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On the uniqueness and stability of an inverse

problem in photo-acoustic tomography

Mäıtine Bergounioux˚ Erica L. Schwindt˚

May 19, 2015

Abstract

This article deals with the uniqueness and stability of the solution
of a problem of optimal control related to the photo-acoustic tomog-
raphy process. We prove stability results of the optimal solution with
respect to the source and to the observation data and we compute the
corresponding derivatives.

1 Introduction

In this paper we consider a differential system arising in photo-acoustic
tomography. We refer [12] to get a complete description of the model. Let us
briefly mention that we deal with two coupled partial differential equations
that describes the light intensity (fluence) behavior inside a body that is
excited by a laser (pulsed) source and the acoustic pressure wave which is
generated by this excitation. The authors of [12] have investigated the model
and obtained an optimal control formulation to recover some parameters of
interest, namely the absorption and diffusion coefficients pµ,Dq.

We want to address the optimal solution sensitivity with respect to the
source and the observation data that appears in the wave equation. For that
purpose, in a first step we assume that the diffusion coefficient is constant
(and for sake of simplicity equal to 1).
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2 Problem setting

In this work, we prove uniqueness and stability results provided that
the coercivity constant α of the cost functional J , given by (2.4), is large
enough.

From this point of view, the result is similar to the one of [10]. Other
results of uniqueness and stability, in the context of the photo-acoustic,
have been obtained in [2, 3, 7, 8, 9, 11]. For example, in [8, 9] the authors
obtained uniqueness and stability results under the assumption that the
function Hpxq :“ ΓpxqµpxqIµpxq is known and the absorption and diffusion
coefficients are smooth enough. Moreover, they did not consider the whole
process which couples lightning and acoustic wave equations.

The stability of optimal controls have also studied in [13, 18, 20, 22, 23]
in other settings.

The paper is structured as follows. In Section 2, we recall the prob-
lem setting and preliminary results. Section 3 is devoted to stability and
uniqueness properties. In Section 4, we compute the derivative of the op-
timal control with respect to the source giving a characterization. We also
study the stability of the optimal solution with respect to the observation.
We end the paper with conclusions and a few words on future work.

2 Problem setting

2.1 Photo-acoustic modeling

Recall photo-acoustic tomography (PAT) principle: tissues to be imaged
are illuminated by a laser (the source). This energy is converted into heat
that creates a thermally induced pressure jump that propagates as a sound
wave, which can be detected. The fluence rate Iµ, that is the average of the
luminous intensity in all the directions, satisfies the diffusion equation (see
[1, 5, 12])

$

’

’

&

’

’

%

1

c

BIµ
Bt
pt, xq ` µpxqIµpt, xq ´∆Iµpt, xq “ Spt, xq in p0, T q ˆ Ω

Iµpt, xq “ 0 on p0, T q ˆ BΩ

Iµp0, xq “ 0 in Ω.

(2.1)

where c is the speed of light, S is the incident light source, µ is the absorption
coefficient, and T ą 0 is the duration of the acquisition process.

Here, Ω stands for the part of the body where the diffusion approximation
is relevant and the diffusion coefficient has been set to 1 for simplicity. It is
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2 Problem setting

an open subset of Rd (d ě 2) of class C2. For a fixed T ą 0, we will often
denote Q :“ p0, T q ˆ Ω.

The acoustic wave that is generated is described via the pressure pµ that

satisfies (up to the change of variables : p ÞÑ
´ t

0 ppsq ds):

$

’

’

’

’

&

’

’

’

’

%

B2pµ
Bt2

pt, xq ´ divpv2
s∇pµqpt, xq “ 1ΩpxqΓpxqµpxqIµpt, xq in p0, T q ˆ B

pµpt, xq “ 0 on p0, T q ˆ BB

pµp0, xq “
Bpµ
Bt
p0, xq “ 0 in B.

(2.2)
Here, the Grueneisen coefficient Γ, coupling the energy absorption to

the thermal expansion, is assumed to be known. In the sequel we assume
that Γ has compact support in Ω so that Γ1Ω “ Γ and that the speed of
sound vs is known and satisfies vs P rv

min
s , vmax

s s, with vmin
s ą 0. The ball

B is the domain where the wave propagates. It includes Ω and it has to be
bounded in view of numerical simulations. It is large enough to assume that
there is no reflected wave before time T.

The absorption coefficient µ is the parameter we want to study. We
assume that

µ P Uad “ tµ P L8pBq | µ P rµmin, µmaxs a.e. in Bu, (2.3)

where 0 ă µmin ă µmax are positive real numbers.
The photo-acoustic tomography model is completely described by the

coupling of equations (2.1) and (2.2), where Iµ is extended by 0 on BzΩ.
Here S is the incident light source that we assume in L2pQq.
We first recall the results of [12] (for D “ 1).

Theorem 2.1. Let Ω be a bounded connected open set of Rd with C1 bound-
ary, Γ P L8pBq, vs P L8pBq with vs P rv

min
s , vmax

s s a.e. in B. Assume that
the assumption (2.3) holds. Then,

1. Equation (2.1) has a unique solution Iµ such that

Iµ P C0p0, T ;L2pΩqq X L2p0, T ;H1
0 pΩqq,

BIµ
Bt

P L2p0, T ;H´1pΩqq.

2. Equation (2.2) has a unique solution pµ such that

pµ P Cp0, T ;H1
0 pBqq X C1p0, T ;L2pBqq.

3



2 Problem setting

Using Theorem 2.1, we define the maps

I : Uad ÝÑ C0p0, T ;L2pΩqq X L2p0, T ;H1
0 pΩqq

µ ÞÝÑ Iµ

where Iµ satisfies (2.1) and

p : Uad ÝÑ C0p0, T ;H1
0 pBqq

µ ÞÝÑ pµ

where pµ is the solution to (2.2).
Next we define, for every µ P Uad, the functional J

Jpµq “
1

2

ˆ
r0,T sˆω

ppµpt, xq ´ p
obspt, xqq2dx dt ` α

ˆ
Ω
µ2pxqdx, (2.4)

where α ě 0 and ω Ă Rd is the observation subset; we consider the opti-
mization problem:

pPq min
µPUad

Jpµq.

Theorem 2.2. [12] Assume that α ě 0. Then, Problem (P) has at least a
solution.
Moreover, for every µ̄ optimal solution to Problem pPq, there exists q1µ and
q2µ such that

• The state equations (2.1)-(2.2) are satisfied

$

’

’

’

’

&

’

’

’

’

%

B2pµ
Bt2

pt, xq ´ divpv2
s∇pµqpt, xq “ ΓpxqµpxqIµpt, xq in p0, T q ˆ B

pµpt, xq “ 0 on p0, T q ˆ BB

pµp0, xq “
Bpµ
Bt
p0, xq “ 0 in B

and

$

’

’

’

’

’

&

’

’

’

’

’

%

1

c

BIµ
Bt
pt, xq ` µpxqIµpt, xq ´∆Iµpt, xq “ Spt, xq in p0, T q ˆ Ω

Iµpt, xq “ 0, on p0, T q ˆ BΩ

Iµpt, xq “ 0 in p0, T q ˆ BzΩ

Iµp0, xq “ 0 in Ω.
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2 Problem setting

• The adjoint state equations are satisfied

$

’

’

’

’

&

’

’

’

’

%

B2q1µ

Bt2
´ divpv2

s∇q1µq “ ppµ ´ p
obsq1ω in p0, T q ˆ B

q1µ “ 0 on p0, T q ˆ BB

q1µpT, ¨q “
Bq1µ

Bt
pT, ¨q “ 0 in B

(2.5)

$

’

’

’

&

’

’

’

%

´
1

c

Bq2µ

Bt
` µq2µ ´∆q2µ “ Γµq1µ in p0, T q ˆ Ω

q2µ “ 0 on p0, T q ˆ BΩ

q2µpT, ¨q “ 0 in Ω.

(2.6)

• For all µ P L8pΩq such that µ P rµmin, µmaxs,

Bˆ T

0
p1ΩΓq1µ ´ q2µqIµ dt` 2αµ̄, µ´ µ̄

F

L2pΩq

ě 0. (2.7)

Furthermore, systems (2.5)-(2.6) respectively have a unique solution

q1µ P Cp0, T ;H1
0 pBqq X C1p0, T ;L2pBqq

and
q2µ P Cp0, T ;L2pBqq X L2p0, T ;H1

0 pBqq.

Here x ¨ , ¨ yL2pΩq denotes the L2- inner product.

2.2 Regularity results and estimates

In this subsection we give regularity results for two particular problems, of
parabolic type and hyperbolic type respectively, and we provide estimates
that we will use extensively in the following sections. These problems are
representative of the systems we considered in the previous section and the
ones to be studied in the sequel. The proofs of these results can be obtained
with a slight change of the proofs in [15] because here we consider systems
of equations with less smooth coefficients. Therefore, we omit these proofs.

Theorem 2.3. [Regularity result for parabolic systems]
Let Ω be a bounded connected open set of Rd with C2 boundary, f P L2pQq

5



2 Problem setting

and β P L8pΩq such that βpxq P rβmin, βmaxs with 0 ă βmin ď βmax. Then,
the system

$

’

’

’

&

’

’

’

%

Bw

Bt
pt, xq ` βpxqwpt, xq ´∆wpt, xq “ fpt, xq in p0, T q ˆ Ω

wpt, xq “ 0 on p0, T q ˆ BΩ

wp0, xq “ 0 in Ω,

has a unique solution w such that

w P L2p0, T ;H2pΩqq X L8p0, T ;H1
0 pΩqq,

Bw

Bt
P L2pQq.

Moreover we have the following estimate

sup
0ďtďT

}wptq}H1
0 pΩq

` }w}L2p0,T ;H2pΩqq `

›

›

›

›

Bw

Bt

›

›

›

›

L2pQq

ď C}f}L2pQq (2.8)

where C depends on Ω, T and }β}L8pΩq.

Theorem 2.4. [Regularity result for hyperbolic system]
Let Ω be a bounded connected open set of Rd with C2 boundary,
g P H1p0, T ;L2pΩqq and κ be a Lipschitz continuous function in Ω (that only
depends on the space variable) such that κpxq P rκmin, κmaxs with
0 ă κmin ď κmax. Then, the system

$

’

’

’

’

&

’

’

’

’

%

B2u

Bt2
pt, xq ´ divpκpxq∇uqpt, xq “ gpt, xq in p0, T q ˆ Ω

upt, xq “ 0 on p0, T q ˆ BΩ

up0, xq “
Bu

Bt
p0, xq “ 0 in Ω

has a unique solution u such that

u P L8p0, T ;H2pΩqq,
Bu

Bt
P L8p0, T ;H1

0 pΩqq,

B2u

Bt2
P L8p0, T ;L2pΩqq,

B3u

Bt3
P L2p0, T ;H´1pΩqq,

and we have the following estimate

sup
0ďtďT

˜

}uptq}H2pΩq `

›

›

›

›

Bu

Bt
ptq

›

›

›

›

H1
0 pΩq

`

›

›

›

›

B2u

Bt2
ptq

›

›

›

›

L2pΩq

¸

`

›

›

›

›

B3u

Bt3

›

›

›

›

L2p0,T ;H´1pΩqq

ď C}g}H1p0,T ;L2pΩqq (2.9)

where C depends on Ω, T and }κ}L8pΩq.
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3 Stability and uniqueness results for optimal controls

3 Stability and uniqueness results for optimal con-
trols

In this section we first give a stability result for the optimal solution with
respect to the source and with respect to the observation data and we provide
a uniqueness result.

Theorem 3.1. Let S1, S2 P L
2pQq two sources and pobs

1 , pobs
2 P H1p0, T ;L2pωqq

the (corresponding) measured pressure on ω ˆ r0, T s. For all µi P Uad so-
lution of the optimality system (2.2)-(2.1), (2.5)-(2.7) with source Si and
measurement pobs

i , i “ 1, 2, we have the following estimation

}µ1´µ2}L2pΩq ď
C

2α

´

}S1´S2}L2pQq̀ }µ1´µ2}L2pΩq`}p
obs
1 ´pobs

2 }L2pQq

¯

(3.1)

where C “ C
`

d,Ω, T, µmin, µmax, vmin
s , vmax

s , c, }Γ}L8 , }Si}L2pQq

˘

, i “ 1, 2.

Proof. We consider two sources S1, S2 P L2pQq. Let us write Ii, pi, q1i

and q2i the respective solutions of equations (2.1)-(2.2), (2.5)-(2.6). From
Theorem 2.2 there exist µ1, µ2 P Uad (not necessarily unique) solutions of
problems (P1), (P2) respectively. With these notations, p :“ p1´p2 satisfies
the system

$

’

’

’

’

&

’

’

’

’

%

B2p

Bt2
´ divpv2

s∇pq “ Γ pµ1I1 ´ µ2I2q in p0, T q ˆ B

p “ 0 on p0, T q ˆ BB

pp0, ¨q “
Bp

Bt
p0, ¨q “ 0 in B,

(3.2)

and I :“ I1 ´ I2 satisfies
$

’

’

’

’

’

&

’

’

’

’

’

%

1

c

BI

Bt
` µ1I ´∆I “ S1 ´ S2 ` I2pµ2 ´ µ1q in p0, T q ˆ Ω

I “ 0 on p0, T q ˆ BΩ

Ip0, ¨q “ 0 in Ω

I “ 0 in p0, T q ˆ BzΩ.

(3.3)

Similarly q1 :“ q11 ´ q12 satisfies
$

’

’

’

’

&

’

’

’

’

%

B2q1

Bt2
´ divpv2

s∇q1q “ 1ωpp´ p
obsq in p0, T q ˆ B

q1 “ 0 on p0, T q ˆ BB

q1pT, ¨q “
Bq1

Bt
pT, ¨q “ 0 in B,

(3.4)
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3 Stability and uniqueness results for optimal controls

where pobs :“ pobs
1 ´ pobs

2 . And q2 :“ q21 ´ q22 is solution to

$

’

’

’

&

’

’

’

%

´
1

c

Bq2

Bt
` µ1q2 ´∆q2 “ Γµ1q1 ` pµ2 ´ µ1qpq22 ´ Γq12q in p0, T q ˆ Ω

q2 “ 0 on p0, T q̂ BΩ

q2pT, ¨q “ 0 in Ω.

(3.5)

We note that, after the change of variables pt, xq ÞÑ pT ´ t, xq, Theorem
2.4 can be applied to the systems (2.5) and (3.4). Similarly, Theorem 2.3
can be applied to the systems (2.6) and (3.5). In the sequel, we will use this
fact many times.

From Theorem 2.2, µ1, µ2 satisfy, for every ξ P Uad
Bˆ T

0
pΓq11 ´ q21qI1 dt` 2αµ1 , ξ ´ µ1

F

L2pΩq

ě 0 (3.6)

and
Bˆ T

0
pΓq12 ´ q22qI2 dt` 2αµ2 , ξ ´ µ2

F

L2pΩq

ě 0. (3.7)

Taking ξ “ µ2 in (3.6) and ξ “ µ1 in (3.7) and adding the two inequalities
give:

0 ď

ˆ
Ω

«ˆ T

0

pΓq11 ´ q21q ¨ I1 dt´

ˆ T

0

pΓq12 ´ q22q ¨ I2 dt` 2αpµ1 ´ µ2q

ff

pµ2 ´ µ1q dx

“

ˆ
Ω

«ˆ T

0

pΓq11 ´ q21q ¨I1 dt´

ˆ T

0

pΓq12 ´ q22q ¨I2 dt

ff

pµ2´µ1q dx´ 2α}µ1´µ2}
2
L2pΩq.

Then, applying Cauchy-Schwarz inequality, we have

}µ1 ´ µ2}L2pΩq ď

›

›

›

›

1

2α

ˆ T

0
pΓq11 ´ q21q I1 dt´

1

2α

ˆ T

0
pΓq12 ´ q22qI2 dt

›

›

›

›

L2pΩq

“
1

2α

›

›

›

›

ˆ T

0
pΓq1 ´ q2qI1 dt`

ˆ T

0
pΓq12 ´ q22qI dt

›

›

›

›

L2pΩq

. (3.8)

Let us estimate the right hand side of (3.8):
›

›

›

›

ˆ T

0
pΓq1 ´ q2qI1 dt`

ˆ T

0
pΓq12 ´ q22qI dt

›

›

›

›

L2pΩq

ď

›

›

›

›

ˆ T

0
Γq1I1 dt

›

›

›

›

L2pΩq

`

›

›

›

›

ˆ T

0
q2I1 dt

›

›

›

›

L2pΩq

`

›

›

›

›

ˆ T

0
pΓq12 ´ q22qI dt

›

›

›

›

L2pΩq

.
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3 Stability and uniqueness results for optimal controls

Using Theorem 2.4 and Theorem 2.3 we get that q1 P L8p0, T ;H2pΩqq,
p P H1p0, T ;L2pΩqq and I1 P L

2pQq. Then, from regularity of Γ, Sobolev
inequalities, estimate (2.9) for q1 and estimate (2.8) for I1, we obtain

›

›

›

›

ˆ T

0
Γq1I1 dt

›

›

›

›

2

L2pΩq

ď T

ˆ T

0

ˆ
Ω
|Γq1|

2|I1|
2 dx dt

ď C}Γ}2L8pΩq}q1}
2
L8pH2pΩqq}I1}

2
L2pQq

ď C}Γ}2L8pΩq}p´ p
obs}2H1pL2pωqq}S1}

2
L2pQq.

(3.9)

Applying Theorem 2.3 for I and I2 we obtain that I P L2pQq and
I2 P L

2p0, T ;H2pΩqq. Hence, from estimate (2.9) for p, estimate(2.8) for
I and I2 and Sobolev inequalities we get

}p´ pobs}H1pL2pωqq ď}Γ pµ1I ` I2pµ1 ´ µ2qq }L2pQq ` }p
obs}H1pL2pωqq

ďC}Γ}L8pΩq
`

}I}L2pQq`

`C}I2}L2pH2pΩqq}µ1 ´ µ2}L2pΩq

˘

` }pobs}H1pL2pωqq

ďC}Γ}L8pΩq
`

}S1 ´ S2}L2pQq`

` 2C}I2}L2pH2pΩqq}µ1 ´ µ2}L2pΩq

˘

` }pobs}H1pL2pωqq

ďC}Γ}L8pΩq
`

}S1 ´ S2}L2pQq` (3.10)

` C}S2}L2pQq}µ1 ´ µ2}L2pΩq

˘

` }pobs}H1pL2pωqq.

Replacing this last inequality in (3.9), we obtain

›

›

›

›

ˆ T

0
Γq1I1 dt

›

›

›

›

2

L2pΩq

ď C
´

}S1´ S2}
2
L2pQq }̀µ1´µ2}

2
L2pΩq`}p

obs
1 ´ pobs

2 }2H1pL2pωqq

¯

.

(3.11)
Next, applying Theorem 2.3 for q2, q22 and I1 and Theorem 2.4 for q1

and p give q2 P L
8p0, T ;L2pΩqq, q22 P L

2p0, T ;L8pΩqq, I1 P L
2p0, T ;H2pΩqq,

9



3 Stability and uniqueness results for optimal controls

q1 P L
2pQq and p P L2pQq. So, once again

›

›

›

›

ˆ T

0
q2I1 dt

›

›

›

›

2

L2pΩq

ď T

ˆ T

0

ˆ
Ω
|q2|

2|I1|
2 dx dt

ď C}q2}
2
L8pL2pΩqq}I1}

2
L2pH2pΩqq

ď C}q2}
2
L8pL2pΩqq}S1}

2
L2pQq

ď C}S1}
2
L2pQq}Γµ1q1 ` pµ2 ´ µ1qpq22 ´ Γq12q}

2
L2pQq

ď C}S1}
2
L2pQq

´

}Γ}2L8pΩq}q1}
2
L2pQq`

` }µ2 ´ µ1}
2
L2pΩq}q22 ´ Γq12}

2
L2pL8pΩqq

¯

ď C}S1}
2
L2pQq

´

}Γ}2L8pΩq}p´ p
obs}2L2pL2pωqq`

` }µ2 ´ µ1}
2
L2pΩq}q22 ´ Γq12}

2
L2pL8pΩqq

¯

. (3.12)

Similarly, using again Theorem 2.3 and Theorem 2.4 we get
q22 P L

2p0, T ;H2pΩqq, q12 P L
2p0, T ;H2pΩqq and p2 P H

1p0, T ;L2pΩqq and

}q22 ´ Γq12}L2pL8pΩqq ď }q22}L2pL8pΩqq ` }Γ}L8pΩq}q12}L2pL8pΩqq

ď C}q22}L2pH2pΩqq ` }Γ}L8pΩq}q12}L2pH2pΩqq

ď C}Γµ2q12}L2pQq ` }Γ}L8pΩq}q12}L2pH2pΩqq

ď C}Γ}L8pΩq}q12}L2pH2pΩqq

ď C}Γ}L8pΩq}p2 ´ p
obs
2 }H1pL2pωqq

ď C}Γ}L8pΩq

´

}Γ}L8pΩq}S2}L2pQq ` }p
obs
2 }H1pL2pωqq

¯

.

(3.13)

By using (3.10) and (3.13) in (3.12), we deduce

›

›

›

›

ˆ T

0
q2I1 dt

›

›

›

›

2

L2pΩq

ď C
´

}S1´ S2}
2
L2pQq }̀µ1´µ2}

2
L2pΩq`}p

obs
1 ´ pobs

2 }2L2pL2pωqq

¯

.

(3.14)

10
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Eventually, inequality (3.13) and Theorem 2.3 applied to I yield

›

›

›

›

ˆ T

0
pΓq12 ´ q22qI dt

›

›

›

›

2

L2pΩq

ďT

ˆ T

0

ˆ
Ω
|Γq12 ´ q22|

2|I|2 dx dt

ďT }Γq12 ´ q22}
2
L2pL8pΩqq}I}

2
L8pL2pΩqq

ďC}Γ}2L8pΩq

´

}Γ}2L8pΩq}S2}
2
L2pQq ` }p

obs
2 }2H1pL2pωqq

¯

´

}S1 ´ S2}
2
L2pQq ` }I2}

2
L2pH2pΩqq}µ1 ´ µ2}

2
L2pΩq

¯

ďC
´

}S1 ´ S2}
2
L2pQq ` }S2}

2
L2pQq}µ1 ´ µ2}

2
L2pΩq

¯

ďC
´

}S1 ´ S2}
2
L2pQq ` }µ2 ´ µ1}

2
L2pΩq

¯

. (3.15)

Using estimates (3.11), (3.14) and (3.15) in (3.8) give

}µ1´µ2}L2pΩq ď
C

2α

´

}S1 ´ S2}L2pQq`}µ1´µ2}L2pΩq ` }p
obs
1 ´ pobs

2 }L2pL2pωqq

¯

.

In the previous estimates the generic constant C depends on d,Ω, T, µmin,
µmax, vmin

s , vmax
s , c, }Γ}L8 , }S1}L2pQq, }S2}L2pQq and }pobs

2 }H1pL2pωqq.

As a consequence of Theorem 3.1 we deduce the uniqueness of the opti-
mal solution that satisfies the optimality system (2.2)-(2.1), (2.5)-(2.7).

Corollary 3.1 (Uniqueness). Let α ą C{2 with C as in Theorem 3.1. If
the sources are the same S1 “ S2 then the optimal control given by Theorem
2.2 is unique.

Proof. As S1 “ S2 it follows that the measurements pobs
1 “ pobs

2 and the
optimality systems are the same. Let µ1, µ2 be two solutions of (2.2)-(2.1),
(2.5)-(2.7), then from inequality (3.1) we deduce

}µ1 ´ µ2}L2pΩq ď 0,

which concludes the proof.

4 Computation of the derivative of the optimal
control with respect to the source and the ob-
servation

In this section, we investigate two particular cases corresponding to practi-
cal issues. In the first one, we assume that we have an object to image, for

11
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instance a biological tissue (in the case of breast tumors) at a fixed date.
The reconstruction process is sensitive to the sources and we can control the
process as shown in the previous section. In this case, we assume that the
measured pressure variation pobs1 ´ pobs2 is controlled by the source variation
S1 ´ S2. We are going to make this precise in next subsection.
In the second case, we decide to illuminate two different objects with the
same source: it is the case, for example in a calibration process. Usually,
physicists perform acquisitions by difference when the object is hard to re-
cover. They image the background without the object and the background
with the object. Of course, the measurements are different but for many
situations quite close (when the object is difficult to locate). In addition to
such calibration processes, consider a biological tissue we want to image in
a large time scale, to check micro-tumors that could appear for example. In
this case, the objects to image are close (if the acquisition dates are close
enough, and the desease not too severe) and we want to estimate the dif-
ference between the two objects, namely the new tumors or those that have
disappeared.

In both case, the goal can be achieved by characterizing the derivative
of µ with respect to the source S and/or the observation pobs.

4.1 Derivative with respect to the source S

In this section we are interested in characterizing the derivative of µ with
respect to the source S. We slightly change the notations in what follows:
we fix S P L2pQq and write S0 “ S. Then we consider S̃ P L2pQq such that
}S̃}L2pQq ď 1. For λ ą 0, we set Sλ “ S0 ` λS̃. As the previous section
we write Ii, pi, q1i and q2i the respective solutions of Equations (2.1)-(2.2),
(2.5)-(2.6), and pobs

i the measured pressure on ω ˆ r0, T s when the source
signal is Si pi “ 0, λq, we will assume that pobs

i P H1p0, T ;L2pωqq. As the
object is unchanged, we also suppose that

}pobs
0 ´ pobs

λ }L2pL2pωqq ď C}S0 ´ Sλ}L2pQq (H)

for some constant C and λ small enough (say |λ| ď λmax for example).
This is realistic form a practical point of view. From Theorem 2.2 and
Theorem 3.1 there exist unique µ0, µλ P Uad solutions of Problems (P0), (Pλ)
respectively. From inequality (3.1), with α large enough, we can conclude
that the map

T : L2p0, T ;L2pΩqq Ñ L2pΩq

S ÞÑ µ

12
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is locally Lipschitz continuous. There exists an extensively literature devoted
to the study of the differentiability of Lipschitz continuous maps between
Banach spaces, more precisely in obtaining an extension of Rademacher’s
Theorem, and we refer to [4, 17, 14, 6, 16, 19, 21, 24] for this purpose.
Following the results obtained in the previous papers we can deduce that
T is Gâteaux differentiable at S for all S P L2pQqzA, where A is the class
of exceptional sets, this sets take the place of sets of Lebesgue measure 0 in
finite dimensional spaces. We refer to [4, Chapter 1]) for the definition and
properties of sets A.

The derivative is the map 9µ : L2pQq Ñ T pL2pQq;L2pΩqq given by

9µpS; S̃q “ lim
λÑ0

T pS ` λS̃q ´ T pSq

λ
, (4.1)

where T pX;Y q denotes the set of all maps on X in Y . We note that the
previous limit is uniform in S̃ on each compact set. As the domain space
and the image space of T are separable Hilbert spaces the limit holds in
the sense of the strong topology on L2pΩq (see for example [4, Theorem 1]).
Then from (4.1) we have

µλ “ µ0 ` λ 9µ` opλq (4.2)

with }opλq}L2pΩq{λÑ 0 as λÑ 0.
In the same way, from estimates given by Theorem 2.3 and Theorem

2.4, we can deduce that the maps: S ÞÑ I, S ÞÑ p, S ÞÑ q1 et S ÞÑ q2 are
Lipschitz continuous. As before, we deduce that these maps are Gâteaux
differentiable and then there exist 9I, 9p, 9q1 and 9q2 such that

Iλ “ I0 ` λ 9I ` opλq, pλ “ p0 ` λ 9p` opλq,

q1λ “ q10 ` λ 9q1 ` opλq, q2λ “ q20 ` λ 9q2 ` opλq,

with }opλq}L2pQq{λ Ñ 0 as λ Ñ 0. In addition, from the hypothesis made

on pobs we can conclude the existence of 9pobs such that

pobs
λ “ pobs

0 ` λ 9pobs ` opλq,

with }opλq}L2pQq{λÑ 0 as λÑ 0.

Furthermore 9I, 9p, 9q1 and 9q2 satisfy:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1

c

B 9I

Bt
` 9µI0 ` µ0

9I ´∆ 9I “ S̃ in p0, T q ˆ Ω

9I “ 0 on p0, T q ˆ BΩ

9I “ 0 in p0, T q ˆ BzΩ
9Ip0, ¨q “ 0 in Ω

(4.3)

13
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$

’

’

’

’

&

’

’

’

’

%

B2 9p

Bt2
´ divpv2

s∇ 9pq “ 1ΩΓ
´

9µI0 ` µ0
9I
¯

in p0, T q ˆ B

9p “ 0 on p0, T q ˆ BB

9pp0, ¨q “
B 9p

Bt
p0, ¨q “ 0 in B,

(4.4)

$

’

’

’

’

&

’

’

’

’

%

B2 9q1

Bt2
´ divpv2

s∇ 9q1q “ 1ωp 9p´ 9pobsq in p0, T q ˆ B

9q1 “ 0 on p0, T q ˆ BB

9q1pT, ¨q “
B 9q1

Bt
pT, ¨q “ 0 in B,

(4.5)

and
$

’

’

’

&

’

’

’

%

´
1

c

B 9q2

Bt
` µ0 9q2 ´∆ 9q2 “ Γp 9µq10 ` µ0 9q1q ´ 9µq20 in p0, T q ˆ Ω

9q2 “ 0 on p0, T q ˆ BΩ

9q2pT, ¨q “ 0 in Ω.

(4.6)

Now, we define

mλ :“ ´
1

2α

ˆ T

0
p1ΩΓq1λ ´ q2λq ¨ Iλ dt; (4.7)

so from (2.7), the optimal control µλ is equal to PUad
pmλq, where PUad

de-
notes the projection in L2pΩq onto Uad. Moreover, the calculations made in
the previous section show that the map

L2pQq Ñ L2pΩq

S ÞÑ m

is Lipschitz continuous. Then, repeating the above argument, we deduce
that there exists 9m P L2pΩq such that

mλ “ m0 ` λ 9m` opλq (4.8)

with }opλq}L2pΩq{λÑ 0 as λÑ 0. It is easy to check that

9m “ ´
1

2α

ˆˆ T

0
p1ΩΓ 9q1 ´ 9q2qI0 dt`

ˆ T

0
p1ΩΓq10 ´ q20q 9I dt

˙

(4.9)

14
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with 9I, 9p, 9q1 and 9q2 satisfying (4.3)-(4.6) respectively. From [23, Lemma
2.1] it follows that there exists ν P L2pΩq such that

PUad
pmλq “ PUad

pm0q ` λν ` opλq

with }opλq}L2pΩq{λ Ñ 0 as λ Ñ 0. From (4.2) and the above equality, we
deduce

9µ “ ν.

Definition 4.1. Let H be a Hilbert space, K Ă H a closed convex subset.
For every ζ P K, we set

CKpζq “
ď

ξą0

ξpK ´ ζq.

CKpζq is called the tangent cone at point ζ.

Theorem 4.1. The derivative of the optimal control µ0 at point S0 in the
direction of S̃ given by (4.1) satisfies the following properties:

1. 9µ P CUad
pµ0q, where A denotes the closure in L2pΩq of a set A.

2. 9µ P tµ0 ´m0u
K, where AK denotes the orthogonal set to A.

3. x 9µ´ 9m, 9µyL2pΩq ď 0

4. For all w P CUad
pµ0q X tµ0 ´m0u

K we have

x 9µ´ 9m, w yL2pΩq ě 0.

Proof. Item (1) follows directly from (4.2): 9µ “ lim
λÑ0

1

λ
pµλ ´ µ0q and the fact

that µλ P Uad for all λ ě 0.
From Theorem 2.2 and equations (2.7),(4.7), we get for every λ ą 0 and
ξ P Uad

xµλ ´mλ , ξ ´ µλ yL2pΩq ě 0 (4.10)

and
xµ0 ´m0 , ξ ´ µ0 yL2pΩq ě 0. (4.11)

Taking ξ “ µ0 in (4.10), dividing by λ and taking limit as λÑ 0 we obtain

xµ0 ´m0 , 9µyL2pΩq ď 0.
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Similarly, taking ξ “ µλ in (4.11), dividing by λ and taking limit as λ Ñ 0
we obtain

xµ0 ´m0 , 9µyL2pΩq ě 0.

Hence, we have item (2). Similarly, taking ξ “ µ0 in (4.10) and ξ “ µλ in
(4.11), adding the two inequalities, dividing by λ2 and passing to the limit
as λÑ 0 gives x 9µ´ 9m, 9µyL2pΩq ď 0.

In order to prove item (4) let us choose λn Ñ 0 as n Ñ `8. First, we
check that

0 ěxmλ ´ µλ , ξ ´ µλ yL2pΩq

“xm0 ` λn 9m´ µ0 ´ λn 9µ` opλnq , ξ ´ µ0 ´ λn 9µ` opλnqyL2pΩq

“xm0 ´ µ0 , ξ ´ µ0 yL2pΩq ´ xm0 ´ µ0 , λn 9µyL2pΩq`

` xλnp 9m´ 9µq , ξ ´ µ0 yL2pΩq ´ xλnp 9m´ 9µq , λn 9µyL2pΩq ` opλnq.

(4.12)

Here we used (4.10), (4.2), (4.8) and that λn Ñ 0. Now, we consider ξ P Uad
such that pξ ´ µ0q P tµ0 ´m0u

K, the inequality (4.12) yields

λn x 9m´ 9µ, ξ ´ µ0 yL2pΩqďλn xm0 ´ µ0 , 9µyL2pΩq̀ λ
2
n x 9m´ 9µ, 9µyL2pΩq̀ opλnq.

Dividing by λn ą 0 taking limit as nÑ `8 and using item (2), we get

x 9m´ 9µ, ξ ´ µ0 yL2pΩq ď 0.

Now, choose w P CUad
pµ0q X tµ0 ´m0u

K: there exist τ ą 0 and ξ P Uad
such that w “ τpξ ´ µ0q. So, we have

0 “ xm0 ´ µ0 , w yL2pΩq “ τ xm0 ´ µ0 , ξ ´ µ0 yL2pΩq .

As ξ P Uad and pξ´µ0q P tµ0´m0u
K, the previous computation shows that

x 9µ´ 9m, ξ ´ µ0 yL2pΩq ď 0. Since τ ą 0, we obtain the inequality of item 4

for all w P CUad
pµ0q X tµ0 ´m0u

K.
Passing to the limit for appropriate sequences, we obtain the last inequality
for all w in the closure of CUad

pµ0q X tµ0 ´m0u
K. This concludes the proof

of the theorem.

Corollary 4.1. The Gâteaux-derivative 9µ of the optimal control µ at S0

with respect to the source, can be characterized as the unique function in
L2pΩq that verifies the optimality system (4.3)-(4.6) and

@w P CUad
pµ0q X tµ0 ´m0u

K, x 9µ´ 9m, w ´ 9µyL2pΩq ě 0 (4.13)

with 9m given by (4.9).
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Proof. The demonstration follows immediately from Theorem 4.1, items 3
and 4. The inequality (4.13) says that 9µ is the projection of 9m in L2pΩq

onto CUad
pµ0q X tµ0 ´m0u

K.

This corollary will be used to perform the numerical computation.

4.2 Derivative with respect to the observation

In this subsection, we consider the case where the source is unchanged and
discuss the stability of the optimal solution of Problem pPq with respect to
the observation pobs.

Let S P L2pQq be fixed. For any fixed p̃ P L2p0, T ;L2pωqq, we consider
pobs

0 and pobs
λ “ pobs

0 ` λp̃ two observations on r0, T s ˆ ω and call µ0, µλ
the unique corresponding solutions of optimality systems (2.1)-(2.2), (2.5)-
(2.7). For example, p̃ can be equal to ppobs

1 ´ pobs
0 q{}pobs

1 ´ pobs
0 }L2 where

pobs
1 is a measurement of the pressure corresponding to another objet, and
λ “ }pobs

1 ´pobs
0 }L2 . We will denote Ii, pi, q1i and q2i the respective solutions

of Equations (2.1)-(2.2), (2.5)-(2.6), when the observation data is pobs
i with

i “ 0, λ.
Relation (3.1) of Theorem 3.1 yields that the map T : pobs Ñ µ is

Lipschitz continuous (if α is large enough). With the same arguments as in
subsection 4.1 we deduce there exists 9µpp̃q P L2pΩq such that

9µppobs
0 ; p̃q “ lim

λÑ0

T ppobs
0 ` λp̃q ´ T ppobs

0 q

λ
,

and
µλ “ µ0 ` λ 9µ` opλq

with }opλq}L2pΩq{λÑ 0 as λÑ 0. We also get the existence of 9I, 9p, 9q1 and
9q2 such that

Iλ “ I0 ` λ 9I ` opλq, pλ “ p0 ` λ 9p` opλq,

q1λ “ q10 ` λ 9q1 ` opλq, q2λ “ q20 ` λ 9q2 ` opλq,

with }opλq}L2pQq{λÑ 0 as λÑ 0. Then we can prove similarly

Theorem 4.2. The Gâteaux-derivative 9µ of the optimal control µ at pobs
0

with respect to the observation, can be characterized as the unique function
in L2pΩq that verifies the following optimality system:
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$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1

c

B 9I

Bt
` µ0

9I ´∆ 9I “ ´ 9µI0 in p0, T q ˆ Ω

9I “ 0 on p0, T q ˆ BΩ

9I “ 0 in p0, T q ˆ BzΩ
9Ip0, ¨q “ 0 in Ω,

$

’

’

’

’

&

’

’

’

’

%

B2 9p

Bt2
´ divpv2

s∇ 9pq “ 1ΩΓ
´

9µI0 ` µ0
9I
¯

in p0, T q ˆ B

9p “ 0 on p0, T q ˆ BB

9pp0, ¨q “
B 9p

Bt
p0, ¨q “ 0 in B,

$

’

’

’

’

&

’

’

’

’

%

B2 9q1

Bt2
´ divpv2

s∇ 9q1q “ 1ωp 9p´ p̃q in p0, T q ˆ B

9q1 “ 0 on p0, T q ˆ BB

9q1pT, ¨q “
B 9q1

Bt
pT, ¨q “ 0 in B,

$

’

’

’

&

’

’

’

%

´
1

c

B 9q2

Bt
` µ0 9q2 ´∆ 9q2 “ Γp 9µq10 ` µ0 9q1q ´ 9µq20 in p0, T q ˆ Ω

9q2 “ 0 on p0, T q ˆ BΩ

9q2pT, ¨q “ 0 in Ω,

and

@w P CUad
pµ0q X tµ0 ´m0u

K, x 9µ´ 9m, w ´ 9µyL2pΩq ě 0

where 9m is given by (4.9).

5 Conclusions

We have proved the uniqueness of the solution of the optimal control problem
studied in [12] and given a stability result. We also provide a characterization
of the derivative of the optimal control with respect both to the source and
the observation. Furthermore, this characterization leads to a numerical
scheme for the computation of these derivatives. This numerical aspect will
be discussed in a forthcoming paper.

Open questions remain, as the stability of the optimal control with re-
spect to the sound speed. The study of the uniqueness and stability in the
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case when the diffusion coefficient D is not constant will be studied in future
work.
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