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On the limiting law of the length of the longest
common and increasing subsequences in random words

Jean-Christophe Breton∗ Christian Houdré†

À la Mémoire de Marc Yor

Abstract

Let X = (Xi)i≥1 and Y = (Yi)i≥1 be two sequences of independent and identically
distributed (iid) random variables taking their values, uniformly, in a common totally
ordered finite alphabet. Let LCIn be the length of the longest common and (weakly)
increasing subsequence of X1 · · ·Xn and Y1 · · ·Yn. As n grows without bound, and
when properly centered and normalized, LCIn is shown to converge, in distribution,
towards a Brownian functional that we identify.

1 Introduction

We analyze below the asymptotic behavior of the length of the longest common subsequence
in random words with an additional (weakly) increasing requirement. Although it has
been studied from an algorithmic point of view in computer science, bio-informatics, or
statistical physics, to name but a few fields, mathematical results for this hybrid problem
are very sparse. To present our framework, let X = (Xi)i≥1 and Y = (Yi)i≥1 be two infinite
sequences whose coordinates take their values in Am = {α1 < α2 < · · · < αm}, a finite
totally ordered alphabet of cardinality m. Next, LCIn, the length of the longest common
and (weakly) increasing subsequences of the words X1 · · ·Xn and Y1 · · ·Yn is the maximal
integer k ∈ {1, . . . , n}, such that there exist 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · < jk ≤
n, satisfying the following two conditions:
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(i) Xis = Yjs , for all s = 1, 2, . . . , k,

(ii) Xi1 ≤ Xi2 ≤ · · · ≤ Xik and Yj1 ≤ Yj2 ≤ · · · ≤ Yjk .

LCIn is a measure of the similarity/dissimilarity of the words often used in pattern
matching, and its asymptotic behavior is the purpose of our study. (Asymptotically, the
strictly increasing case is of little interest, having m as a pointwise limiting behavior.) For
LCIn, here is our result:

Theorem 1.1 Let X = (Xi)i≥1 and Y = (Yi)i≥1 be two sequences of iid random variables
uniformly distributed on Am = {α1 < α2 < · · · < αm}, a totally ordered finite alphabet of
cardinality m. Let LCIn be the length of the longest common and increasing subsequence
of X1 · · ·Xn and Y1 · · ·Yn. Then,

LCIn − n/m√
n/m

=⇒ max
0=t0≤t1≤···≤tm−1≤tm=1

min

(
− 1

m

m∑
i=1

B
(i)
1 (1) +

m∑
i=1

(
B

(i)
1 (ti)−B(i)

1 (ti−1)
)
,

− 1

m

m∑
i=1

B
(i)
2 (1) +

m∑
i=1

(
B

(i)
2 (ti)−B(i)

2 (ti−1)
))
,(1.1)

where B1 and B2 are two m-dimensional standard Brownian motions on [0, 1].

A first motivation for our work has its origins in the identification, first obtained by
Kerov [Ker], of the limiting length (properly centered and scaled) of the longest increasing
subsequence of a random word, as the maximal eigenvalue of a certain Gaussian ran-
dom matrix. When combined with results of Baryshnikov [Bar] or Gravner, Tracy and
Widom [GTW] (see also [BGH]), this limiting law has a representation as a Brownian
functional. Moreover, [Ker, Chap. 3, Sec. 3.4, Theorem 2] showed that the whole normal-
ized limiting shape of the RSK Young diagrams associated with the random word, is the
spectrum of the traceless Gaussian Unitary Ensemble (GUE). Since the length of the top
row of the diagrams is the length of the longest increasing subsequence of the random word,
the maximal eigenvalue result is recovered. (The asymptotic length result was rediscovered
by Tracy and Widom [TW] and the asymptotic shape one by Johansson [Joh]. Extensions
to non-uniform letters were also obtained by Its, Tracy and Widom [ITW1, ITW2].) A
second motivation for our work is the binary LCIn result of [HLM], that we will revisit
and extend, as well as the single-word results of [HL]. The dependence (or independence)
structure between the two sequences X and Y is carried over into a similar structure be-
tween the two standard Brownian motions B1 and B2. Hence, when X = Y , our results
recover, with the help of [BGH], the weak limits obtained in [Ker], [Joh], [TW], [ITW1],
[ITW2], [HL], and [HX], while if X and Y are independent so are B1 and B2.

As for the content of the paper, the next section (Section 2) establishes a pathwise
representation for the length of the longest common and increasing subsequence of the
two words as a max/min functional. In Section 3, the probabilistic framework is initiated,
the representation becomes the maximum over a random set of the minimum of random
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sums of randomly stopped random variables. The various random variables involved are
studied and their (conditional) laws found. In Section 4, the limiting law is obtained.
This is done in part by a derandomization procedure (of the random sums and of the
random constraints) leading to the Brownian functional (1.1) of Theorem 1.1. In the last
section (Section 5), various extensions and generalizations are discussed as well as some
open questions related to this problem. Finally, Appendix A gives missing steps in the
proof of the main theorem in [HLM] as well as corrections to arguments presented there;
providing, in the much simpler binary case, a rather self-contained proof.

2 Combinatorics

The aim of this section is to obtain a pathwise representation for the length of the longest
common and increasing subsequences of two finite strings. Throughout the paper, X =
(Xi)i≥1 and Y = (Yi)i≥1 are two infinite sequences whose coordinates take their values in
Am = {α1 < α2 < · · · < αm}, a finite totally ordered alphabet of cardinality m. Recall
next that LCIn is the maximal integer k ∈ {1, . . . , n}, such that there exist 1 ≤ i1 < · · · <
ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n, satisfying the following two conditions:

(i) Xis = Yjs , for all s = 1, 2, . . . , k,

(ii) Xi1 ≤ Xi2 ≤ · · · ≤ Xik and Yj1 ≤ Yj2 ≤ · · · ≤ Yjk .

Now that LCIn has been formally defined, let us set some standing notation. Let Nr(X),
r = 1, . . . ,m, be the number of αrs in X1, X2, . . . , Xn, i.e.,

Nr(X) = #
{
i = 1, . . . , n : Xi = αr

}
=

n∑
i=1

1{Xi=αr}, (2.1)

and similarly let Nr(Y ), r = 1, . . . ,m, be the number of αrs in Y1, Y2, . . . , Yn. Clearly,

m∑
r=1

Nr(X) =
m∑
r=1

Nr(Y ) = n.

Let us now set a convention: Throughout the paper when there is no ambiguity or when a
property is valid for both sequences X = (Xi)i≥1 and Y = (Yi)i≥1 we often omit the symbol
X or Y and, e.g., write Nr for either Nr(X) or Nr(Y ) or, below, H for either HX or HY .

Continuing on our notational path, for each r = 1, . . . ,m, let N s,t
r (X) be the number of

αrs in Xs+1, Xs+2, . . . , Xt, i.e.,

N s,t
r (X) = #

{
i = s+ 1, . . . , t : Xi = αr

}
=

t∑
i=s+1

1{Xi=αr}, (2.2)
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with a similar definition for N s,t
r (Y ). Again, it is trivially verified that

m∑
r=1

N s,t
r (X) =

m∑
r=1

N s,t
r (Y ) = t− s,

and, of course, N0,n
r = Nr. Still continuing with our notations, let T jr (X), r = 1, . . . ,m, be

the location of the jth αr in the infinite sequence X1, X2, . . . , Xn, . . . , with the convention
that T 0

r (X) = 0. Then, for j = 1, 2, . . . , T jr (X) can be defined recursively via,

T jr (X) = min
{
s ∈ N : s > T j−1

r (X), Xs = αr
}

(2.3)

where as usual N = {0, 1, 2, . . .}. Again replacing X by Y gives the corresponding notion
for the sequence Y = (Yi)i≥1.

Next, let us begin our finding of a representation for LCIn via the random variables
defined to date. First, let HX(k1, k2, . . . , km−1) be the maximal number of αms contained
in an increasing subsequence, of X1X2 · · ·Xn, containing k1 α1s, k2 α2s, . . . , km−1 αm−1s
picked in that order. Replacing X = (Xi)i≥1 by Y = (Yi)i≥1, it is then clear that

min
(
k1 + · · ·+ km−1 +HX(k1, . . . , km−1), k1 + · · ·+ km−1 +HY (k1, . . . , km−1)

)
, (2.4)

is, therefore, the length of the longest common and increasing subsequence of X1X2 · · ·Xn

and Y1Y2 · · ·Yn containing exactly kr αrs, for all r = 1, 2, . . . ,m − 1, the letters being
picked in an increasing order. Hence, to find LCIn, the function H needs to be identified
and (2.4) needs to be maximized over all possible choices of k1, k2, . . . , km−1.

Let us start with the maximizing constraints. Assume, for a while, that a single word,
say, X1 · · ·Xn, is considered. First, and clearly, 0 ≤ k1 ≤ N1. Next, k2 is the number of
α2s present in the sequence after the kth

1 α1. Any letter α2 is admissible but the ones
occurring before the kth

1 α1, attained at the location T k11 ∧ n. Since there are n letters,

considered so far, there are thus N
0,T

k1
1 ∧n

2 inadmissible α2s and the requirement on k2 writes

k2 ≤ N2 − N
0,T

k1
1 ∧n

2 . Similarly for each r = 3, . . . ,m − 1, kr is the number of letters αr
minus the inadmissible αrs which occur during the recuperation, of the k1 α1s, followed
by the k2 α2s, followed by the k3 α3s, etc in that order. Thus the requirement on kr is
of the form kr ≤ Nr − Ñ∗r , where Ñ∗r is the number of αrs occurring before the ki αis,

i ≤ r − 1, picked in the order just described. For r = 1, 2, and as already shown, Ñ∗1 = 0

and Ñ∗2 = N
0,T

k1
1 ∧n

2 . Assume next that, for r ≥ 3, Ñ∗r−1 is well defined, then Ñ∗r is the
number of αrs occurring before, in that order, the k1 α1s, . . . , the kr−1 αr−1s. A little

moment of reflection makes it clear that the location of the kth
r−1 such αr−1 is T

kr−1+Ñ∗r−1

r−1 ,
from which it recursively follows that:

Ñ∗r = N
0,T

kr−1+Ñ
∗
r−1

r−1 ∧n
r .

Returning to two sequences X1, . . . , Xn and Y1, . . . , Yn, the condition on kr, 1 ≤ r ≤ m−1,
writes

0 ≤ kr ≤
(
Nr(X)− Ñ∗r (X)

)
∧
(
Nr(Y )− Ñ∗r (Y )

)
.
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From these choices of indices and (2.4),

LCIn = max⋂m−1
i=1 C̃i

min

(
m−1∑
i=1

ki +HX(k1, . . . , km−1),
m−1∑
i=1

ki +HY (k1, . . . , km−1)

)
, (2.5)

where, for i = 1 . . . ,m− 1,

C̃i =
{

0 ≤ ki ≤
(
Ni(X)− Ñ∗i (X)

)∧ (
Ni(Y )− Ñ∗i (Y )

)}
.

Next, observe that if T
kr−1+Ñ∗r−1

r−1 > n, then Nr − Ñ∗r = 0. Also, since the above maximum

does not change under vacuous constraints, one can replace in the defining constraints, Ñ∗r
by N∗r recursively given via: N∗1 = 0 and for r = 2, . . . ,m− 1,

N∗r = N
0,T

kr−1+N
∗
r−1

r−1
r . (2.6)

The combinatorial expression (2.5) then becomes

LCIn = max⋂m−1
i=1 Ci

min

(
m−1∑
i=1

ki +HX(k1, . . . , km−1),
m−1∑
i=1

ki +HY (k1, . . . , km−1)

)
,

with now, for i = 1, . . . ,m− 1,

Ci =
{

0 ≤ ki ≤
(
Ni(X)−N∗i (X)

)
∧
(
Ni(Y )−N∗i (Y )

)}
, (2.7)

and, of course,
m∑
i=1

Ni(X) =
m∑
i=1

Ni(Y ) = n.

After this identification, recall that H is the maximal number of αm after, in that order,
the k1 α1s, k2 α2s, . . . , km−1 αm−1s. Counting the αms present between the various
locations of the αi, i = 1, . . . ,m − 1, and after another moment of reflection, it is clear
that

H = Nm −R,

where

R =
m−1∑
i=1

N∗i +ki∑
j=N∗i +1

N
T j−1
i ,T ji

m , (2.8)

and where the N∗i are given by (2.6). Summarizing our results leads to:

Theorem 2.1 Let X = (Xi)i≥1 and Y = (Yi)i≥1 be two sequences whose coordinates
take their values in Am = {α1 < α2 < · · · < αm}, a totally ordered finite alphabet of
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cardinality m. Let LCIn be the length of the longest common and increasing subsequence
of X1 · · ·Xn and Y1 · · ·Yn. Then,

LCIn = max⋂m−1
i=1 Ci

min

(
m−1∑
i=1

ki +Nm(X)−R(X),
m−1∑
i=1

ki +Nm(Y )−R(Y )

)
, (2.9)

where Ci =
{

0 ≤ ki ≤ (Ni(X)−N∗i (X)) ∧ (Ni(Y )−N∗i (Y ))
}

, and where

R =
m−1∑
i=1

N∗i +ki∑
j=N∗i +1

N
T j−1
i ,T ji

m ,

with the various N ’s and T ’s given by (2.1), (2.2), (2.3) and (2.6).

The representation (2.9) has the great advantage of (essentially) only involving the
quantities Ni, N

∗
i , i = 1, 2, . . . ,m− 1 and T ji , i = 1, 2, . . . ,m− 1, j = 1, 2, . . . , and Nm.

3 Probability

Let us now bring our probabilistic framework into the picture and study first the random

variables N
T j−1
i ,T ji

m , i = 1, 2, . . . ,m− 1 and j = 1, 2, . . . and then the random variables N∗i ,
i = 1, 2, . . . ,m− 1, both appearing in R in (2.8).

Lemma 3.1 Let (Zn)n≥1 be a sequence of iid random variables with P(Z1 = αi) = pi,
i = 1, . . . ,m. For each i = 1, 2, . . . ,m, let T 0

i = 0, and let T ji , j = 1, 2, . . . be the location
of the jth αi in the infinite sequence (Zn)n≥1. Let i, r ∈ {1, . . . ,m}, with r 6= i. Then,

for any j = 1, 2, . . . , the conditional law of N
T j−1
i ,T ji

r given (T j−1
i , T ji ), is binomial with

parameters T ji −T
j−1
i −1 and pr/(1−pi), which we denote by B

(
T ji −T

j−1
i −1, pr/(1−pi)

)
.

Moreover, the conditional law of
(
N
T j−1
i ,T ji

r

)
r=1,...,m,r 6=i given (T j−1

i , T ji ), is multinomial with

parameters T ji −T
j−1
i −1 and (pr/(1−pi))r=1,...,m,r 6=i, which we denote byMul

(
T ji −T

j−1
i −

1, (pr/(1 − pi))r=1,...,m,r 6=i
)
. Finally, for each i 6= r, the random variables

(
N
T j−1
i ,T ji

r

)
j≥1

,

are independent with mean pr/pi and variance (pr/pi)(1 + pr/pi); and, moreover, they are
identically distributed in case the (Zn)n≥1, are uniformly distributed.

Proof. Let us denote by L
(
N
T j−1
i ,T ji

r

∣∣T j−1
i , T ji

)
the conditional law of N

T j−1
i ,T ji

r given

T j−1
i , T ji . Recall, see (2.3), that T j−1

i and T ji are the respective locations of the (j−1)th αi
and the jth αi in the infinite sequence (Zn)n≥1. Thus between T j−1

i + 1 and T ji , there are
T ji − T

j−1
i − 1 free spots and each one is equally likely contain αr, r 6= i, with probability

pr/(
∑m

`=1
6̀=i
p`) = pr/(1− pi). Therefore,

L
(
N
T j−1
i ,T ji

r

∣∣T j−1
i , T ji

)
= B

(
T ji − T

j−1
i − 1,

pr
1− pi

)
. (3.1)
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Let us now compute the probability generating function of the random variables N
T j−1
i ,T ji

r ,
i 6= r. First, via (3.1)

E
[
xN

T
j−1
i

,T
j
i

r

]
= E

[
E
[
xN

T
j−1
i

,T
j
i

r

∣∣∣T j−1
i , T ji

]]
=
∞∑
`=1

(
1− pr

1− pi
+

pr
1− pi

x

)`−1

pi(1− pi)`−1

=
pi

1− (1− pi)
(

1− pr
1−pi + pr

1−pix
)

=
pi

pi + pr − prx
, (3.2)

since T ji is a negative binomial (Pascal) random variable with parameters j and pi which
we shall denote BN (j, pi) in the sequel and T ji −T

j−1
i is a geometric random variables with

parameter pi, which we shall denote G(pj). Therefore,

E
[
N
T j−1
i ,T ji

r

]
=
pr
pi
,

Var
(
N
T j−1
i ,T ji

r

)
=
pr
pi

(
1 +

pr
pi

)
. (3.3)

In the uniform case, i.e., pi = 1/m, i = 1, . . . ,m, the N
T j−1
i ,T ji

r , i = 1, . . . ,m, i 6= r,
j = 1, 2, . . . are clearly seen to be identically distributed, via (3.2). The multinomial part
of the statement is proved in a very similar manner. The T ji − T j−1

i − 1 free spots are
to contain the letters αr, r ∈ {1, . . . ,m}, r 6= i, with respective probabilities pr/(1 − pi).
Therefore,

L
((
N
T j−1
i ,T ji

r

)
r=1,...m,r 6=i

∣∣T j−1
i , T ji

)
=Mul

(
T ji − T

j−1
i − 1,

(
pr

1− pi

)
r=1,...,m,r 6=i

)
. (3.4)

Via (3.4), the probability generating function of the random vector
(
N
T j−1
i ,T ji

r

)
r=1,...,m,r 6=i is

then given by:

E

[
m∏

r=1,r 6=i

xN
T
j−1
i

,T
j
i

r
r

]
= E

E
 m∏
r=1
r 6=i

xN
T
j−1
i

,T
j
i

r
r

∣∣∣T j−1
i , T ji




=
∞∑
`=1

 m∑
r=1
r 6=i

pr
1− pi

xr


`−1

pi(1− pi)`−1

=
pi

1−
∑m

r=1,r 6=i prxr
. (3.5)
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As a direct consequence of (3.5) and for r 6= i, s 6= i,

Cov
(
N
T j−1
i ,T ji

r , N
T j−1
i ,T ji

s

)
=
prps
p2
i

. (3.6)

The proof of the lemma will be complete once, for each i 6= r, the random variables

N
T j−1
i ,T ji

r , j ≥ 1, are shown to be independent. First, note that given T j−1
i , T ji , T

k−1
i , T ki ,

the random variables N
T j−1
i ,T ji

r =
∑T ji

`=T j−1
i +1

1{X`=αr} and N
Tk−1
i ,Tki

r =
∑Tki

`=Tk−1
i +1

1{X`=αr}

are independent since the intervals [T j−1
i + 1, T ji ] and [T k−1

i + 1, T ki ] are disjoint, and since
the (X`)`≥1 are also independent. Moreover, recall that conditional distributions are given
by (3.1), and so, for instance,

L
(
N
T j−1
i ,T ji

r

∣∣T j−1
i , T ji , T

k−1
i , T ki

)
= L

(
N
T j−1
i ,T ji

r

∣∣T j−1
i , T ji

)
= B

(
T ji − T

j−1
i − 1,

pr
1− pi

)
.

Therefore, for any measurable functions f, g : R+ → R+, and if EB(n,p) denotes the expec-
tation with respect to a binomial B(n, p) distribution then

E
[
f
(
N
T j−1
i ,T ji

r

)
g
(
N
Tk−1
i ,Tki

r

)]
= E

[
E
[
f
(
N
T j−1
i ,T ji

r

)
g
(
N
Tk−1
i ,Tki

r

)∣∣T j−1
i , T ji , T

k−1
i , T ki

]]
= E

[
E
[
f
(
N
T j−1
i ,T ji

r

)∣∣T j−1
i , T ji , T

k−1
i , T ki

]
E
[
g
(
N
Tk−1
i ,Tki

r

)∣∣T j−1
i , T ji , T

k−1
i , T ki

]]
(3.7)

= E
[
EB

(
T ji −T

j−1
i −1, pr

1−pi

)[f ] EB
(
Tki −T

k−1
i −1, pr

1−pi

)[g]

]
= E

[
EB

(
T ji −T

j−1
i −1, pr

1−pi

)[f ]

]
E
[
EB

(
Tki −T

k−1
i −1, pr

1−pi

)[g]

]
(3.8)

= E
[
f
(
N
T j−1
i ,T ji

r

)]
E
[
g
(
N
Tk−1
i ,Tki

r

)]
,

where the equality in (3.7) is due to the conditional independence property, while the one
in (3.8) follows from that

EB
(
T ji −T

j−1
i −1, pr

1−pi

)[f ] = F
(
T ji − T

j−1
i

)
and EB

(
Tki −T

k−1
i −1, pr

1−pi

)[g] = G
(
T ki − T k−1

i

)
,

for some functions F,G, and from the independence of T ji − T j−1
i and T ki − T k−1

i . The
argument can then be easily adapted to justify the mutual independence of the random

variables
(
N
T j−1
i ,T ji

r

)
j≥1

. �

With the help of the previous lemma and in order to prepare our first fluctuation result, it
is relevant to rewrite the representation (2.9) as

LCIn = max⋂m−1
i=1 Ci

min

{
m−1∑
i=1

ki +Nm(X)−Gn,m(X),
m−1∑
i=1

ki +Nm(Y )−Gn,m(Y )

}
, (3.9)

8



where

Gn,m =
m−1∑
i=1

N∗i +ki∑
j=N∗i +1

( N
T j−1
i ,T ji

m − pm
pi√

pm
pi

(
1 + pm

pi

)
n


√
pm
pi

(
1 +

pm
pi

)
n+

pm
pi

)
, (3.10)

and where pi(X) = P(X1 = αi) and pi(Y ) = P(Y1 = αi), 1 ≤ i ≤ m.

Via (3.9) and (3.10), LCIn is now represented as a max/min over random constraints of
random sums of randomly stopped independent random variables, except for the presence
of Nm(X) and Nm(Y ). Our next result also represents, up to a small error term, both
Nm(X) and Nm(Y ) via the same random variables.

Lemma 3.2 For each i = 1, 2, . . . ,m, and r 6= i,

Nr =
pr
pi
Ni +

Ni∑
j=1

(
N
T j−1
i ,T ji

r − pr
pi

)
√

pr
pi

(
1 + pr

pi

)
n

√
pr
pi

(
1 +

pr
pi

)
n+ S

(n)
i,r , (3.11)

where limn→+∞ S
(n)
i,r /
√
n = 0, in probability. In particular, for each r = 1, 2, . . . ,m,

Nr = npr +
m∑
i=1
i 6=r

√
pr
pi

(
1 +

pr
pi

)
npi

Ni∑
j=1

(
N
T j−1
i ,T ji

r − pr
pi

)
√

pr
pi

(
1 + pr

pi

)
n

+
m∑
i=1
i 6=r

piS
(n)
i,r . (3.12)

Proof. Let us start with the proof of (3.12). Summing over i = 1, . . . ,m, i 6= r, both sides
of (3.11), we get

m∑
i=1
i 6=r

pi
pr
Nr =

m∑
i=1
i 6=r

Ni +
m∑
i=1
i 6=r

√
pr
pi

(
1 +

pr
pi

)
n
pi
pr

 Ni∑
j=1

(
N
T j−1
i ,T ji

r − pr
pi

)
√

pr
pi

(
1 + pr

pi

)
n

+
m∑
i=1
i 6=r

pi
pr
S

(n)
i,r .

(3.13)

But,
∑m

i=1Ni = n, and so (3.13) becomes

Nr = npr +
m∑
i=1
i 6=r

√
pr
pi

(
1 +

pr
pi

)
npi

 Ni∑
j=1

(
N
T j−1
i ,T ji

r − pr
pi

)
√

pr
pi

(
1 + pr

pi

)
n

+
m∑
i=1
i 6=r

piS
(n)
i,r ,

which is precisely (3.12). Let us now prove (3.11) by identifying the random variable

S
(n)
i,r and show that when scaled by

√
n, they converge to zero in probability. Clearly, for

i = 1, . . . ,m, i 6= r,

0 ≤ S
(n)
i,r := Nr −

Ni∑
j=1

N
T j−1
i ,T ji

r .

9



In other words, S
(n)
i,r is the number of αr in the interval [T ∗i +1, n], where T ∗i is the location

of the last αi in [1, n]. Therefore,

0 ≤ S
(n)
i,r ≤ n− T ∗i = n− (TNii ∧ n). (3.14)

But, P(T ∗i = n−k) = pi(1− pi)k, k = 0, 1, . . . , n− 1 and P(T ∗i = 0) = (1− pi)n. Therefore,
for all ε > 0, and n large enough,

P

(
S

(n)
i,m√
n
≥ ε

)
≤ P(n− T ∗i ≥ ε

√
n) ≤

n∑
l=[ε
√
n]

pi(1− pi)l ≤ (1− pi)[ε
√
n] −→
n→+∞

0. (3.15)

�

Returning to the representation (3.9), the previous lemma allows us to rewrite LCIn as:

LCIn = max⋂m−1
i=1 Ci

min

(
npm(X) +

m−1∑
i=1

ki − pm(X)
m−1∑
i=1

ki
pi(X)

+Hm,n(X) +
m−1∑
i=1

pi(X)S
(n)
i,m(X),

npm(Y ) +
m−1∑
i=1

ki − pm(Y )
m−1∑
i=1

ki
pi(Y )

+Hm,n(Y ) +
m−1∑
i=1

pi(Y )S
(n)
i,m(Y )

)
,

(3.16)

where

Hm,n =
m−1∑
i=1

√
pm
pi

(
1 +

pm
pi

)
npi

Ni∑
j=1

(
N
T j−1
i ,T ji

m − pm
pi

)
√

pm
pi

(
1 + pm

pi

)
n

−
m−1∑
i=1

√
pm
pi

(
1 +

pm
pi

)
n

N∗i +ki∑
j=N∗i +1

(
N
T j−1
i ,T ji

m − pm
pi

)
√

pm
pi

(
1 + pm

pi

)
n

. (3.17)

�

We now study some properties of the random variables N∗i which are present in both the
random constraints and the random sums. The random variables N∗i are defined recursively
by (2.6) with N∗1 = 0. We fix k = (k1, . . . , km−1) where ki is the number of letters αi present
in the common increasing subsequence. The random variables N∗i , i ≥ 2, depend on k,
actually N∗i = N∗i (k1, . . . , ki−1). We write

N∗i =
i−1∑
j=1

N∗i,j (3.18)

10



where N∗i,j = N∗i,j(kj) is the number of letters αi present in the step j ≤ i − 1 consisting
in collecting the kj letters αj, j ≤ i− 1. (In the sequel, in order not to further burden the
notations, we shall skip the symbols kj, j = 1, . . . , i − 1, in N∗i and N∗i,j.) The following
diagram encapsulates the drawing of the letters:

1 T
k1
1 T

k2+N∗
2

2 T
k3+N∗

3
3 . . . T

kj−1+N∗
j−1

j−1 T
kj+N∗

j
j . . . T

ki−2+N∗
i−2

i−2 T
ki−1+N∗

i−1
i−1

k1 α1
N∗

2,1 α2 k2 α2

N∗
3,1 α3 N∗

3,2 α3 k3 α3 kj αj

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ki−1αi−1
N∗

i,1 αi N∗
i,2 αi N∗

i,3 αi . . . N∗
i,j αi . . . N∗

i,i−1 αi

In Step j ≤ i − 1, there are T
kj+N

∗
j

j − T
kj−1+N∗j−1

j−1 letters selected but kj letters are αj,
N∗j+1,j are αj+1, . . . , N∗i−1,j are αi−1, (for j = i − 1, there are also kj letters αj but none
of the others αj+1, etc).

Moreover, there are T
kj+N

∗
j

j − T
kj−1+N∗j−1

j−1 − kj − N∗j+1,j − · · · − N∗i−1,j possible spots

(T
kj+N

∗
j

j − T
kj−1+N∗j−1

j−1 − kj in case j = i − 1) in which the probability of having a αi is
pi,j := pi/(1− pj − · · · − pi−1). Therefore, conditionally on

Gi,j(k) = σ
(
N∗j+1,j, . . . , N

∗
i−1,j, T

kj−1+N∗j−1

j−1 , T
kj+N

∗
j

j

)
,

(the σ-field generated by N∗j+1,j, . . . , N
∗
i−1,j, T

kj−1+N∗j−1

j−1 , T
kj+N

∗
j

j ) it follows that

N∗i,j ∼ B
(
T
kj+N

∗
j

j − T kj−1+N∗j−1

j−1 − kj −N∗j+1,j − · · · −N∗i−1,j, pi,j

)
. (3.19)

The two forthcoming propositions respectively characterize the laws of N∗i,j and of N∗i .

Proposition 3.1 For each i = 2, . . . ,m, the probability generating function of N∗i,j, 1 ≤
j ≤ i− 1, is given by

E
[
xN
∗
i,j

]
=

(
pj

pj + pi − pix

)kj
. (3.20)

Therefore, N∗i,j is distributed as
∑kj

`=1(G`− 1), where (G`)1≤`≤kj are independent with geo-

metric law G
(
pj/(pj + pi)

)
and so,

E[N∗i,j] =
pi
pj
kj and Var(N∗i,j) =

(
1 +

pi
pj

)
pi
pj
kj. (3.21)

Proof. Recall that, for N ∼ B(n, p), E[xN ] = (1 − p + px)n while, for N ∼ G(p),

E[xN ] = px/(1− (1− p)x). Using (3.19), we then have for N = T
kj+N

∗
j

j − T
kj−1+N∗j−1

j−1 −
kj −N∗j+1,j − · · · −N∗i−1,j,

E
[
xN
∗
i,j

]
= E

[
E
[
xN
∗
i,j

∣∣N]]
= E

[
(1− pi,j + pi,jx)T

kj+N
∗
j

j −T
kj−1+N

∗
j−1

j−1 −kj−N∗j+1,j−···−N∗i−1,j

]
11



= E
[
yU−V

]
, (3.22)

setting y = (1− pi,j + pi,jx), and

U := T
kj+N

∗
j

j − T kj−1+N∗j−1

j−1 − kj ∼ BN (kj, pj) ∗ δ−kj (3.23)

V :=
i−1∑

r=j+1

N∗r,j ∼ B
(
U,

i−1∑
r=j+1

pr
1− pj

)
, (3.24)

where for j = i − 1, we also set V = 0. The notation BN (k, p) above stands for the
negative binomial (Pascal) distribution with parameters k and p. The parameters of the
binomial random variables V in (3.24) stem from that V counts the number of letters αr,
j + 1 ≤ r ≤ i − 1, between two letters αj, while exactly kj such letters are obtained, so
that each αr has probability pr/(1− pj) to appear. Hence,

E
[
yU−V

]
= E

[
E
[
yU−V |U

]]
= E

[
yUE

[
y−V |U

]]
= E

[
yU
(

1−
i−1∑

r=j+1

pr
1− pj

+

∑i−1
r=j+1 pr

(1− pj)y

)U]
= E

[((
1−

i−1∑
r=j+1

pr
1− pj

)
y +

i−1∑
r=j+1

pr
1− pj

)G1−1]kj
,

since, from (3.23), U ∼
∑kj

`=1(G` − 1), where the G`, 1 ≤ ` ≤ kj, are iid with distribution
G(pj). Finally,

E
[
yU−V

]
=

 pj

1− (1− pj)
((

1−
∑i−1

r=j+1
pr

1−pj

)
y +

∑i−1
r=j+1

pr
1−pj

)
kj

=

(
pj

pj + pi − pix

)kj
,

since pi,j = pi/
(
1−

∑i−1
r=j pr

)
. The expressions for the expectation and for the variance in

(3.21) follow from straightforward computations. �

Recall that by convention, N∗1 = 0, and for 2 ≤ i ≤ m, the following proposition gives
the law of N∗i :

Proposition 3.2 For each i = 2, . . . ,m, the random variables (N∗i,j)1≤j≤i−1 are indepen-
dent. Hence, the probability generating function of N∗i is given by

E
[
xN
∗
i

]
=

i−1∏
j=1

(
pj

pj + pi − pix

)kj
, (3.25)
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and so,

E[N∗i ] =
i−1∑
j=1

pi
pj
kj and Var(N∗i ) =

i−1∑
j=1

(
1 +

pi
pj

)
pi
pj
kj. (3.26)

Proof. In view of Proposition 3.1 and of (3.18), it is enough to prove the first part
of the proposition, i.e., to prove that the random variables N∗i,j, 1 ≤ j ≤ i − 1, are
independent. In order to simplify notations, we only show that N∗i,1 and N∗i,2 are inde-
pendent, but the argument can easily be extended to prove the full independence prop-
erty. Since the T ki ’s are stopping times, by the strong Markov property, observe that
σ
(
X1, . . . , XT

k1
1

)
⊥⊥
T
k1
1

σ
(
X
T
k1
1 +1

, . . . , X
T
k2+N

∗
2

2

)
where, again σ(X1, . . . , Xn) denotes the σ-

field generated by the random variables X1, . . . , Xn, while ⊥⊥
T
k1
1

stands for independence con-

ditionally on T k11 . Moreover, T k11 and σ
(
X
T
k1
1 +1

, . . . , X
T
k2+N

∗
2

2

)
are independent, and thus so

are σ
(
X1, . . . , XT

k1
1

)
and σ

(
X
T
k1
1 +1

, . . . , X
T
k2+N

∗
2

2

)
. The independence of N∗i,1 and N∗i,2 be-

comes clear, since N∗i,1 is σ
(
X1, . . . , XT

k1
1

)
-measurable while N∗i,2 is σ

(
X
T
k1
1 +1

, . . . , X
T
k2+N

∗
2

2

)
-

measurable. The whole conclusion of the proposition then follows. �

4 The Uniform Case

In this section, we specialize ours results to the case where the letters are uniformly drawn
from the alphabet, i.e., pi(X) = pi(Y ) = 1/m, for all 1 ≤ i ≤ m. Hence, the functional
LCIn in (3.16) rewrites as

LCIn = max
∩m−1
i=1 Ci

min

(
n

m
+Hm,n(X) +

1

m

m−1∑
i=1

S
(n)
i,m(X),

n

m
+Hm,n(Y ) +

1

m

m−1∑
i=1

S
(n)
i,m(Y )

)
,

(4.1)
and therefore

LCIn − n/m√
2n

= max⋂m−1
i=1 Ci

min

(
Hm,n(X)√

2n
+

1

m
√

2n

m−1∑
i=1

S
(n)
i,m(X),

Hm,n(Y )√
2n

+
1

m
√

2n

m−1∑
i=1

S
(n)
i,m(Y )

)
. (4.2)

The following simple inequality, a version of which is already present in [HLM], will be of
multiple use:

Lemma 4.1 Let ak, bk, ck, dk, 1 ≤ k ≤ K, be reals. Then,∣∣∣∣ max
k=1,...,K

(
ak ∧ bk

)
− max

k=1,...,K

(
(ak + ck) ∧ (bk + dk)

)∣∣∣∣ ≤ max
k=1,...,K

(
|ck| ∨ |dk|

)
. (4.3)
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Proof First, ∣∣∣maxk=1,...,K

(
ak ∧ bk

)
−maxk=1,...,K

(
(ak + ck) ∧ (bk + dk)

)∣∣∣
≤ maxk=1,...,K

∣∣(ak ∧ bk)− ((ak + ck) ∧ (bk + dk)
)∣∣.

Next, the result will follows from the elementary inequality

(a ∧ b)− (a+ c) ∧ (b+ d) ≤ |c| ∨ |d|, (4.4)

which is valid for all a, b, c, d ∈ R. Indeed, set D = (a ∧ b)− (a + c) ∧ (b + d) and assume
(without loss of generality) that a ≤ b. If a+ c ≤ b+ d, then D = a− (a+ c) = −c ≤ |c|.
If b+ d ≤ a+ c, then D = a− b− d and so whenever a ≤ b+ d, (4.4) is immediate, while
if a ≥ b+ d, then D = a− b− d ≤ −d = |d| since a− b ≤ 0 and −d ≥ b− a ≥ 0. �

The previous lemma entails∣∣∣∣∣ max⋂m−1
i=1 Ci

min

(
Hm,n(X)√

2n
+

1

m
√

2n

m−1∑
i=1

S
(n)
i,m(X),

Hm,n(Y )√
2n

+
1

m
√

2n

m−1∑
i=1

S
(n)
i,m(Y )

)

− max⋂m−1
i=1 Ci

min

(
Hm,n(X)√

2n
,
Hm,n(Y )√

2n

)∣∣∣∣∣
≤ 1

m
√

2n

(∣∣∣∣∣
m−1∑
i=1

S
(n)
i,m(X)

∣∣∣∣∣ ∨
∣∣∣∣∣
m−1∑
i=1

S
(n)
i,m(Y )

∣∣∣∣∣
)
.

But, from Lemma 3.2, as n → +∞, both S
(n)
i,m(X)/

√
n

P−→ 0 and S
(n)
i,m(Y )/

√
n

P−→ 0, for
all 1 ≤ i ≤ m − 1 (see (3.15)). Therefore, the fluctuations of LCIn expressed in (4.2) are
the same as that of

max⋂m−1
i=1 Ci

min

(
Hm,n(X)√

2n
,
Hm,n(Y )√

2n

)
.

For uniform draws, the functional Hm,n in (3.17) rewrites as

Hm,n =
m−1∑
i=1

√
2n

1

m

Ni∑
j=1

N
T j−1
i ,T ji

m − 1√
2n

−
m−1∑
i=1

√
2n

N∗i +ki∑
j=N∗i +1

N
T j−1
i ,T ji

m − 1√
2n

=
√

2n

(
1

m

m−1∑
i=1

Bi
n

(
Ni

n

)
−

m−1∑
i=1

(
Bi
n

(
N∗i + ki

n

)
−Bi

n

(
N∗i
n

)))

where Bi
n is the Brownian approximation defined from the random variables N

T j−1
i ,T ji

m ,
j ≥ 1, which are iid, by Lemma 3.1, centered and scaled to have variance one, i.e., Bn is
the polygonal process on [0, 1] defined by linear interpolation between the values

Bi
n

(
k

n

)
=

k∑
j=1

Z
(i)
j√
n

(4.5)
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where

Z
(i)
j =

N
T j−1
i ,T ji

m − 1√
2

. (4.6)

Next, we present some heuristic arguments which provide the limiting behavior of

max⋂m−1
i=1 Ci

min

(
1

m

m−1∑
i=1

Bi,X
n

(
Ni(X)

n

)
−

m−1∑
i=1

(
Bi,X
n

(
N∗i (X) + ki

n

)
−Bi,X

n

(
N∗i (X)

n

))
,

1

m

m−1∑
i=1

Bi,Y
n

(
Ni(Y )

n

)
−

m−1∑
i=1

(
Bi,Y
n

(
N∗i (Y ) + ki

n

)
−Bi,Y

n

(
N∗i (Y )

n

)))
, (4.7)

knowing that, by Donsker theorem, (B1
n, . . . , B

m−1
n )

(C0([0,1]))m−1

=⇒ (B1, . . . , Bm−1), n→ +∞,
where (B1, . . . , Bm−1) is a drift-less, (m − 1)-dimensional, correlated Brownian motion
on [0, 1], which is also zero at the origin. The correlation structure of this multivariate

Brownian motion is given by that of the Z
(i)
j , 1 ≤ i ≤ m − 1, which in turn is given by

Lemma 3.1. (Above,
(C0([0,1]))m−1

=⇒ stands for the convergence in law in the product space of
continuous function on [0, 1] vanishing at the origin.)

Heuristics

Roughly speaking, there are three limits to handle in (4.7):

1. The limit of the constraints in the maximum,
⋂m−1
i=1 Ci;

2. The limit of the linear terms:
∑m−1

i=1 Bi,X
n

(
Ni(X)
n

)
;

3. The limit of the increments:
∑m−1

i=1

(
Bi,X
n

(
N∗i (X)+ki

n

)
−Bi,X

n

(
N∗i (X)

n

))
;

and, similarly, for X replaced by Y . Below, the symbol  indicates an heuristic replace-
ment or an heuristic limit, as n→ +∞.

First Limit (to be treated last, in Section 4.3): Since Ci = {k = (k1, . . . , km−1) : 0 ≤
ki ≤ min

(
Ni(X) − N∗i (X), Ni(Y ) − N∗i (Y )

)
}, (and, again, with vacuous constraints in

case either N∗i (X) > n or N∗i (Y ) > n) and from the concentration property of the N∗i , we
expect (with again k0 = 0, and t0 = 0, below):

Ci  

{
k = (k1, . . . , km−1) : 0 ≤ ki ≤

(
E[Ni(X)]−

i−1∑
j=1

kj

)
∧

(
E[Ni(Y )]−

i−1∑
j=1

kj

)}

=

{
k = (k1, . . . , km−1) :

1

n

i−1∑
j=1

kj ≤
1

n

i∑
j=1

kj ≤
E[Ni]

n
, i = 1, . . . ,m− 1

}
.
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Hence,
m−1⋂
i=1

Ci  V
(

1

m
, . . . ,

1

m

)
,

where V(p1, . . . , pm−1) =
{
t = (t1, . . . , tm−1) : ti ≥ 0, i = 1, . . . ,m − 1, t1 ≤ p1, t1 + t2 ≤

p2, . . . , t1 + · · ·+ tm−1 ≤ pm−1

}
.

Second Limit (see Section 4.1): For each i = 1, . . . ,m − 1, the random variables Ni are
concentrated around their respective mean E[Ni] (= 1/m), and so

Ni

n
 E[Ni] and

m−1∑
i=1

Bi
n

(
Ni

n

)
 

m−1∑
i=1

Bi
(
E[Ni]

)
=

m−1∑
i=1

Bi
( 1

m

)
,

where the limit Bi
n

C0([0,1])
===⇒ Bi is taken simultaneously.

Third Limit (see Section 4.2): For each i = 1, . . . ,m− 1, the random variables N∗i are also
concentrated around their mean E[N∗i ] =

∑i−1
j=1 kj, and so N∗i  

∑i−1
j=1 kj. Therefore,

Bi,X
n

(
N∗i (X) + ki

n

)
−Bi,X

n

(
N∗i (X)

n

)
 Bi,X

n

(
i∑

j=1

kj
n

)
−Bi,X

n

(
i−1∑
j=1

kj
n

)

 Bi,X

(
i∑

j=1

tj

)
−Bi,X

(
i−1∑
j=1

tj

)
,

and similarly for X replaced by Y . Hence,

LCIn − n/m√
2n

 max
V(1/m,...,1/m)

min

(
1

m

m−1∑
i=1

Bi,X

(
1

m

)
−

m−1∑
i=1

(
Bi,X

(
i∑

j=1

tj

)
−Bi,X

(
i−1∑
j=1

tj

))
,

1

m

m−1∑
i=1

Bi,Y

(
1

m

)
−

m−1∑
i=1

(
Bi,Y

(
i∑

j=1

tj

)
−Bi,Y

(
i−1∑
j=1

tj

)))
L
=

1√
m

max
0=u0≤u1≤···≤um−1≤1

min

(
1

m

m−1∑
i=1

Bi,X(1)−
m−1∑
i=1

(
Bi,X(ui)−Bi,X(ui−1)

)
,

1

m

m−1∑
i=1

Bi,Y (1)−
m−1∑
i=1

(
Bi,Y(ui)−Bi,Y(ui−1)

))
,

by Brownian scaling and the reparametrization
∑i

j=1 tj = ui/m, i = 1, . . .m−1, u0 = t0 =
0. In other words,

LCIn − n/m√
2n/m

 max
0=u0≤u1≤···≤um−1≤1

min

(
1

m

m−1∑
i=1

Bi,X(1)−
m−1∑
i=1

(
Bi,X(ui)−Bi,X(ui−1)

)
,
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1

m

m−1∑
i=1

Bi,Y (1)−
m−1∑
i=1

(
Bi,Y (ui)−Bi,Y (ui−1)

))
.

Finally, a linear transformation and Brownian properties allow to transform the parameter
space into the Weyl chamber

Wm(1) :=
{
u = (u0, u1, . . . , um−1, um) : 0 = u0 ≤ u1 ≤ · · · ≤ um−1 ≤ um = 1

}
,

and to replace the (m− 1)-dimensional correlated Brownian motion BX (resp. BY ), by an
m-dimensional standard one B1 (resp. B2). Combining these facts, the expression on the
right-hand side above, becomes equal, in law, to:

max
(ui)0≤i≤m∈Wm(1)

min

(
− 1

m

m∑
i=1

B
(i)
1 (1) +

m∑
i=1

(
B

(i)
1 (ui)−B(i)

1 (ui−1)
)
,

− 1

m

m∑
i=1

B
(i)
2 (1) +

m∑
i=1

(
B

(i)
2 (ui)−B(i)

2 (ui−1)
))

,

which is the final form of our result, Theorem 1.1. In the sequel, we make precise the
previous heuristic arguments.

4.1 The Linear Terms

Set

R(X) =
m−1∑
i=1

(
Bi,X
n

(
N∗i + ki

n

)
−Bi,X

n

(
N∗i
n

))
,

so that with the help of (4.7), (4.2) rewrites

LCIn − n/m√
2n

= max⋂m−1
i=1 Ci

min

(
1

m

m−1∑
i=1

Bi,X
n

(
Ni(X)

n

)
−R(X),

1

m

m−1∑
i=1

Bi,Y
n

(
Ni(Y )

n

)
−R(Y )

)
+ oP(1), (4.8)

where, throughout, oP(1) indicates a term, which might be different from an expression to
another, converging to zero, in probability, as n converges to infinity.

Next, by Lemma 4.1,∣∣∣∣∣ max⋂m−1
i=1 Ci

min

(
1

m

m−1∑
i=1

Bi,X
n

(Ni(X)

n

)
−R(X),

1

m

m−1∑
i=1

Bi,Y
n

(Ni(Y )

n

)
−R(Y )

)
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− max⋂m−1
i=1 Ci

min

(
1

m

m−1∑
i=1

Bi,X
n

(E[Ni(X)]

n

)
−R(X),

1

m

m−1∑
i=1

Bi,Y
n

(E[Ni(Y )]

n

)
−R(Y )

)∣∣∣∣∣
≤ max⋂m−1

i=1 Ci

∣∣∣∣∣min

(
1

m

m−1∑
i=1

Bi,X
n

(Ni(X)

n

)
−R(X),

1

m

m−1∑
i=1

Bi,Y
n

(Ni(Y )

n

)
−R(Y )

)

−min

(
1

m

m−1∑
i=1

Bi,X
n

(E[Ni(X)]

n

)
−R(X),

1

m

m−1∑
i=1

Bi,Y
n

(E[Ni(Y )]

n

)
−R(Y )

)∣∣∣∣∣
≤ max⋂m−1

i=1 Ci

(
max

(
1

m

∣∣∣∣∣
m−1∑
i=1

(
Bi,X
n

(Ni(X)

n

)
−Bi,X

n

(E[Ni(X)]

n

))∣∣∣∣∣ ,
1

m

∣∣∣∣∣
m−1∑
i=1

(
Bi,Y
n

(Ni(Y )

n

)
−Bi,Y

n

(E[Ni(Y )]

n

))∣∣∣∣∣
))

. (4.9)

We now wish to show that the right-hand side of (4.9) converges to zero, in proba-
bility. First note that for each 1 ≤ i ≤ m − 1, Ci ⊂

{
k = (k1, . . . , km−1) : 0 ≤

ki ≤ min (Ni(X), Ni(Y ))
}
⊂
{
k = (k1, . . . , km−1) : 0 ≤ ki ≤ n

}
, see (2.7). But,

Bi
n (Ni/n) − Bi

n(E[Ni]/n), where we have dropped X and Y , does not depend on k.
Therefore, the maximum can be skipped and the problem reduces to showing that, for
all 1 ≤ i ≤ m− 1: ∣∣∣∣Bi

n

(
Ni

n

)
−Bi

n

(
E[Ni]

n

)∣∣∣∣ P−→ 0, (4.10)

as n→ +∞. This follows from the forthcoming lemma applied, for each i = 1, . . . ,m− 1,

to the random variables Z
(i)
j =

(
N
T j−1
i ,T ji

m − 1
)
/
√

2 , present in both (4.5) and (4.6) and
which, by Lemma 3.1, are iid with mean zero and variance one. Note that the lemma
below can indeed be brought into play since Hoeffding’s inequality, applied to the random
variables Ni, ensures that

lim
n→+∞

P
(
|Ni − E[Ni]| ≥

√
n lnn

)
≤ lim

n→+∞

2

n2
= 0. (4.11)

Lemma 4.2 Let (Zj)j≥1 be iid centered random variables with unit variance, and for each
n ∈ N, let N (n) be an N-valued random variable such that limn→+∞ P

(
|N (n) − E[N (n)]| ≥√

nlnn
)

= 0. Then, ∑
j∈[N(n),E[N(n)]]

Zj√
n

P−→ 0,

where [N (n),E[N (n)]] is short for [min(N (n),E[N (n)]),max(N (n),E[N (n)])].

Proof. Let Cn =
{ ∣∣N (n) − E[N (n)]

∣∣ < √nlnn
}

, and for ε > 0, let

An(ε) =
{∣∣∣∑j∈[N(n),E[N(n)]]

Zj√
n

∣∣∣ ≥ ε
}
.
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Since P
(
An(ε)

)
≤ P

(
An(ε) ∩ Cn

)
+ P(Cc

n), and since limn→∞ P(Cc
n) = 0. and it is enough

to show limn→+∞ P
(
An(ε) ∩ Cn

)
= 0. But, by Kolmogorov’s maximal inequality,

P
(
An(ε) ∩ Cn

)
≤ P

 max
|k−E[N(n)]|<

√
n lnn

∣∣∣ ∑
j∈[k,E[N(n)]]

Zj√
n

∣∣∣ ≥ ε


≤
√
n lnnVar(Z1)

ε2n
→ 0, n→ +∞.

�

At this stage, (4.10) is proved and therefore,

LCIn − n/m√
2n

= max⋂m−1
i=1 Ci

min

(
1

m

m−1∑
i=1

Bi,X
n

(
E[Ni(X)]

n

)
−R(X),

1

m

m−1∑
i=1

Bi,Y
n

(
E[Ni(Y )]

n

)
−R(Y )

)
+ oP(1), (4.12)

finishing the first part of the proof of Theorem 1.1. Indeed, (N1, . . . , Nm) is multinomial
with parameters n and (p1, . . . , pm). So, for uniform draws, E[Ni(X)] = E[Ni(Y )] =
npi = n/m. Then, by the multivariate CLT (or more precisely, the multivariate Donsker

theorem and scaling),
∑m−1

i=1 Bi,X
n

(
E[Ni(X)]

n

)
/m converges in distribution, as n → +∞, to∑m−1

i=1 Bi,X
1 (1)/(m

√
m) where, in view of (3.6),

(
B1,X

1 (t), . . . , Bm−1,X
1 (t)

)
0≤t≤1

is a (m− 1)-

dimensional Brownian motion with covariance matrix tΣ = t(σi,j)1≤i,j≤m−1, with σi,i = 1
and σi,j = 1/2, i, j = 1, . . . ,m− 1. A similar result also holds replacing X by Y .

The multivariate Donsker theorem mentioned above, easily derives from the univariate
one and from the multivariate CLT as follows. First, the latter gives the convergence
of the finite-dimensional distributions of (B1,X

n (t), . . . , Bm−1,X
n (t))0≤t≤1 with a covariance

structure given by that of the Z
(i)
1 , 1 ≤ i ≤ m− 1, in (4.6), see (3.6). Second, the tightness

of
(
B1,X
n (t), . . . , Bm−1,X

n (t)
)

0≤t≤1
is obtained from that of its coordinates: since Bi,X

n is tight
for each 1 ≤ i ≤ m−1 by the univariate Donsker theorem, for all ε > 0, there is a compact
Ki of C0([0, 1]), the usual space of continuous functions on [0, 1] vanishing at the origin,
such that supn≥1 P

(
Bi,X
n 6∈ Ki

)
< ε and we have

sup
n≥1

P
((
B1,X
n , . . . , Bm−1,X

n

)
66∈ K1 × · · · ×Km−1

)
≤ sup

n≥1

m−1∑
i=1

P
(
Bi,X
n 66∈ Ki

)
< (m− 1)ε

with K1 × · · · ×Km−1 compact of (C0([0, 1]))m−1 so that
(
B1,X
n , . . . , Bm−1,X

n

)
is tight. �
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4.2 The Increments

In this section, we compare the maximum of two different quantities over the same set
of constraints in order to simplify the quantities to be maximized (before simplifying the
constraints

⋂m−1
i=1 Ci, themselves, in the next section). The quantities to compare are:

max
k∈
⋂m−1
i=1 Ci

{(
1

m

m−1∑
i=1

Bi,X
n (pi(X))−

m−1∑
i=1

(
Bi,X
n

(
N∗i (X) + ki

n

)
−Bi,X

n

(
N∗i (X)

n

))) ∧
(

1

m

m−1∑
i=1

Bi,Y
n (pi(Y ))−

m−1∑
i=1

(
Bi,Y
n

(
N∗i (Y ) + ki

n

)
−Bi,Y

n

(
N∗i (Y )

n

)))}
,(4.13)

and

max
k∈
⋂m−1
i=1 Ci

{(
1

m

m−1∑
i=1

Bi,X
n (pi(X))−

m−1∑
i=1

(
Bi,X
n

(∑i
j=1 kj

n

)
−Bi,X

n

(∑i−1
j=1 kj

n

)))∧
(

1

m

m−1∑
i=1

Bi,Y
n (pi(Y ))−

m−1∑
i=1

(
Bi,Y
n

(∑i
j=1 kj

n

)
−Bi,Y

n

(∑i−1
j=1 kj

n

)))}
.(4.14)

Using (4.3) in Lemma 4.1, their absolute difference is upper-bounded by

max
k∈
⋂m−1
i=1 Ci

{∣∣∣∣∣
m−1∑
i=1

(
Bi,X
n

(
N∗i (X) + ki

n

)
−Bi,X

n

(
N∗i (X)

n

))

−
m−1∑
i=1

(
Bi,X
n

(∑i
j=1 kj

n

)
−Bi,X

n

(∑i−1
j=1 kj

n

))∣∣∣∣∣∨∣∣∣∣∣
m−1∑
i=1

(
Bi,Y
n

(
N∗i (Y ) + ki

n

)
−Bi,Y

n

(
N∗i (Y )

n

))

−
m−1∑
i=1

(
Bi,Y
n

(∑i
j=1 kj

n

)
−Bi,Y

n

(∑i−1
j=1 kj

n

))∣∣∣∣∣
}

≤ max
k∈
⋂m−1
i=1 Ci

{∣∣∣∣∣
m−1∑
i=1

(
Bi,X
n

(
(N∗i (X) + ki)

n

)
−Bi,X

n

(∑i
j=1 kj

n

))∣∣∣∣∣∨ ∣∣∣∣∣
m−1∑
i=1

(
Bi,Y
n

(
(N∗i (Y ) + ki)

n

)
−Bi,Y

n

(∑i
j=1 kj

n

))∣∣∣∣∣
}

+ max
k∈
⋂m−1
i=1 Ci

{∣∣∣∣∣
m−1∑
i=1

(
Bi,X
n

(
N∗i (X)

n

)
−Bi,X

n

(∑i−1
j=1 kj

n

))∣∣∣∣∣∨ ∣∣∣∣∣
m−1∑
i=1

(
Bi,Y
n

(
N∗i (Y )

n

)
−Bi,Y

n

(∑i−1
j=1 kj

n

))∣∣∣∣∣
}
.
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Recall that N∗1 (X) = N∗1 (Y ) = 0. Hence, for i = 1,

Bi,X
n

(
N∗i (X) + ki

n

)
−Bi,X

n

(∑i
j=1 kj

n

)
= Bi,X

n

(
N∗i (X)

n

)
−Bi,X

n

(∑i−1
j=1 kj

n

)
= 0,

with the same property for functionals relative to Y . Therefore, we are left with investi-
gating terms of the form

max
k∈
⋂m−1
i=1 Ci

{∣∣∣∣∣Bi,X
n

(
N∗i (X) + ki

n

)
−Bi,X

n

(∑i
j=1 kj

n

)∣∣∣∣∣∨ ∣∣∣∣∣Bi,Y
n

(
N∗i (Y ) + ki

n

)
−Bi,Y

n

(∑i
j=1 kj

n

)∣∣∣∣∣
}
, (4.15)

and

max
k∈
⋂m−1
i=1 Ci

{∣∣∣∣∣Bi,X
n

(
N∗i (X)

n

)
−Bi,X

n

(∑i−1
j=1 kj

n

)∣∣∣∣∣∨
∣∣∣∣∣Bi,Y

n

(
N∗i (Y )

n

)
−Bi,Y

n

(∑i−1
j=1 kj

n

)∣∣∣∣∣
}
,

(4.16)
for 2 ≤ i ≤ m− 1. Above, all the quantities considered only depend on a single sequence,
say X or Y , except for the constraints in C which depend on both X and Y . However,
Ci ⊂ C∗i (X) :=

{
k = (k1, . . . , km−1) : 0 ≤ ki ≤ Ni(X) − N∗i (X)

}
(resp. Ci ⊂ C∗i (Y ))) and

so upper-bounding, in (4.15) and (4.16), the inner maxima by sums and the maxima over
C by maxima over C∗(X) :=

⋂m−1
i=1 C∗i (X) (resp. C∗(Y )) we are left with investigating, for

2 ≤ i ≤ m− 1, the convergence in probability of terms of the form

max
k∈C∗(X)

{∣∣∣∣∣Bi,X
n

(
N∗i (X) + ki

n

)
−Bi,X

n

(∑i
j=1 kj

n

)∣∣∣∣∣
}
, (4.17)

and

max
k∈C∗(X)

{∣∣∣∣∣Bi,X
n

(
N∗i (X)

n

)
−Bi,X

n

(∑i−1
j=1 kj

n

)∣∣∣∣∣
}
, (4.18)

and, similarly with X replaced by Y . Omitting the reference to either X or Y , the terms
to control are, from (4.5) and for each, 2 ≤ i ≤ m− 1, of the form:

max
k∈C∗

∣∣∣∣∣∣
N∗i +ki∑

j=k1+···+ki+1

Z
(i)
j√
n

∣∣∣∣∣∣ , (4.19)

and

max
k∈C∗

∣∣∣∣∣∣
N∗i∑

j=k1+···+ki−1+1

Z
(i)
j√
n

∣∣∣∣∣∣ , (4.20)
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where the Z
(i)
j , j ≥ 1, are defined in (4.6) and where C∗ =

⋂m−1
i=1 C∗i . Since (4.20) is similar

to, but easier to tackle than (4.19), we only deal with (4.19). Again, as in Section 4.1, let
Ci
n =

{
|Ni − E[Ni]| ≤

√
n lnn

}
for i = 1, 2, . . . ,m− 1, and, thus, for ε > 0,

P

max
k∈C∗

∣∣∣∣∣∣
N∗i +ki∑

j=k1+···+ki+1

Z
(i)
j√
n

∣∣∣∣∣∣ ≥ ε


≤ P

max
k∈C∗

∣∣∣∣∣∣
N∗i +ki∑

j=k1+···+ki+1

Z
(i)
j

∣∣∣∣∣∣ ≥ ε
√
n,

m−1⋂
i=1

Ci
n

+
m−1∑
i=1

P
(
(Ci

n)c
)

≤ P

max
k∈C∗∗n,i

∣∣∣∣∣∣
`i+N

∗
i −(k1+···+ki−1)∑
j=`i+1

Z
(i)
j

∣∣∣∣∣∣ ≥ ε
√
n

+
m−1∑
i=1

P
(
(Ci

n)c
)
, (4.21)

where

C∗∗n,i =
{
k1 ≤ E[N1] +

√
n lnn, k2 ≤ E[N2] +

√
n lnn, . . . , ki−1 ≤ E[Ni−1] +

√
n lnn,

k1 + · · ·+ ki−1 ≤ `i := k1 + · · ·+ ki ≤ E[Ni] +
√
n lnn− (N∗i − (k1 + · · ·+ ki−1))

}
=

i−1⋂
j=1

{
kj ≤ E[Nj] +

√
n lnn

}
∩
{
E[N∗i ] ≤ `i = k1 + · · ·+ ki ≤ E[Ni] +

√
n lnn− (N∗i − E[N∗i ])

}
:= Ci−1

n ∩
{
E[N∗i ] ≤ `i = k1 + · · ·+ ki ≤ E[Ni] +

√
n lnn− (N∗i − E[N∗i ])

}
, (4.22)

since N∗i = N∗i (k1, . . . , ki−1) is such that E[N∗i ] = k1 + · · ·+ ki−1. Now, in view of (4.11), it
is enough to show the convergence to zero of the first term on the right-hand side of (4.21).
To do so, let

Di
n(k1, . . . , ki−1) =

{
|N∗i (k1, . . . , ki−1)− E[N∗i (k1, . . . , ki−1)]| ≤ xn

}
,

with
xn = nβ, β ∈ (1/2, 1), (4.23)

and let
Din =

⋂
(k1,...,ki−1)∈Ci−1

n

Di
n(k1, . . . , ki−1). (4.24)

Our next goal is to show that asymptotically, Din has full probability. To do so, we first
need some technical results.

Lemma 4.3 For x ∈ [−n,+∞), let

Fn(x) =
(x+ 2n)x+2n

(2x+ 2n)x+n(2n)n
.
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Then, for some constants c, C ∈ (0,+∞),

Fn(x) ≤ C exp

(
−cnmin

( |x|
n
,
x2

n2

))
. (4.25)

Proof. Consider three cases: |x| � n, x� n and x ≈ n, i.e., c1n ≤ x ≤ c2n for two finite
constants c1 and c2, and expand Fn(x) accordingly. First, let |x| � n: then,

Fn(x) =
(2n)x+2n

(2n)x+n(2n)n
(1 + x

2n
)x+2n

(1 + x
n
)x+n

= exp
(

(x+ 2n) ln
(

1 +
x

2n

)
− (x+ n) ln

(
1 +

x

n

))
= exp

(
(x+ 2n)

(
x

2n
− x2

8n2
+ o

(
x2

n2

))
− (x+ n)

(
x

n
− x2

2n2
+ o

(
x2

n2

)))
= exp

(
−x

2

4n
+

3x3

8n2
+ o

(
x3

n2

)
+ o

(
x2

n

))
= exp

(
−x

2

4n
+ o

(
x2

n

))
,

which yields (4.25) in case |x| � n. Next, let x� n: then,

Fn(x) =
(x+ 2n)x+2n

(2x+ 2n)x+n(2n)n
=

xn

(4n)n2x
(1 + 2n

x
)x+2n

(1 + n
x
)x+n

=
xn

(4n)n2x
exp

(
(x+ 2n) ln

(
1 +

2n

x

)
− (x+ n) ln

(
1 +

n

x

))
=

xn

(4n)n2x
exp

(
(x+ 2n)

(
2n

x
− 2n2

x2
+ o

(
n2

x2

))
− (x+ n)

(
n

x
− n2

2x2
+ o

(
n2

x2

)))
=

xn

(4n)n2x
exp

(
n+

3n2

2x
− 7n3

2x2
+ o

(
n2

x

))
= exp

(
n+

3n2

2x
+ n ln

( x
4n

)
− x ln 2 + o

(
n2

x

))
. (4.26)

Since x� n, the larger order in the exponential (4.26) is x ln 2 and, this recover a bound
of the form (4.25) in this case. Finally, consider the case x ≈ n, say x = αn with α > −1.
Then,

Fn(x) =

(
(α + 2)n

)(α+2)n(
(2α + 2)n

)(α+1)n
(2n)n

= exp
(
− c(α)n

)
,

which is again of the form (4.25), since c(α) = ln
(
2(2α + 2)α+1/(α + 2)α+2

)
is positive for

all α > −1 and is also bounded. �

Indeed, as now shown, asymptotically, Din in (4.24) has full probability.
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Lemma 4.4 Let 2 ≤ i ≤ m− 1, then limn→+∞ P
(
(Din)c

)
= 0.

Proof. Clearly,

P
(
(Din)c

)
≤

∑
(k1,...,ki−1)∈Ci−1

n

P
(
(Di

n(k1, . . . , ki−1))c
)

≤ ni−1 max
(k1,...,ki−1)∈Ci−1

n

P
(
(Di

n(k1, . . . , ki−1))c
)
.

Therefore, to prove the lemma, it is enough to show that:

lim
n→+∞

ni−1 max
(k1,...,ki−1)∈Ci−1

n

P
(
(Di

n(k1, . . . , ki−1))c
)

= 0. (4.27)

Now, for each 2 ≤ i ≤ m− 1, Propositions 3.1 and 3.2 assert that,

N∗i = N∗i (k1, . . . , ki−1) =
i−1∑
j=1

N∗i,j,

where the (N∗i,j)1≤j≤i−1 are independent and with probability generating function

E
[
xN
∗
i,j
]

=

(
1

2− x

)kj
.

Next,

P
(
Di
n(k1, . . . , ki−1))c

)
= P

(
|N∗i − E[N∗i ]| > xn

)
= P

(
i−1∑
j=1

(
N∗i,j − kj

)
> xn

)
+ P

(
i−1∑
j=1

(
kj −N∗i,j

)
> xn

)
. (4.28)

The first term in (4.28) is bounded by Θr
k1+···+ki−1

(xn), where

Θr
k(x) := min

t>0

(
exp

(
−
(
t(x+ k) + k ln(2− et)

)) )
(4.29)

=
(x+ 2k)x+2k

(2x+ 2k)x+k(2k)k
, (4.30)

since the minimization in (4.29) occurs at t = ln
(
(2x+ 2k)/(x+ 2k)

)
.

The second term in (4.28) is bounded by Θl
k1+···+ki−1

(xn), where

Θl
k(x) := min

t>0

(
exp

(
−
(
t(x− k) + k ln(2− e−t)

)) )
(4.31)

=
(2k − x)2k−x

(2k − 2x)k−x(2k)k
, (4.32)
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observing that, for x ≤ k, the minimization in (4.31) occurs at t = ln
(
(2k−x)/(2k− 2x)

)
.

From the previous bounds and (4.28), it is clear that (4.27) will follow from

lim
n→+∞

ni−1 max
(k1,...,ki−1)∈Ci−1

n

Θ•k1+···+ki−1
(xn) = 0, (4.33)

for • ∈ {l, r}. To obtain such as limit, we make use of Lemma 4.3, with x = xn = nβ,
β ∈ (1/2, 1), noting also that Ci−1

n ⊂
{

(k1, . . . , ki−1) : k1 + · · · + ki−1 ≤
∑i−1

j=1 E[Nj] + (i−
1)
√
n lnn

}
⊂
{

(k1, . . . , ki−1) : k1 + · · ·+ ki−1 ≤ (i− 1)(maxj=1,...,i−1 pjn+
√
n lnn)

}
.

First, for • = r, when k1 + · · ·+ ki−1 ≤ xn, (4.25) writes as

Θr
k1+···+ki−1

(xn) ≤ C exp
(
− c(k1 + · · ·+ ki−1) min

( xn
k1 + · · ·+ ki−1

,
( xn
k1 + · · ·+ ki−1

)2))
= C exp(−cxn),

so that

ni−1 max
k1+···+ki−1≤xn

Θr
k1+···+ki−1

(xn) ≤ Cni−1e−cn
β → 0, n→ +∞,

where above, and below, C is a finite positive constant whose value might change from
a line to another. For xn ≤ k1 + · · · + ki−1 ≤ (i − 1)(nmaxj=1,...,i−1 pj +

√
n lnn) =

(i− 1)(n/m+
√
n lnn), (4.25) writes as

Θr
k1+···+ki−1

(xn) ≤ C exp
(
− c(k1 + · · ·+ ki−1)min

( xn
k1 + · · ·+ ki−1

,
( xn
k1 + · · ·+ ki−1

)2))
= C exp

(
− c x2

n

k1 + · · ·+ ki−1

)
≤ C exp

(
−c x2

n

(i− 1)(n/m+
√
n lnn)

)
,

so that

ni−1 max
xn≤k1+···+ki−1≤(i−1)(n/m+

√
n lnn)

Θr
k1+···+ki−1

(xn)

≤ ni−1 exp

(
−c n2β

(i− 1)(n/m+
√
n lnn)

)
→ 0, n→ +∞,

guaranteeing (4.33) with • = r.
Next, let • = l and consider the following three cases: k1 + · · · + ki−1 ≤ xn/2, xn/2 ≤

k1 + · · · + ki−1 ≤ xn and xn ≤ k1 + · · · + ki−1 ≤ (i − 1)(nmaxj=1,...,i−1 pj +
√
n lnn) =

(i− 1)(n/m+
√
n lnn). When k1 + · · ·+ ki−1 ≤ xn/2, (4.31) ensures that for all t > 0:

Θl
k1+···+ki−1

(xn) ≤ exp
(
t(k1 + · · ·+ ki−1 − xn)− (k1 + · · ·+ ki−1) ln(2− e−t)

))
≤ exp

(
− t

2
xn

)
. (4.34)
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When xn/2 ≤ k1 + · · ·+ ki−1 ≤ xn, (4.31) ensures that for all t > 0:

Θl
k1+···+ki−1

(xn) ≤ exp
(
t(k1 + · · ·+ ki−1 − xn)− (k1 + · · ·+ ki−1) ln(2− e−t)

))
≤ exp

(
− xn

2
ln(2− e−t)

)
. (4.35)

When xn ≤ k1 + · · ·+ki−1 ≤ (i−1)(n/m+
√
n lnn), (4.32) and (4.25) in Lemma 4.3 ensure

that:

Θl
k1+···+ki−1

(xn) ≤ C exp
(
− c(k1 + · · ·+ ki−1)min

( xn
k1 + · · ·+ ki−1

,
( xn
k1 + · · ·+ ki−1

)2))
= C exp

(
− c x2

n

k1 + · · ·+ ki−1

)
≤ C exp

(
− c n2β

(i− 1)(n/m+
√
n lnn)

)
. (4.36)

Gathering together the bounds (4.34), (4.35) and (4.36) proves (4.33), for • = l. Combining
this last fact with the corresponding result for • = r, and via (4.33) and (4.27), proves
Lemma 4.4. �

Now, thanks to Lemma 4.4, to prove the convergence to zero, as n→ +∞, of the first term
on the right-hand side of (4.21), it is enough to prove the same result for

P

max
k∈C∗∗n,i

∣∣∣∣∣∣
`i+N

∗
i −(k1+···+ki−1)∑
j=`i+1

Z
(i)
j

∣∣∣∣∣∣ ≥ ε
√
n

 ∩ Din
 , (4.37)

where the Z
(i)
j are given in (4.6), i.e., Z

(i)
j =

(
N
T j−1
i ,T ji

m −1
)
/
√

2, i = 1, . . . ,m−1, j ≥ 1. Our
next elementary lemma, the ultimate before closing this section, provides tail estimates on
the partial sums of the Zj (omitting the indices i for a while).

Lemma 4.5 Let (Zj)j≥1 be iid random variables as in (4.6). Then, for suitable positive
and finite constants c and C, all x > 0, and positive integer n,

P
( n∑
j=1

Zj ≥ x
)
≤ min

t>0

(
exp
(
−
(
t(x
√

2 + n) + n ln(2− et)
)))

= Θr
n(x
√

2), (4.38)

P
( n∑
j=1

Zj ≥ x
)
≤ C exp

(
− cmin

(x
n
,
(x
n

)2))
, (4.39)

P
( n∑
j=1

Zj ≤ −x
)
≤ min

t>0

(
exp
(
−
(
t(x
√

2− n) + n ln(2− e−t)
)))

= Θl
n(x
√

2),(4.40)

P
( n∑
j=1

Zj ≤ −x
)
≤ C exp

(
− cmin

(x
n
,
(x
n

)2))
, for x ≤ n. (4.41)
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Proof. Recall from (4.6) that Zj =
(
N
T j−1
i ,T ji

m − 1
)
/
√

2, i 6= m, and from (3.2),

E
[
xN

T
j−1
i

,T
j
i

m

]
=

1

2− x
. (4.42)

Hence, using the notation in (4.29),

P
( n∑
j=1

Zj ≥ x
)
≤ min

t>0

(
e−t(x

√
2+n) E

[
exp

(
tN

T j−1
i ,T ji

m

)]n)
= Θr

n(x
√

2),

and (4.39) follows from (4.29) and (4.30) in (the proof of) Lemma 4.4 (with its notation)
and from (4.25) in Lemma 4.3. Similarly, using the notation in (4.31)

P
( n∑
j=1

Zj ≤ −x
)

= P

(
n∑
j=1

(
1−NT j−1

i ,T ji
m

)
≥ x
√

2

)
≤ min

t>0

(
e−t(x

√
2−n) E

[
exp

(
− tNT j−1

i ,T ji
m

)]n)
= Θl

n(x
√

2).

which is (4.40). As previously observed via (4.32), when x ≤ n, the minimization for Θl
n(x)

occurs at t = ln
(
(2n−x)/(2n− 2x)

)
, and, once again, (4.25) on Lemma 4.3 ensure (4.41).

�

We are now ready to move towards completing this section. From its very definition
in (4.22),

C∗∗n,i = Ci−1
n ∩

{
E[N∗i ] ≤ `i = k1 + · · ·+ ki ≤ E[Ni] +

√
n lnn− (N∗i − E[N∗i ])

}
⊂

{
k1 + · · ·+ ki−1 ≤

i−1∑
j=1

E[Nj] + (i− 1)
√
n lnn

}
∩
{
E[N∗i ] ≤ `i = k1 + · · ·+ ki ≤ E[Ni] +

√
n lnn− (N∗i − E[N∗i ])

}
⊂
{
k1 + · · ·+ ki−1 ≤ (i− 1)(n max

j=1,...,i−1
pj +

√
n lnn)

}
∩
{
E[N∗i ] ≤ `i = k1 + · · ·+ ki ≤ E[Ni] +

√
n lnn− (N∗i − E[N∗i ])

}
.

Therefore, recalling also from (3.26) that E[N∗i ] = k1 + · · ·+ ki−1, (4.37) is upper bounded
by:

P


 max
k1+···+ki−1≤(i−1)(n/m+

√
n lnn)

k1+···+ki−1≤`i≤E[Ni]+
√
n lnn−(N∗i −(k1+···+ki−1))

∣∣∣∣∣∣
`i+N

∗
i −(k1+···+ki−1)∑
j=`i+1

Zj

∣∣∣∣∣∣ ≥ ε
√
n

 ∩ Din


≤ P

 max
k1+···+ki−1≤(i−1)(n/m+

√
n lnn)

k1+···+ki−1≤`i≤E[Ni]+
√
n lnn+xn

max
|ni|≤xn

∣∣∣∣∣
`i+ni∑
j=`i+1

Zj

∣∣∣∣∣ ≥ ε
√
n

 (recall (4.24))
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≤ P

(
max

`i≤E[Ni]+
√
n lnn+xn

max
|ni|≤xn

∣∣∣∣∣
`i+ni∑
j=`i+1

Zj

∣∣∣∣∣ ≥ ε
√
n

)

≤ 3nxn max
`i≤E[Ni]+

√
n lnn+xn

|ni|≤xn

P

(∣∣∣∣∣
`i+ni∑
j=`i+1

Zj

∣∣∣∣∣ ≥ ε
√
n

)

≤ 3nxn max
`i≤E[Ni]+

√
n lnn+xn

0≤ni≤xn

(
Θl
ni

(ε
√

2n) + Θr
ni

(ε
√

2n)
)
, (4.43)

where, in the next to last inequality, we used the usual (sharp in the iid case) bounding
of the maximum via the number of terms times the maximal probability; while in the last
one, |ni| ≤ xn was changed into 0 ≤ ni ≤ xn = nβ, 1/2 < β < 1.

Our final task is to show that

lim
n→+∞

nxn max
0≤ni≤xn

Θ•ni(ε
√

2n) = 0, (4.44)

for • ∈ {l, r}. This relies again on Lemma 4.3 and Lemma 4.5. For • = r, when k < ε
√

2n,
(4.38) and (4.39) entail that,

Θr
k(ε
√

2n) ≤ C exp(−cε
√

2n); (4.45)

while, for ε
√

2n ≤ k ≤ xn, they entail that,

Θr
k(ε
√

2n) ≤ C exp
(
− 2cε2n/k

)
≤ C exp

(
− 2cε2n/xn

)
= C exp

(
− 2cε2n1−β). (4.46)

Therefore, for • = r, (4.44) follows from (4.45) and (4.46). Let us now turn our attention
to • = l. When ε

√
2n ≤ k ≤ xn, (4.41) entails that,

Θl
k(ε
√

2n) ≤ C exp
(
− 2cε2n/k

)
≤ C exp

(
− 2cε2n/xn

)
= C exp

(
− 2cε2n1−β). (4.47)

For k ≤ ε
√
n/2, (4.40) entails that, for any t > 0,

Θl
k(ε
√

2n) ≤ exp
(
t(k − ε

√
2n)− k ln(2− e−t)

))
≤ exp

(
− εt

√
n/2
)
. (4.48)

For ε
√
n/2 ≤ k ≤ ε

√
2n, (4.40) entails that, for any t > 0,

Θl
k(ε
√

2n) ≤ exp
(
t(k− ε

√
n/2)− k ln(2− e−t)

))
≤ exp

(
− εt

√
n/2 ln(2− e−t)

)
. (4.49)

Therefore, for • = l, (4.44) follows from (4.47), (4.48), and (4.49). Gathering all the
intermediate results, for any i = 2, . . . ,m− 1,

lim
n→+∞

P

max
k∈C∗∗n,i

∣∣∣∣∣∣
`i+N

∗
i −(k1+···+ki−1)∑
j=`i+1

Z
(i)
j

∣∣∣∣∣∣ ≥ ε
√
n

 ∩ Din
 = 0,

and therefore,

lim
n→+∞

P

max
k∈C∗

∣∣∣∣∣∣
N∗i +ki∑

j=k1+···+ki+1

Z
(i)
j√
n

∣∣∣∣∣∣ ≥ ε

 = 0.

The goal of this section has thus been achieved: the quantities (4.13) and (4.14) have the
same weak limit.
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4.3 The Constraints

To deal with the third heuristic limit, we now need to obtain the convergence of the random
set of constraints towards a deterministic set of constraints. This fact will follow from the
various reductions obtained to date as well as new arguments developed from now on. To
start with, let us recall two elementary facts about convergence in distribution.

The first fact asserts that if (fn)1≤n≤∞ is a sequence of Borel functions such that xn → x∞
implies that fn(xn)→ f∞(x∞), and if (Xn)n≥1 is a sequence of random variables such that
Xn ⇒ X∞, then fn(Xn) ⇒ f∞(X∞). Indeed, via the Skorohod representation theorem,

there exists a probability space and random variables Yn, 1 ≤ n ≤ ∞, such that Yn
L
= Xn,

1 ≤ n ≤ ∞, and Yn → Y∞ with probability one. But, by hypothesis, fn(Yn) → f∞(Y∞),
with probability one. Therefore fn(Xn)⇒ f∞(X∞).

The second elementary fact is as follows: Let (Xn)n≥1 be a sequence of random variables
such that X±n ⇒ Y , then Xn ⇒ Y , where x+ = max(x, 0) and x− = min(x, 0). Indeed,
P(X+

n ≤ x) ≤ P(Xn ≤ x) ≤ P(X−n ≤ x), for all x ∈ R.
Using these two elementary facts, let us return to our derandomization problem. Re-

calling (4.14), and using the polygonal structure of the BX
n and BY

n , we have

Mn := max
k∈Ĉn

(
FX

(
BX
n ,
k

n

)
∧ FY

(
BY
n ,
k

n

))
,

where

Ĉn =
{
k = (ki)1≤i≤m−1 : ∀i = 1, . . . ,m− 1, 0 ≤ ki ≤ n

0 ≤ ki ≤
(
Ni(X)−N∗i (X)

)
∧
(
Ni(Y )−N∗i (Y )

)}
,(4.50)

and where

FX
(
x, t
)

=
1

m

m−1∑
i=1

xi(pi(X))−
m−1∑
i=1

(
xi

( i∑
j=1

tj

)
− xi

( i−1∑
j=1

tj

))
, (4.51)

FY
(
x, t
)

=
1

m

m−1∑
i=1

xi(pi(Y ))−
m−1∑
i=1

(
xi

( i∑
j=1

tj

)
− xi

( i−1∑
j=1

tj

))
, (4.52)

for x = (x1, . . . , xm−1) ∈
(
C0([0, 1])

)m−1
and t = (t1, . . . , tm−1) ∈ [0, 1]m−1. Now, let

Ĉ±n =

{
k = (ki)1≤i≤m−1 : ∀ i = 1, . . . ,m− 1, 0 ≤ ki ≤ n and

i∑
j=1

kj
n
≤ pi ± 2xn

}
, (4.53)

with xn = nβ, β ∈ (1/2, 1) as in (4.23), and let

M±
n = max

k∈Ĉ±n

(
FX

(
BX
n ,
k

n

)
∧ FY

(
BY
n ,
k

n

))
. (4.54)
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Since

Ni(X)−N∗i (X) = npi −
i−1∑
j=1

ki +
((
Ni(X)− E[Ni(X)]

)
−
(
N∗i (X)− E[N∗i (X)]

))
,

with a similar statement replacing X by Y , the condition

ki ≤
(
Ni(X)−N∗i (X)

)
∧
(
Ni(Y )−N∗i (Y )

)
,

in (4.50), writes as
∑i

j=1 ki/n ≤ pi +Ri
n(X, Y )/n where

Ri
n(X, Y ) =

((
Ni(X)− E[Ni(X)]

)
−
(
N∗i (X)− E[N∗i (X)]

))
∧
((
Ni(Y )− E[Ni(Y )]

)
−
(
N∗i (Y )− E[N∗i (Y )]

))
. (4.55)

Now let

Kn =
m−1⋂
i=1

{
|Ni − E[Ni]| < xn

}
∩ Din

with Din defined in (4.24). From (4.11) and Lemma 4.4, we have limn→+∞ P
(
Kcn
)

= 0 and,

on Kn, Ri
n(X, Y ) ≤ 2xn, for all 1 ≤ i ≤ m. Therefore, Ĉ−n ⊂ Ĉn ⊂ Ĉ+

n on Kn, and

M−
n ≤Mn ≤M+

n . (4.56)

Clearly,
M±

n = max
t∈C±n

(
FX
(
BX
n , t

)
∧ FY

(
BY
n , t
))
, (4.57)

where now

C±n =

{
t = (ti)1≤i≤m−1 ∈ [0, 1]m−1 : ∀ i = 1, . . . ,m− 1,

i∑
j=1

tj ≤ pi ± 2
xn
n

}
. (4.58)

Next,

P
(
Mn ≤ x

)
≤ P

(
{Mn ≤ x} ∩ Kn

)
+ P

(
Kcn
)

≤ P
(
{M−

n ≤ x} ∩ Kn
)

+ P
(
Kcn
)

≤ P
(
M−

n ≤ x
)

+ P
(
Kcn
)
,

therefore
lim sup
n→+∞

P(Mn ≤ x) ≤ lim sup
n→+∞

P(M−
n ≤ x). (4.59)

Similarly,

P
(
Mn ≤ x

)
= P

(
{Mn ≤ x} ∩ Kn

)
+ P

(
{Mn ≤ x} ∩ Kcn

)
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≥ P
(
{M+

n ≤ x} ∩ Kn
)

≥ P
(
M+

n ≤ x
)
− P

(
Kcn
)
,

and therefore
lim inf
n→+∞

P(Mn ≤ x) ≥ lim inf
n→+∞

P
(
M+

n ≤ x
)
. (4.60)

Combining (4.59) and (4.60) with the second elementary fact described above, our goal is
now to show that convergence in distribution of both M+

n and M−
n towards

M∞ = max
t∈V

(
FX(BX , t) ∧ FY (BY , t)

)
, (4.61)

holds true, where

V := V(p1, . . . , pm−1) =

{
t = (tj)1≤j≤m−1 ∈ [0, 1]m−1 : ∀i = 1, . . . ,m− 1,

i∑
j=1

tj ≤ pi

}
.

To do so, first note that by Donsker’s theorem (BX
n , B

Y
n )⇒ (BX , BY ) and we now wish to

apply the first elementary fact, recalled above, to the functions

f±n (x,y) = max
t∈C±n

(
FX (x, t) ∧ FY (y, t)

)
, (4.62)

and

f∞(x,y) = max
t∈V

(
FX(x, t) ∧ FY (y, t)

)
. (4.63)

With these notations, M±
n = f±n (BX

n , B
Y
n ) and M∞ = f∞(BX , BY ). In other words, we

wish to show that (xn,yn)→ (x,y) in (C0([0, 1]))m−1 implies that fn(xn,yn)→ f∞(x,y).
To start with,

|f±n (xn,yn)− f∞(x,y)| ≤ |f±n (xn,yn)− f±n (x,y)|+ |f±n (x,y)− f∞(x,y)|, (4.64)

and we continue by estimating |f±n (xn,yn)− f±n (x,y)|. But,

|f±n (xn,yn)− f±n (x,y)|

≤ max
t∈C±n

∣∣∣(FX (xn, t) ∧ FY (yn, t)
)
−
(
FX (x, t) ∧ FY (y, t)

)∣∣∣
≤ max

t∈C±n
max

(
|FX (xn, t)− FX (x, t)| , |FY (yn, t)− FY (y, t)|

)
(4.65)

≤ C max
t∈C±n

max
(
|xn(t)− x(t)| , |yn(t)− y(t)|

)
, (4.66)

making use of Lemma 4.1 in (4.65) and by the linearity of both FX and FY with respect to
their first argument in (4.66) and where, further, C is a finite positive constant. Therefore,

|f±n (xn,yn)− f±n (x,y)| ≤ C max
(
‖xn − x‖∞, ‖yn − y‖∞

)
,
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and so if (xn,yn)→ (x,y), it follows that f±n (xn,yn)− f±n (x,y)→ 0.

In order to complete the proof of M±
n ⇒ M∞ and thus that of Mn ⇒ M∞, let us now

estimate the right-most expression in (4.64).
At first, note that C−n ⊂ V ⊂ C+

n , hence

f−n (x,y) ≤ f∞(x,y) ≤ f+
n (x,y). (4.67)

Next, from (4.62) and (4.63), set f+
n (x,y) = maxt∈C+n θx,y(t), and f∞(x,y) = maxt∈V θx,y(t),

where θx,y(t) = FX(x, t)∧FY (y, t). Since C−n ⊂ C−n+1, for n ≥ 1, it follows (as shown next)
that f−n (x,y) → maxt∈

⋃
n≥1 C

−
n
θx,y(t). Indeed, limn→+∞ f

−
n (x,y) ≤ maxt∈

⋃
n≥1 C

−
n
θx,y(t)

and if the previous inequality were strict, there would be K ∈ (0,+∞) such that

max
t∈C−n

θx,y(t) ≤ K < max
t∈
⋃
n≥1 C

−
n

θx,y(t).

The left-hand side inequality implies that for all n ≥ 1, and t ∈ C−n , θx,y(t) ≤ K, contra-
dicting the right-hand side inequality.
Since C+

n ⊃ C+
n+1, for n ≥ 1, it also follows that f+

n (x,y) → maxt∈
⋂
n≥1 C

+
n
θx,y(t). Indeed,

we have limn→+∞ f
+
n (x,y) ≥ maxt∈

⋂
n≥1 C

−
n
θx,y(t) and if the previous inequality were strict,

there would be K ∈ (0,+∞) such that

max
t∈C+n

θx,y(t) ≥ K > max
t∈
⋂
n≥1 C

+
n

θx,y(t).

The left-hand side inequality implies that for any n ≥ 1, there exists tn ∈ C+
n with

θx,y(tn) ≥ K. Up to a subsequence tn → t∗ ∈
⋂
n≥1 C+

n and by continuity of θx,y,
θx,y(t∗) ≥ K, which is inconsistent with the previous right-hand side inequality.
Finally, since

⋃
n≥1 C−n = V◦, is the interior of V , and since

⋂
n≥1 C+

n = V = V , is the closure
of V , we have

lim
n→+∞

f−n (x,y) = max
t∈V◦

θx,y(t) ≤ f∞(x,y) = max
t∈V

θx,y(t) = lim
n→+∞

f+
n (x,y). (4.68)

It remains to show that the maximum of θx,y on V is attained on V◦ for P(BX ,BY )-almost
all (x,y), i.e., that

P
(

max
t∈V(1/m,...,1/m)◦

θBX ,BY (t) = max
t∈V(1/m,...,1/m)

θBX ,BY (t)

)
= 1. (4.69)

With (4.69), (4.68) entails limn→+∞ f
±
n (x,y) = f∞(x,y) for P(BX ,BY )-almost all (x,y), i.e.,

the right-most expression in (4.64) converges to 0 and, as previously explained, this gives
M±

n ⇒M∞ and Mn ⇒M∞.
In order to complete (4.69), we anticipate, in the second equality below, on Section 4.4 in
which parameters are changes via: s1 = u1, s1 + s2 = u2, . . . , s1 + · · · + sm−1 = um−1 and
where we prove that(

θBX ,BY (t)
)
t∈V(1/m,...,1/m)

L
=

1√
m

(
θBX ,BY (s)

)
s∈V(1,...,1)

=
1√
2m

(
θ̃B1,B2(u)

)
u∈Wm(1)

,
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where Wm(1) = {0 = u0 ≤ u1 ≤ · · · ≤ um−1 ≤ um = 1},

θ̃B1,B2(u) =

(
− 1

m

m∑
i=1

B
(i)
1 (1) +

m∑
i=1

(
B

(i)
1 (ui)−B(i)

1 (ui−1)
))

(4.70)

∧

(
− 1

m

m∑
i=1

B
(i)
2 (1) +

m∑
i=1

(
B

(i)
2 (ui)−B(i)

2 (ui−1)
))

,

and where B1, B2 are two independent, standard, m-dimensional Brownian on [0, 1]. The
property (4.69) is thus equivalent to

P
(

max
u∈Wm(1)◦

θ̃B1,B2(u) = max
u∈Wm(1)

θ̃B1,B2(u)

)
= 1. (4.71)

The advantage of (4.71) over (4.69) is that the former involves two standard Brownian
motions each one having independent coordinates. Roughly speaking, the property (4.71)
should be derived from the following observation: when u ∈ ∂Wm(1), then uk = uk+1, for

some index k, and for such a u, the sum
∑m

i=1

(
B

(i)
1 (ui)−B(i)

1 (ui−1)
)

contains only m− 1
terms. Letting uε be given by

uε,i = ui, i 6= k + 1, and uε,k+1 = uk + ε,

we have
m∑
i=1

(
B

(i)
1 (uε,i)−B(i)

1 (uε,i−1)
)

=
m∑
i=1

(
B

(i)
1 (ui)−B(i)

1 (ui−1)
)

+
(
B

(k+1)
1 (uk + ε)−B(k+1)

1 (uk)
)

+
(
B

(k+2)
1 (uk)−B(k+2)

1 (uk + ε)
)
.

The terms
(
B

(k+1)
1 (uk +ε)−B(k+1)

1 (uk)
)

and
(
B

(k+2)
1 (uk)−B(k+2)

1 (uk +ε)
)

are independent

of
∑m

i=1

(
B

(i)
1 (ui) − B(i)

1 (ui−1)
)

and from standard properties of Brownian motion, almost

surely, the sum
(
B

(k+1)
1 (uk + ε)−B(k+1)

1 (uk)
)

+
(
B

(k+2)
1 (uk)−B(k+2)

1 (uk + ε)
)

takes positive
value for arbitrarily small ε > 0. Since the same is true for the second term in (4.70)
relative to B2, it follows that in the vicinity of each u ∈ ∂Wm(1), there is uε ∈ Wm(1)

with θ̃B1,B2(uε) > θ̃B1,B2(u). Therefore, maxu∈Wm(1) θ̃B1,B2(u) is attained in Wm(1)◦, and
so both (4.71) and (4.69) hold true, leading to Mn ⇒M∞.

4.4 Final Step: A Linear Transformation

By combining the results of the last three subsections, we proved that

LCIn − n/m√
2n

⇒ max
V(1/m,...,1/m)

min

(
1

m

m−1∑
i=1

Bi,X

(
1

m

)
−

m−1∑
i=1

(
Bi,X

(
i∑

j=1

tj

)
−Bi,X

(
i−1∑
j=1

tj

))
,
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1

m

m−1∑
i=1

Bi,Y

(
1

m

)
−

m−1∑
i=1

(
Bi,Y

(
i∑

j=1

tj

)
−Bi,Y

(
i−1∑
j=1

tj

)))
.(4.72)

where the maximum is taken over t = (t1, . . . , tm−1) ∈ V(1/m, . . . , 1/m). Now, via the
linear transformations of the parameters given by ui = m

∑i
j=1 tj, i = 1, . . . ,m − 1, u0 =

t0 = 0, and Brownian scaling, the right-hand side of (4.72) becomes equal to:

1√
m

max
0=u0≤u1≤···≤um−1≤1

min

(
1

m

m−1∑
i=1

Bi,X(1)−
m−1∑
i=1

(
Bi,X(ui)−Bi,X(ui−1)

)
,

1

m

m−1∑
i=1

Bi,Y (1)−
m−1∑
i=1

(
Bi,Y (ui)−Bi,Y (ui−1)

))
. (4.73)

Next, for all t ∈ [0, 1] and i = 1, . . . ,m − 1, let us introduce the following two pointwise
linear transformations:

Bi,X(t) =
B

(m)
1 (t)−B(i)

1 (t)√
2

,

Bi,Y (t) =
B

(m)
2 (t)−B(i)

2 (t)√
2

,

where B1 and B2 are two, standard, m-dimensional Brownian motion on [0, 1]. Clearly
(B1,X(t), . . . , Bm−1,X(t))0≤t≤1 has the correct covariance matrix with diagonal entries given
by (3.3) and off-diagonal ones given by (3.6) (in the uniform case they are respectively 1
on the diagonal and 1/2 elsewhere), and similarly, replacing X by Y . Moreover,

1

m

m−1∑
i=1

Bi,X(1)−
m−1∑
i=1

(
Bi,X(ui)−Bi,X(ui−1)

)
= − 1√

2m

(
m∑
i=1

B
(i)
1 (1)

)
+

1√
2
B

(m)
1 (1)

− 1√
2

m−1∑
i=1

(
B

(m)
1 (ui)−B(m)

1 (ui−1)
)

+
1√
2

m−1∑
i=1

(
B

(i)
1 (ui)−B(i)

1 (ui−1)
)

=
1√
2

(
− 1

m

m∑
i=1

B
(i)
1 (1) + (B

(m)
1 (1)−B(m)

1 (um−1))+
m−1∑
i=1

(
B

(i)
1 (ui)−B(i)

1 (ui−1)
))
.(4.74)

Finally, with the help of (4.74) (and the corresponding identity for Y ), (4.73) becomes:

1√
2m

max
0=u0≤u1≤···≤um−1≤um=1

min

(
− 1

m

m∑
i=1

B
(i)
1 (1) +

m∑
i=1

(
B

(i)
1 (ui)−B(i)

1 (ui−1)
)
,

− 1

m

m∑
i=1

B
(i)
2 (1) +

m∑
i=1

(
B

(i)
2 (ui)−B(i)

2 (ui−1)
))

, (4.75)

and the proof of Theorem 1.1 is over.
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5 Concluding Remarks

Let us discuss below some potential extensions to Theorem 1.1 and some questions we
believe are of interest.
• From the proof presented above, the passage from two to three or more sequences is

clear: the minimum over two Brownian functionals becomes a minimum over three or more
Brownian functionals, and such a passage applies to the cases touched upon below.
• It is also clear from the proof developed above, that a theorem for two independent

sequences of iid (non-uniform) random variables is also valid. Here is what it should look
like:

Let X = (Xi)i≥1 and Y = (Yi)i≥1 be two sequences of iid random variables with values in
Am = {α1 < α2 < · · · < αm}, a totally ordered finite alphabet of cardinality m and with

a common law, i.e., X1
L
= Y1. Let pmax = max

i=1,2,...,m
P(X1 = αi) and let k be the multiplicity

of pmax. Then,

LCIn − npmax√
npmax

=⇒

max
0=t0≤t1≤···≤tk−1≤tk=1

min

(√
1− kpmax − 1

k

k∑
i=1

B
(i)
1 (1) +

k∑
i=1

(B
(i)
1 (ti)−B(i)

1 (ti−1)),

√
1− kpmax − 1

k

k∑
i=1

B
(i)
2 (1) +

k∑
i=1

(B
(i)
2 (ti)−B(i)

2 (ti−1))

)
,(5.1)

where B1 and B2 are two k-dimensional standard Brownian motions defined on [0, 1].
So, for instance, if pmax is uniquely attained then the limiting law in (5.1) is the minimum

of two centered Gaussian random variables.
Using the sandwiching techniques developed in [HL], an infinite countable alphabet

result can also be considered with (5.1).
• The loss of independence inside the sequences, and the loss of identical distributions,

both within and between the sequences is challenging. Results for these situations will be
presented elsewhere. It should also be noted here that the LCIS problem for two or more
random permutations has not been studied either and certainly deserves to be studied.
• The length of the longest increasing subsequence is well known to have an interpreta-

tion in percolation theory: Indeed, consider the following directed last-passage percolation
model in Z2

+: let Π2(n,m) be the set of directed paths in Z2
+ from (0, 0) to (n,m) with

unit steps going either North or East. Given random variables ωi,j, i ≥ 0, j ≥ 1, and inter-
preting each ωi,j as the length of time spent by a path at the vertex (i, j), the last-passage
time to (n,m) is given by

T2(n,m) = max
π∈Π2(n,m)

( ∑
(i,j)∈π

ωi,j

)
, (5.2)

see [BM] for details. In our random word context, when X = (Xi)1≤i≤n is a sequence of iid
random variables taking their values in a totally ordered finite alphabet

{
α1, α2, . . . , αm

}
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of size m, taking ωi,j = 1{Xi=αj} and ω0,j = 0, j ≥ 1, which for each i are dependent random
variables, the length of the longest increasing subsequence of the random word is equal to
the last passage-time T2(n,m), see [BH].

The longest common increasing subsequence LCIn enjoys a similar percolation theory
interpretation, but in Z3

+. Let Π3(n, n,m) be the set of paths in Z3
+ from (0, 0, 0) to

(n, n,m) taking either unit steps towards the top or steps, of any length in the horizontal
plane, but neither parallel to the x- nor to the y-axis, i.e.,

Π3(n, n,m) :=
{

(u1, u2, . . . , un+m) ∈
(
Z3

+

)n+m
: u1 = (0, 0, 1), un+m = (n, n,m)

uj+1 − uj ∈
{

(0, 0, 1), (a, b, 0) with a, b ∈ N \ {0}
}}
.

Given weights ωi,j,k, i ≥ 0, j ≥ 0, k ≥ 1, on the lattice, we can consider a quantity analogous
to T2(n,m) in (5.2), namely,

T
(c)
3 (n, n,m) := max

π∈Π3(n,n,m)

( ∑
(i,j,k)∈π

ωi,j,k

)
.

In the random word context, taking ωi,j,k = 1{Xi=αk=Yj} and ω0,0,j = 0, j ≥ 1, as weights,

gives LCIn = T
(c)
3 (n, n,m).

Note that when X = Y , T
(c)
3 (n, n,m) recovers T2(n,m) because T2(n,m) is unchanged if,

in (5.2), Π2(n,m) is replaced by

Π̃2(n,m) :=
{

(u1, u2, . . . , un+m) ∈
(
Z2

+

)n+m
: u1 = (0, . . . , 0, 1), un+m = (n,m)

uj+1 − uj ∈
{

(0, 1), (a, b, 0) with a, b ∈ N \ {0}
}}
.

More generally, for p ≥ 3 sequences of letters X(j) = (X
(j)
i )1≤i≤n, 1 ≤ j ≤ p, we can

similarly consider

Πp+1(n, . . . ,m) :=
{

(u1, u2, . . . , un+m) ∈
(
Zp+1

+

)n+m
: u1 = (0, . . . , 0, 1), un+m = (n, . . . , n,m)

uj+1 − uj ∈
{

(0, 0, 1), (a1, . . . , ap, 0) with ai ∈ N \ {0}
}
,∀1 ≤ i ≤ p

}
and

T (c)
p (n, . . . , n,m) := max

π∈Πp+1(n,...,n,m)

( ∑
(i1,...,ip,k)∈π

ωi1,...,ip,k

)
,

and observe that the longest common increasing subsequence LCIn of the p sequences is
LCIn = T

(c)
p (n, . . . , n,m), when ωi1,...,ip,k = 1{Xi1=···=Xip=αk} and ω0,...,0,k = 0, j ≥ 1.

• Starting with [Bar] and [GTW] (see, also [BGH], for a further description and up
to date references) a strong interaction has been shown to exist between Brownian func-
tionals and maximal eigenvalues of Gaussian random matrices. Likewise, we hypothe-
size that the max/min functionals obtained here do enjoy a similar strong connection
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(which might extend to spectra and Young diagrams). Could it be that the right-hand
side of (1.1) (with or without the linear terms) has the same law as the maximal eigen-
value of a random matrix model? Even in the binary case, it would be interesting to
find the law of the processes

(√
2 max0≤t≤1 min(B1(t)−B1(1)/2, B2(t)−B2(1)/2)

)
t≥0

and(
max0≤t≤1 min(B1(t), B2(t))

)
t≥0

where, say, B1 and B2 are two independent standard lin-
ear Brownian motions. Very preliminary work on these problems was started with Marc
Yor, before his untimely death, and this text is dedicated to his memory.

A Appendix

The purpose of this Appendix is to provide some missing steps in the proof of the main
theorem in [HLM] devoted to the binary case as well as to correct the errors present there.
The notations and numbering are as in [HLM]. In particular, recall that N1 (resp. N2) is
the number of zeros in X1, . . . , Xn (resp. Y1, . . . , Yn).

Proof of (13). Recall again from [HLM] that

Vn = max
0≤k≤N1∧N2

( ∧
i=1,2

(
−1

2
B̂i
n

(
1

2

)
+ B̂i

n

(
k

n

)))

Xn = max
0≤t≤ 1

2

( ∧
i=1,2

(
−1

2
B̂i
n

(
1

2

)
+ B̂i

n(t)

))
.

Clearly,

Xn ≥
∧
i=1,2

(
−1

2
B̂i
n

(
1

2

)
+ B̂i

n

(
1

2

))
=

1

2

∧
i=1,2

B̂i
n

(
1

2

)
, (A.1)

and denote by i∗ the index for which the minimum in (A.1) is attained.
Next, if N1 ∧ N2 ≤ n/2, then Vn ≤ Xn; and similarly if the maximum defining Vn is

attained at some k∗ ≤ n/2, then Vn ≤ Xn. Otherwise, N1 ∧N2 ≥ n/2 with, moreover, the
maximum defining Vn attained at k∗ ∈ [n/2, N1 ∧N2] and so:

Vn =
∧
i=1,2

(
−1

2
B̂i
n

(
1

2

)
+ B̂i

n

(
k∗

n

))
.

Now, via (A.1),

Vn −Xn ≤
∧
i=1,2

(
−1

2
B̂i
n

(
1

2

)
+ B̂i

n

(
k∗

n

))
−
∧
i=1,2

(
−1

2
B̂i
n

(
1

2

)
+ B̂i

n

(
1

2

))
≤

(
−1

2
B̂i∗
n

(
1

2

)
+ B̂i∗

n

(
k∗

n

))
−
(
−1

2
B̂i∗
n

(
1

2

)
+ B̂i∗

n

(
1

2

))
= B̂i∗

n

(
k∗

n

)
− B̂i∗

n

(
1

2

)
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≤ max
t∈
[

1
2
,
Ni∗
n

](B̂i∗
n (t)− B̂i∗

n

(
1

2

))
≤

∨
i=1,2

max
t∈
[

1
2
,
Ni
n

](B̂i
n(t)− B̂i

n

(
1

2

))
.

Inequality (A.3) replacing (15) of [HLM] and its proof. If N1∧N2 ≥ n/2, then Xn ≤
Vn and similarly if the maximum defining Xn is attained for some t ≤ (N1 ∧ N2)/n, then
Xn = Vn. Therefore, the remaining case in comparing Xn and Vn consists in N1∧N2 ≤ n/2
and a maximum defining Xn attained at some t∗ ∈

[
(N1 ∧N2)/n, 1/2

]
. In this case,

Xn =
∧
i=1,2

(
−1

2
B̂i
n

(
1

2

)
+ B̂i

n(t∗)

)
,

and

Vn ≥
∧
i=1,2

(
−1

2
B̂i
n

(
1

2

)
+ B̂i

n

(
N1 ∧N2

n

))
. (A.2)

Again, denote by i∗ the index for which the minimum in (A.2) is attained. Then,

Xn − Vn ≤
∧
i=1,2

(
−1

2
B̂i
n

(
1

2

)
+ B̂i

n(t∗)

)
−
∧
i=1,2

(
−1

2
B̂i
n

(
1

2

)
+ B̂i

n

(
N1 ∧N2

n

))
≤

(
−1

2
B̂i∗
n

(
1

2

)
+ B̂i∗

n (t∗)

)
−
(
−1

2
B̂i∗
n

(
1

2

)
+ B̂i∗

n

(
N1 ∧N2

n

))
= B̂i∗

n (t∗)− B̂i∗
n

(
N1 ∧N2

n

)
≤ max

t∈[N1∧N2
n

, 1
2 ]

(
B̂i∗
n (t)− B̂i∗

n

(
N1 ∧N2

n

))
≤

∨
i=1,2

max
t∈[N1∧N2

n
, 1
2 ]

(
B̂i
n(t)− B̂i

n

(
N1 ∧N2

n

))
. (A.3)

Since (15) of [HLM] has to be replaced by (A.3), instead of (16) of [HLM], we now have to
prove that for i = 1, 2:

max
t∈[N1∧N2

n
, 1
2 ]

(
B̂i
n(t)− B̂i

n

(
N1 ∧N2

n

))
P−→ 0. (A.4)

The difference with (16) of [HLM] is that N , therein, is now replaced by N1 ∧N2 which is

now more complex since one of the two quantities N1 or N2 is not independent of B̂n. To
prove (A.4), and so as not to further burden the notation, the superscript i in the Brownian

approximation B̂i
n is dropped. First, let

C1
n =

{ ∣∣∣N1 −
n

2

∣∣∣ ≤ √nlnn
}
,

38



and, in a similar fashion, define C2
n by replacing N1 with N2. Clearly, limn→+∞ P

(
(C1

n)c
)

=
limn→+∞ P((C2

n)c) = 0. Next, for ε > 0, let

An =

{
max

t∈[N1∧N2
n

, 1
2 ]

∣∣∣∣B̂n(t)− B̂n

(
N1 ∧N2

n

)∣∣∣∣ ≥ ε

}
.

Then,

P(An) ≤ P
(
An ∩ C1

n ∩ C2
n

)
+ P

(
(C1

n)c
)

+ P
(
(C2

n)c
)
, (A.5)

and since on C1
n (resp. C2

n), N1 ≥ n/2−
√
n lnn (resp. N2 ≥ n/2−

√
n lnn),

P(An ∩ C1
n ∩ C2

n) ≤ P

({
max

k=n
2
−
√
n lnn,...,n

2

∣∣∣∣∣
k∑

j=N1∧N2

ξj

∣∣∣∣∣ ≥ ε
√

2n

}
∩ C1

n ∩ C2
n

)
, (A.6)

where the random variables ξj are iid with mean zero and variance one and assuming that
n/2−

√
n lnn and n/2 are integers (if not replace throughout, the first value by its integer

part and the second by its integer part plus one). To deal with (A.6), first note that on
C1
n ∩C2

n, N1 ∧N2 ∈
[
n
2
−
√
n lnn, n

]
, the right-hand side of (A.6) is clearly upper-bounded

by

P

({
max

n
2
−
√
n lnn≤`≤k≤n

2

∣∣∣∣∣
k∑
j=`

ξj

∣∣∣∣∣ ≥ ε

√
n

2

}
∩ C1

n ∩ C2
n

)

≤ P

 max
n
2
−
√
n lnn≤k≤n

2

∣∣∣∣∣∣
n/2∑
j=k

ξj

∣∣∣∣∣∣ ≥ ε

2

√
n

2

 ∩ C1
n ∩ C2

n

 (A.7)

≤ 2 lnn

ε2
√
n
, (A.8)

where the inequality in (A.7) follows from the bound

max
n
2
−
√
n lnn≤`≤k≤n

2

∣∣∣∣∣
k∑
j=`

ξj

∣∣∣∣∣ ≤ max
n
2
−
√
n lnn≤`≤k≤n

2

∣∣∣∣∣∣
n/2∑
j=k

ξj

∣∣∣∣∣∣+

∣∣∣∣∣∣
n/2∑
j=`

ξj

∣∣∣∣∣∣


≤ 2 max
n
2
−
√
n lnn≤k≤n

2

∣∣∣∣∣∣
n/2∑
j=k

ξj

∣∣∣∣∣∣ ,
while the one in (A.8) is Kolmogorov’s maximal inequality. Therefore, the right-hand side
of (A.6) converges to zero, finishing, via (A.5), the proof of (A.4). �
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[HX] C. Houdré, H. Xu. On the limiting shape of Young diagrams associated with inhomogeneous random words, in: High
Dimensional Probability VI: The Banff volume Progress in Probability, 66, Birkhauser, pp. 277–302, 2013.

[ITW1] A. Its, C. A. Tracy, H. Widom. Random words, Toeplitz determinants, and integrable systems. I. Random matrix
models and their applications, pp. 245–258, Math. Sci. Res. Inst. Publ., vol. 40, Cambridge Univ. Press, Cambridge,
2001.

[ITW2] A. Its, C. A. Tracy, H. Widom. Random words, Toeplitz determinants, and integrable systems. II. Advances in
nonlinear mathematics and science. Phys. D., vol. 152-153, pp. 199–224, 2001.

[Joh] K. Johansson. Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. of Math. (2) 153 (2001),
no. 1, 259–296.

[Ker] S. Kerov. Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis, Vol. 219. AMS,
Translations of Mathematical Monographs, 2003. (Russian edition: D. Sci thesis, 1994)

[TW] C. A. Tracy, H. Widom. On the distribution of the lengths of the longest increasing monotone subsequences in random
words. Probab. Theor. Rel. Fields. vol. 119, pp. 350–380, 2001.

40


	Introduction
	Combinatorics
	Probability
	The Uniform Case
	The Linear Terms
	The Increments
	The Constraints
	Final Step: A Linear Transformation

	Concluding Remarks
	Appendix

