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Asymptotic normality of density estimates often requires the continuity of the underlying density and assumptions on its derivatives. Recently, these assumptions have been weakened for some estimates using the less restrictive notion of regularity index. However, the particular definition of this index makes it unusable for many estimates. In this paper, we define a more general regularity concept : the r-regularity. This concept is used to obtain asymptotic law of the histogram without hypothesis on the continuity of the underlying density. As expected, when it does exist, the limit distribution is a standard Gaussian. Then, to illustrate the new definition of r-regularity, examples are studied.

Introduction

The subject of this paper is related to the general problem of derivation of measures [START_REF] Rudin | Real and Complex Analysis[END_REF][START_REF] Dudley | Real Analysis and Probability[END_REF] and is motivated by a paper by [START_REF] Berlinet | Higher order analysis at Lebesgue points[END_REF]. In their paper, Berlinet and Levallois address the problem of the asymptotic normality of the nearest neighbor density estimator when the density has bad local behavior (e.g. it is not continuous or has infinite derivative). If you denote λ the Lebesgue measure and B δ (x) the open ball of radius δ and center x ∈ R, and if, for fixed x ∈ R, the following limit

(x) = lim δ→0 µ(B δ (x)) λ(B δ (x)) (1.1)
exists, then x is called a Lebesgue point of the measure µ. As shown in [START_REF] Berlinet | Higher order analysis at Lebesgue points[END_REF], the rate of convergence of µ(B δ (x))

λ(B δ (x)) towards (x) plays a key role in the density estimation. In particular, they showed that it is possible to weaken the classical assumption of continuity for the density, replacing it by the less restrictive notion of Lebesgue point. In this context, they define a ρ-regularity point of the measure µ as any Lebesgue point x of µ satisfying

µ(B δ (x)) λ(B δ (x)) -(x) ≤ ρ(δ).
where ρ is a measurable function such that lim δ↓0 ρ(δ) = 0 and they use it to obtain nice properties (such as asymptotic normality) for the nearest neighbor density estimate. Besides, [START_REF] Beirlant | Higher order estimation at Lebesgue points[END_REF] assume that

µ(B δ (x)) λ(B δ (x)) = (x) + C x δ αx + o(δ αx ) when δ ↓ 0, (1.2)
in order to obtain improvements on nearest-neighbor estimation (such as removing bias or selection of the number of neighbors). Moreover, [START_REF] Berlinet | Necessary and sufficient condition for the existence of a limit distribution of the nearest neighbor density estimator[END_REF] state a necessary and sufficient condition for the existence of a limit distribution of the nearest neighbor density estimate using the regularity index α x .

Nevertheless, this definition suffers some flaws. First, some measures with ρ-regularity have no regularity index α x . Second, many density estimates require a development for a ratio of set measures which are not centered around the estimation point x and which are not balls. Definition (1.2) of the regularity index is useless in these cases. These flaws represent a major restriction in practice, since we can not obtain similar results for an estimate such as the histogram, even for measures that could have a regularity index α x . To circumvent these problems, we propose in Section 2 a new definition, called r-regularity which is then used to obtain a sufficient condition for the existence of a limit distribution for the histogram without any continuity assumptions concerning the underlying density. Examples are given in Section 3 using this definition which is shown to be useful in some cases when the regularity index α x does not exist. Proofs are presented in Section 4.

Definitions and results

The r-regularity

To mitigate the two problems of the definition of Beirlant et al., we propose the following definition. Given x ∈ R we set I x the set of all the intervals which contain x and we define E x by

E x = r > 0 such that ∃C > 0, ∃λ 0 > 0, such that ∀I ∈ I x verifying λ(I) < λ 0 we have µ(I) λ(I) -l(x) ≤ Cλ(I) r .
If there exists a real r x such that

r x = sup E x , (2.1)
r x is the r-regularity index of the measure µ at x. If sup E x = +∞, we set r x = +∞. Examples of r-regularity are provided in the next section. With this definition, the r-regularity can be viewed as an intermediate stage between the ρ-regularity and the regularity index: it gives us a bound for the rate of convergence of the measures. Furthermore, the r-regularity does not involve a ball centered on x and, consequently, can be used with a larger class of density estimates. Note that, as for the regularity index, the larger the value of r x , the more regular the derivative of µ with respect to λ. Using the known estimates of the regularity index obtained by [START_REF] Beirlant | Higher order estimation at Lebesgue points[END_REF] or [START_REF] Berlinet | Empirical estimator of the regularity index of a probability measure[END_REF], a bound could be trivially obtained for the r-regularity index.

Main results

The histograms are probably the oldest and simplest method to estimate an unknown density. The simplest histogram methods partition the space into congruent intervals or cubes whose size and position depends on the number of available data points, but not on the data itself. They are meant to approximate the data distribution in the best manner possible within a bounded amount of space. These methods provide estimates that are consistent, regardless of the underlying distribution of the data. For a more detailed literature on the subject, we refer the reader to [START_REF] Ioannidis | The History of Histograms (abridged)[END_REF] and the references therein.

Asymptotic results have been derived with a continuity assumption on the density to estimate [START_REF] Stadtmüller | Asymptotic distributions of smoothed histograms[END_REF][START_REF] Devroye | Nonparametric density estimation: the L 1 view[END_REF]. In Theorem 2.1 below we state the asymptotic normality of the histogram estimate of the density function, removing this continuity assumption by using the r-regularity index. This index could also be used to obtain similar results for other density estimates.

Assume that X 1 , . . . , X n are i.i.d. observations drawn from an unknown probability measure µ with density function f . A histogram f h consists of a partition of the space R of Borel-measurable subsets of R, referred to as cells. We consider here partitions with the same size h n such that

B nq = [(q -1)h n , qh n [, q ∈ Z with the property that (i) ∪ q∈Z B nq = R and (ii) B nq ∩ B nq = ∅ if q = q .
Using these notations, the histogram estimate is

f h (x) = ν nq nh n
with x ∈ B nq and ν nq the number of X i in the B nq cell. By consequence, the function f h is constant in a cell. So, to obtain the consistency of f h towards f , the cells need to become smaller and smaller with n. This estimate is proven [START_REF] Bosq | Théorie de l'Estimation Fonctionnelle[END_REF] to be convergent in quadratic mean if lim n→∞ h n = 0 and lim

n→∞ nh n = +∞. (2.2)
Here we are interested in the limit distribution of the histogram. Contrary to the case of the k n -nearest neighbor estimate [START_REF] Berlinet | Necessary and sufficient condition for the existence of a limit distribution of the nearest neighbor density estimator[END_REF], the α-regularity is useless. Indeed, the cells of the histogram are not balls centered on the point of estimation. By consequence, we rather use the rregularity defined in Section 2.

Theorem 2.1. Suppose that the convergence conditions (2.2) hold and that x is a Lebesgue point in R where (2.1) is satisfied with l(x) > 0. Then the condition lim

n→∞ nh 2r+1 n = 0 (2.3) for some r ∈]0; r x [ implies that H n (x) = nh n f h (x) -l(x) l(x)
converges in distribution towards a N (0, 1).

Remark 1: Remind that the definition of E x excludes the case r x = 0. Indeed in this case the condition of Theorem 2.1 would be lim n→∞ nh n = 0, which is in contradiction with the second condition of (2.2).

Remark 2: Note that the case r x = +∞ is covered by Theorem 2.1 (and an example is provided on next section). In this case, the conditions (2.2) implies condition (2.3) and, by consequence, is sufficient to ensure Theorem 2.1.

A major point is that we obtain the asymptotic normality of the histogram without a continuity assumption on the density function f at the point of estimation x. Nevertheless, this result provides a necessary condition for having a limit distribution, but not a sufficient one. This comes from the fact that, unlike the regularity index, the r-regularity does not provide us with an exact rate, but only an upper bound of the rate.

Examples of r-regularity

In a sake of compactness, the proof of the following examples are not presented in the present note. It can be found in Servien (2010).

When the regularity index does not exist

Let f 1 be the probability density defined by

f 1 (x) = 2 -cos(1/x) + 2x sin(1/x) c in R for x ∈ [-1
, 1]\0 with c = 4 + 2 sin 1 and µ 1 its probability measure.

The densityf 1 is differentiable at any point of [-1, 1] except at the point 0 where it has no left and no right limits. We have

lim h→0 F 1 (h) -F 1 (-h) 2h = 2 c .
Thus 0 is a Lebesgue point of µ 1 but, by setting, f 1 (0) = 2/c,we still have discontinuity of the second kind at the point 0. Now,

µ 1 ([-h, h]) 2h -f 1 (0) = 1 c h sin 1 h so, at any point of [-1
, 1] we have ρ-regularity with ρ(δ) = δ/c but no regularity index at the point 0.

If we choose h 1 and g 1 two positive integers with 0 ∈ I = [-h 1 , g 1 ] and λ(I) < λ 0 . We obtain

µ 1 (I) λ(I) = 2 c + g 2 1 sin(1/g 1 ) + h 2 1 sin(1/h 1 ) cλ(I)
and, with f 1 (0) = 2/c, we have

µ 1 (I) λ(I) -f 1 (0) ≤ g 2 1 + h 2 1 cλ(I) ≤ 1 c λ(I)
which gives us a r-regularity at the point 0 with r 0 = 1.

Lipschitz case

Lemma 3.1. Assume that h is a Lipschitz density with order β at the point x ∈ R such that, for all t,

|h(x) -h(t)| ≤ C x |x -t| β ,
and µ h its associated measure. For all intervals I with λ(I) = 0 and x ∈ I, we have

µ h (I) λ(I) -h(x) ≤ C x λ(I) β .
Example : Let f 2 be the probability density function on [-1/2, 1/2] defined by

f 2 (x) = 1 - √ 2 3 + |x|
and µ 2 its associated measure. At the point x = 0, f 2 is continuous, not differentiable and 1 2 -lipschitzian. If 0 ∈ I and λ(I) < λ 0 , a straightforward development gives us

µ 0 (I) λ(I) -f 0 (0) ≤ 2 3 λ(I) 1/2 .

Constant density

Assume that d is a constant density on an interval I = ∅ and that µ d is its associated measure. Thus, for all x ∈ I, we have

µ d (I) = I d(t)dt = d(x)λ(I) which leads us to µ d (I) λ(I) -d(x) = 0
and, by consequence, r x = +∞. As r x increases with the regularity of the derivative of the measure, it is logical to find that it is maximum when the density is constant.

When r x does not exist

Consider the probability density function f 3 defined on [-0.5; 0.5] by

f 3 (x) = 1 log |x| + 1 -a if x = 0 = 1 -a if x = 0
where a is a normalization constant and µ 3 its associated probability measure. At the Lebesgue point 0, Lemma 3.2 in [START_REF] Berlinet | Higher order analysis at Lebesgue points[END_REF] gives us ρ-regularity with ρ(δ) = -1/ log (δ) (δ < 1). By consequence, we have E 0 = ∅ and µ 3 does not admit r-regularity at the point 0.

Proofs

Proof of Theorem 2.1 :

We have

H n (x) = R n (x) µ(B nq ) h n 1 l(x) with R n (x) = nh n (f h (x) -l(x)) h n µ(B nq ) .
As x is a Lebesgue point with l(x) > 0, Lemma 4.1 gives us the result. Proof of Lemma 4.2 :

The random variable ν nq follows a binomial distribution with parameters n and µ(B nq ). So, central limit theorem [START_REF] Papoulis | Probability, Random Variables, and Stochastic Processes[END_REF] concludes the proof.

Lemma 4.3. Under assumptions of Theorem 2.1, we have

P n (x) → 0.
Proof of Lemma 4.3 :

Using the definition of P n (x) and relation (2.1), we have that, for all r ∈]0; r x [ and as soon as h n < λ 0 ,

|P n (x)| ≤ √ nh r+1 n C r µ(B nq ) .
As x is a Lebesgue point we get, for all r ∈]0; r x [,

|P n (x)| ≤ √ nh r+1/2 n C r f (x) .
Then, as f (x) > 0 and according to condition (2.3), we obtain the lemma.

  We have R n (x) = S n (x) + P n (x)whereS n (x) = ν nq -nµ(B nq )
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