 1] such that X i ∼ F, i = 1, 2, and Z ∼ G(t) = t/F(t). For i = 1, 2, . . . , d, we define the new stochastic model Y, where Y i = max(X i , Z). Then the d.f. of Y is given by

C(u) = u [1] d ∏ i=2 F(u [i] ), (7) 
where u [START_REF] Amblard | A new extension of bivariate FGM copulas[END_REF] , . . . , u [d] denote the components of (u 1 , . . . , u d ) rearranged in increasing order. Since Y has uniform univariate marginals, C is a copula. Moreover, the following characterization holds (see [START_REF] Durante | On a family of multivariate copulas for aggregation processes[END_REF]).

Theorem 3. Let F : [0, 1] → [0, 1] be a continuous d.f., and, for every d ≥ 2, let C be the function defined by [START_REF] Durante | Threshold copulas and positive dependence[END_REF]. Then C is a d-copula if, and only if, the function t 7) is given by

→ F(t) t is decreasing on (0, 1]. Example 1. Let α ∈ [0, 1] and consider F α (t) = αt + α, with α := 1 -α. Then C F α of type (
C F α (u) = u [1] d ∏ i=2 (αu [i] + α).
In particular, for d = 2, we obtain a convex combination of the copulas Π 2 and M 2 .

Example 2. Let α ∈ [0, 1] and consider the function F α (t) = t α . Then C F α of type ( 7) is given by

C F α (u) = (min(u 1 , u 2 , . . . , u n )) 1-α d ∏ i=1 u α i .
It generalizes the Cuadras-Augé family of bivariate copulas [START_REF] Cuadras | A continuous general multivariate distribution and its properties[END_REF]. Further generalization of this family is also included in [START_REF] Mai | Lévy-Frailty copulas[END_REF].

Copulas of type [START_REF] Durante | Threshold copulas and positive dependence[END_REF] have some distinguished features. First, they are exchangeable, a fact that could represented a limitation in some applications. Second, their tail behavior is only driven by the generator function F. To make this statement precise, consider the following extremal dependence coefficient introduced in [START_REF] Frahm | On the extremal dependence coefficient of multivariate distributions[END_REF].

Definition 1. Let X be a random vector with univariate margins F 1 , . . . , F d . Let F min := min i F i (X i ) and F max := max i F i (X i ). The lower extremal dependence coefficient (LEDC) and the upper extremal dependence coefficient (UEDC) of X are given, respectively, by

ε L := lim t→0 + P[F max ≤ t|F min ≤ t], ε U := lim t→1 - P[F min > t|F max > t],
if the limits exist.

Notice that, in the bivariate case, LEDC and UEDC closely related to the lower and upper tail dependence coefficients (write: LTDC and UTDC, respectively), which are given by

λ L = lim t→0 + C(t,t) t and λ U = lim t→1 - 1 -2t +C(t,t) 1 -t .
The following result holds [START_REF] Durante | On a family of multivariate copulas for aggregation processes[END_REF]. Notice that non-trivial LEDC occurs only when F is discontinuous at 0.

Theorem 4.

Let C be a copula of type [START_REF] Durante | Threshold copulas and positive dependence[END_REF] generated by a differentiable F. Then, the LEDC and UEDC are, respectively, given by

ε L = (F(0 + )) n-1 ∑ n i=1 (-1) i-1 n i (F(0 + )) i-1 , ε U = 1 -F ′ (1 -) 1 + (n -1)F ′ (1 -) .
Although copulas of type ( 7) seem a quite natural generalization of EM copulas, for practical purposes their main inconvenience is that only one function F describes the d-dimensional dependence.

To overcome such oversimplification, a convenient generalization has been provided in [START_REF] Mai | Exchangeable exogenous shock models[END_REF]. Basically, copulas of type [START_REF] Durante | Threshold copulas and positive dependence[END_REF] have been extended to the form

C(u) = u [1] d ∏ i=2 F i (u [i] ), (8) 
for suitable functions F 2 , . . . , F d . Interestingly, a subclass of the considered copulas also can be interpreted in terms of exceedance times of an increasing additive stochastic process across independent exponential trigger variables.

In order to go beyond exchangeable models, keeping a certain tractability and/or simplicity of the involved formulas, a possible strategy could be to combine in a suitable way pairwise copulas of type [START_REF] Durante | Threshold copulas and positive dependence[END_REF] in order to build up a general model. This is pursued, for instance, in [START_REF] Durante | On the construction of multivariate extreme value models via copulas[END_REF] and [START_REF] Mazo | A nonparametric class of one-factor copulas to balance flexibility and tractability[END_REF], by using as building block Marshall-Olkin copulas. Both procedures are described in Section 4.

Combining Marshall-Olkin bivariate copulas to get flexible multivariate models

Motivated by the fact that bivariate dependencies are not difficult to check out, it may be of interest to construct a multivariate copula such that each of its bivariate margins depends upon a suitable parameter. For example, following [START_REF] Durante | On the construction of multivariate extreme value models via copulas[END_REF], one could introduce a multivariate (extreme-value) copula such that each bivariate marginal C i j belongs to the Cuadras-Augé family:

C i j (u i , u j ) = Π 2 (u i , u j ) 1-λ i j M 2 (u i , u j ) λ i j .
To this end, following a Marshall-Olkin machinery, one may consider the following stochastic representation of r.v.'s whose support is contained in [0, 1]:

• For d ≥ 2, consider the r.v.'s X 1 , . . . , X d such that each X i is distributed according to a d.f. F i (t) = t 1-∑ j =i λ i j for i = 1, 2, . . . , d.
• For i, j ∈ {1, 2, . . . , d}, i < j, consider the r.v. Z i j distributed according to G i j (t) = t λ i j . • We assume independence among all X's and all Z's.

For i = 1, 2, . . . , d, we define the new r.v. Y whose components are given by

Y i = max X i , Z i1 , . . . , Z i( j-1) , Z i( j+1) , . . . , Z id .
Basically, Y i is determined by the interplay among the individual shock X i and all the pairwise shocks related to the i-th component of a system. Then the d.f. of Y is given by

C pw (u) = d ∏ i=1 u 1-∑ j =i λ i j i ∏ i< j (min{u i , u j }) λ i j .
Here, for every i, j ∈ {1, . . . , d} and i < j, λ i j ∈ [0, 1] and λ i j = λ ji . Moreover, if, for every i ∈ {1, . . . , d}, ∑ d j=1, j =i λ i j ≤ 1, then C pw is a multivariate d-copula (that is also an extreme-value copula). This copula has Cuadras-Augé bivariate margins and, therefore, may admit non-zero UTDCs. However, even if this model is nonexchangeable, the constraints given on the parameters are a severe drawback. For instance, when d = 3, one of the constraint is that λ 12 + λ 13 ≤ 1. Therefore, the two pairs (X 1 , X 2 ) and (X 1 , X 3 ) cannot have a large UTDC together. In the simplified case where all the parameters λ i j 's are equal to a common value λ ∈ [0, 1], the copula C pw reduces to

C pw (u) = d ∏ i=1 u 1-λ (i-1) [i]
with the constraint λ ≤ 1 d-1 . Another way of combining Marshall-Olkin bivariate copulas, that does not suffer from any constraints, and that still yield a flexible model, was hence proposed in [START_REF] Mazo | A nonparametric class of one-factor copulas to balance flexibility and tractability[END_REF] and it is given next.

Let Y 0 ,Y 1 , . . . ,Y d be standard uniform random variables such that the coordinates of (Y 1 , . . . ,Y d ) are conditionally independent given Y 0 . The variable Y 0 plays the role of a latent, or unobserved, factor. Let us write C 0i the distribution of (Y 0 ,Y i ) and C i|0 (•|u 0 ) the conditional distribution of Y i given Y 0 = u 0 , for i = 1, . . . , d. The copulas C 0i are called the linking copulas because they link the factor Y 0 to the variables of interest Y i . It is easy to see that the distribution of (Y 1 , . . . ,Y d ) is given by the so called one-factor copula [START_REF] Krupskii | Factor copula models for multivariate data[END_REF] 

C(u) = 1 0 C 1|0 (u 1 |u 0 ) . . .C d|0 (u d |u 0 ) du 0 . (9) 
When one chooses C 0i to be of type [START_REF] Durante | A new class of symmetric bivariate copulas[END_REF] with generator F i , the integral ( 9) can be calculated. This permits to exhibit interesting properties for this class of copulas. Thus, calculating the integral yields

C(u) = u (1) d ∏ j=2 u ( j) 1 u (d) d ∏ j=1 F ′ j (x)dx + F (1) (u (2) ) d ∏ j=2 F ( j) (u ( j) ) (10) 
+ d ∑ k=3 k-1 ∏ j=2 u ( j) d ∏ j=k F ( j) (u ( j) ) u (k) u (k-1) k-1 ∏ j=1 F ′ ( j) (x)dx ,
where F (i) := F σ (i) and σ is the permutation of (1, . . . , d) such that u σ (i) = u (i) . The particularity of this copula lies in the fact that it depends on the generators through their reordering underlain by the permutation σ . This feature gives its flexibility to the model. Observe also that C(u) writes as u (1) multiplied by a functional of u (2) , . . . , u (d) , form that is similar to [START_REF] Durante | Threshold copulas and positive dependence[END_REF]. Interestingly, all the bivariate copulas derived from this model have a simple form as stated below.

Proposition 1.

Let C i j be a bivariate margin of [START_REF] Durante | On a family of multivariate copulas for aggregation processes[END_REF]. Then C i j is a copula of type Random sample of 1000 points from a 3-copula of type [START_REF] Durante | On a family of multivariate copulas for aggregation processes[END_REF] with Cuadras-Augé generators with parameters (α 1 , α 2 , α 3 ) = (0.9, 0.9, 0.1). The figure shows the three bivariate margins.

F i j (t) = F i (t)F j (t) + t 1 t F ′ i (x)F ′ j (x)dx.
By Proposition 1, the class of copulas (10) can be viewed as a generalization in higher dimension of the bivariate copulas of type [START_REF] Durante | A new class of symmetric bivariate copulas[END_REF]. Moreover, the LTDC and UTDC coefficients are given by λ L,i j = F i (0)F j (0) and λ U,i j = (1 -

F ′ i (1 -))(1 -F ′ j (1 -)). Example 3 (Fréchet generators). Let F i (t) = α i t + 1 -α i , α i ∈ [0, 1]
. By Proposi- tion 1, F i j is given by

F i j (t) = (1 -(1 -α i )(1 -α j ))t + (1 -α i )(1 -α j ).
The LTDC and UTDC are respectively given by λ L,i j = λ U,i j = (1 -α i )(1 -α j ).

Example 4 (Cuadras-Augé generators). Let F i (t) = t α i , α i ∈ [0, 1]. By Proposition 1, F i j is given by

F i j (t) = t α i +α j 1 - α i α j α i +α j -1 + t α i α j α i +α j -1 if α i + α j = 1 t(1 -(1 -α)α logt) if α = α j = 1 -α i .
The LTDC and UTDC are respectively given by λ L,i j = 0 and λ U,i j = (1 -α i )(1 -α j ).

In the case d = 3, Figure 5 depicts a simulated sample of 1000 observations from this copula with parameter (α 1 , α 2 , α 3 ) = (0.9, 0.9, 0.1).

Unlike copulas of type [START_REF] Durante | Threshold copulas and positive dependence[END_REF], the copulas of type [START_REF] Durante | On a family of multivariate copulas for aggregation processes[END_REF] are not exchangeable. They are determined by d generators F 1 , . . . , F d , which combine together to give a more flexible dependence structure. Taking various parametric families, as illustrated in Example 3 and 4, allows to obtain various tail dependencies.

Some comments about statistical inference procedures

The construction principle presented above provides copulas that are not absolutely continuous (up to trivial cases) with respect to the restriction of the Lebesgue measure to the copula domain. Thus, statistical procedures that requires density of the related distribution can not be applied. Moreover, the presence of a singular component often causes the presence of points where the derivatives do not exist, a fact that should also considered for the direct applicability of statistical techniques based on moments' method (see, for instance, [START_REF] Genest | Copula parameter estimation using Blomqvist's beta[END_REF]).

In this section, we present instead a method to estimate the parameters of the copulas encountered in this paper, which is based on some recent results in [START_REF] Mazo | Weighted least-squares inference based on dependence coefficients for multivariate copulas[END_REF].

Let (X

1 , . . . , X

(1) d ), . . . , (X (n) 1 , . . . , X

(n) d ) be a sample of n independent and identically distributed d-variate observations from (X 1 , . . . , X d ), a random vector distributed according to F and with copula C, where C ≡ C θ belongs to a parametric family indexed by a parameter vector θ ∈ Θ ∈ R q , q ≤ d. The estimator is defined as every 30 years in average. Figure 6 shows the estimated critical levels, along with confidence intervals, associated to the fitted dataset. 

Conclusions

We have presented a construction principle of copulas that is inspired by the seminal Marshall-Olkin idea of constructing shock models. The copulas obtained in this way have some distinguished properties:

• they have an interpretation in terms of (local or global) shocks;

• they enlarge known families of copulas by including asymmetric copula (in the tails) and/or non-exchangeability; • they have a natural sampling strategy;

• they can be used to build models with singular components, a fact that is useful when modeling joint defaults of different lifetimes (i.e. credit risk). • they can be fitted to real data with simple novel methodology.

We think that all these properties make these constructions appealing in several applications.

Fig. 1

 1 Fig.1Trivariate Clayton copula (left) and its modification of type (4) with F(t) = t 1-α , α = 0.60 (right).

Fig. 2

 2 Fig.2Copula of type (4) with one shock generated by F(t) = t 1-α , α = 0.50, and C equal to Fréchet lower bound copula W 2 .

Fig. 3

 3 Fig.3Copulas of type (4) generated by F(t) = t 1-α with α = 0.25 (left) and α = 0.75 (right). These are members of Cuadras-Augé family of copulas.

Fig. 5

 5 Fig.[START_REF] Durante | A new class of symmetric bivariate copulas[END_REF] Random sample of 1000 points from a 3-copula of type[START_REF] Durante | On a family of multivariate copulas for aggregation processes[END_REF] with Cuadras-Augé generators with parameters (α 1 , α 2 , α 3 ) = (0.9, 0.9, 0.1). The figure shows the three bivariate margins.

Fig. 6

 6 Fig.[START_REF] Durante | Copulas, diagonals and tail dependence[END_REF] Critical levels for T = 2, . . . , 40 together with 95% confidence intervals.
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where r = (r 1,2 , . . . , rd-1,d ), r(θ ) = (r 1,2 (θ ), . . . , r d-1,d (θ )) and W is a positive definite (weight) matrix with full rank; the coordinate r i, j (θ ) is to be replaced by a dependence coefficient between X i and X j , and ri, j by its empirical estimator -for instance, the Spearman's rho or the Kendall's tau. The approach (11) can be viewed as an extension to the multivariate case of the Spearman's rho / Kendall's tau inversion method [START_REF] Genest | Everything you always wanted to know about copula modeling but were afraid to ask[END_REF]. The asymptotic properties of θ have been studied in [START_REF] Mazo | Weighted least-squares inference based on dependence coefficients for multivariate copulas[END_REF] in the case where the copulas do not have partial derivatives, as it is the case of the copulas in this article. In particular, it was shown that, under natural identifiability conditions on the copulas, θ exists, is unique with probability tending to 1 as n → ∞, and in that case, is consistent and √ n( θθ ) tends to a Gaussian distribution. For the purpose of illustration, we present here a real-data application of the method by using a dataset consisting of 3 gauge stations where annual maximum flood data were recorded in northwestern Apennines and Thyrrhenian Liguria basins (Italy): Airole, Merelli, and Poggi. The dataset is the same used in [START_REF] Durante | On the construction of multivariate extreme value models via copulas[END_REF] to which we refer for more detailed description.

In order to fit the dependence among these three gauge stations, we use the class of copulas given by

Such a copula can be also seen as generated by Marshall-Olkin machinery, by assuming that X and Z are independent r.v.'s of length d whose copula is given by Π d and M d , respectively, F i and G i are power functions, and ψ = max. The estimator [START_REF] Durante | On the construction of multivariate extreme value models via copulas[END_REF] coordinates θ1 , θ2 and θ3 are given by θi

where the τi, j are the pairwise sample Kendall's τ coefficients. Notice that, as consequence of [27, Proposition 2], when the number of parameters is equal to the number of pairs d(d -1)/2, then the estimator given by [START_REF] Durante | On the construction of multivariate extreme value models via copulas[END_REF] does not depend on the weights. These previous estimates help to quantify the critical levels and return periods corresponding to this dataset (see, e.g., [30,[START_REF] Salvadori | Multivariate return period calculation via survival functions[END_REF]). In hydrology, a critical level p corresponding to a return period T is defined through the relationship

where Y 1 , . . . ,Y d are the r.v.'s of interest and F 1 , . . . , F d their respective univariate marginals. The return period can be interpreted as the average time elapsing between two dangerous events. For instance, T = 30 years means that the event happens once