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Abstract. Asymptotic normality of density estimates often requires
the continuity of the underlying density and assumptions on its deriva-
tives. Recently, these assumptions have been weakened for some esti-
mates using the less restrictive notion of regularity index. However,
the particular definition of this index makes it unusable for many es-
timates. In this paper, we define a more general regularity concept :
the r-regularity. This concept is used to obtain asymptotic law of the
histogram without hypothesis on the continuity of the underlying den-
sity. As expected, when it does exist, the limit distribution is a standard
Gaussian. Then, to illustrate the new definition of r-regularity, examples
are studied.

1 Introduction

The subject of this paper is related to the general problem of derivation
of measures (Rudin, 1987; Dudley, 2002) and is motivated by a paper by
Berlinet and Levallois (2000). In their paper, Berlinet and Levallois address
the problem of the asymptotic normality of the nearest neighbor density
estimator when the density has bad local behavior (e.g. it is not continuous
or has infinite derivative). If you denote λ the Lebesgue measure and Bδ(x)
the open ball of radius δ and center x ∈ R, and if, for fixed x ∈ R, the
following limit

`(x) = lim
δ→0

µ(Bδ(x))

λ(Bδ(x))
(1.1)

exists, then x is called a Lebesgue point of the measure µ. As shown in
Berlinet and Levallois (2000), the rate of convergence of µ(Bδ(x))

λ(Bδ(x)) towards

`(x) plays a key role in the density estimation. In particular they showed
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that it is possible to weaken the classical assumption of continuity for the
density, replacing it by the less restrictive notion of Lebesgue point. In this
context, they define a ρ-regularity point of the measure µ as any Lebesgue
point x of µ satisfying ∣∣∣∣µ(Bδ(x))

λ(Bδ(x))
− `(x)

∣∣∣∣ ≤ ρ(δ).

where ρ is a measurable function such that limδ↓0 ρ(δ) = 0 and they use it to
obtain nice properties (such as asymptotic normality) for the nearest neigh-
bor density estimate. Besides, Beirlant, Berlinet and Biau (2008) assume
that

µ(Bδ(x))

λ(Bδ(x))
= `(x) + Cxδ

αx + o(δαx) when δ ↓ 0, (1.2)

in order to obtain improvements on nearest-neighbor estimation (such
as removing bias or selection of the number of neighbors). Moreover,
Berlinet and Servien (2011) state a necessary and sufficient condition for
the existence of a limit distribution of the nearest neighbor density estimate
using the regularity index αx.

Nevertheless, this definition suffers some flaws. First, some measures with
ρ-regularity have no regularity index αx. Secondly, many density estimates
require a development for a ratio of set measures which are not centered
around the estimation point x and which are not balls. Definition (1.2)
of the regularity index is useless in these cases. These flaws represent a
major restriction in practice, since we can not obtain similar results for
an estimate such as the histogram, even for measures that could have a
regularity index αx. To circumvent these problems, we propose in Section 2
a new definition, called r-regularity which is then used to obtain a sufficient
condition for the existence of a limit distribution for the histogram without
any continuity assumptions concerning the underlying density. Examples are
given in Section 3 using this definition which is shown to be useful in some
cases when the regularity index αx does not exist. Proofs are presented in
Section 4.

2 Definitions and results

2.1 The r-regularity

To mitigate the two problems of the definition of Beirlant et al., we propose
the following definition. Given x ∈ R we set Ix the set of all the intervals
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which contain x and we define Ex by

Ex =
{
r > 0 such that ∃C > 0,∃λ0 > 0, such that ∀I ∈ Ix

verifying λ(I) < λ0 we have

∣∣∣∣µ(I)

λ(I)
− l(x)

∣∣∣∣ ≤ Cλ(I)r
}
.

If there exists a real rx such that

rx = supEx, (2.1)

rx is the r-regularity index of the measure µ at x. If supEx = +∞, we set
rx = +∞. Examples of r-regularity are provided in the next section.

With this definition, the r-regularity can be viewed as an intermediate
stage between the ρ-regularity and the regularity index: it gives us a bound
for the rate of convergence of the measures. Furthermore, the r-regularity
does not involve a ball centered on x and, consequently, can be used with a
larger class of density estimates. Note that, as for the regularity index, the
larger the value of rx, the more regular the derivative of µ with respect to
λ. Using the known estimates of the regularity index obtained by Beirlant,
Berlinet and Biau (2008) or Berlinet and Servien (2012), a bound could be
trivially obtained for the r-regularity index.

2.2 Main results

The histograms are probably the oldest and simplest method to estimate
an unknown density. The simplest histogram methods partition the space
into congruent intervals or cubes whose size and position depends on the
number of available data points, but not on the data itself. They are meant
to approximate the data distribution in the best manner possible within a
bounded amount of space. These methods provide estimates that are con-
sistent, regardless of the underlying distribution of the data. For a more
detailed literature on the subject, we refer the reader to Ioannidis (2003)
and the references therein.

Asymptotic results have been derived with a continuity assumption on
the density to estimate (Stadtmüller, 1983; Devroye and Györfi, 1985). In
Theorem 2.1 below we state the asymptotic normality of the histrogram
estimate of the density function, removing this continuity assumption by
using the r-regularity index. This index could also be used to obtain similar
results for other density estimates.
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Assume that X1, . . . , Xn are i.i.d. observations drawn from an unknown
probability measure µ with density function f . A histogram fh consists of
a partition of the space R of Borel-measurable subsets of R, referred to as
cells. We consider here partitions with the same size hn such that

Bnq = [(q − 1)hn, qhn[, q ∈ Z

with the property that (i) ∪q∈ZBnq = R and (ii) Bnq ∩ Bnq′ = ∅ if q 6= q′.
Using these notations, the histogram estimate is

fh(x) =
νnq
nhn

with x ∈ Bnq and νnq the number of Xi in the Bnq cell. By consequence, the
function fh is constant in a cell. So, to obtain the consistency of fh towards
f , the cells need to become smaller and smaller with n. This estimate is
proven (Bosq and Lecoutre, 1987) to be convergent in quadratic mean if

lim
n→∞

hn = 0 and lim
n→∞

nhn = +∞. (2.2)

Here we are interested in the limit distribution of the histogram. Contrary
to the case of the kn-nearest neighbor estimate (Berlinet and Servien, 2011),
the α-regularity is useless. Indeed, the cells of the histogram are not balls
centered on the point of estimation. By consequence, we rather use the r-
regularity defined in Section 2.

Theorem 2.1. Suppose that the convergence conditions (2.2) hold and that
x is a Lebesgue point in R where (2.1) is satisfied with l(x) > 0. Then the
condition

lim
n→∞

nh2r+1
n = 0 (2.3)

for some r ∈]0; rx[ implies that

Hn(x) =
√
nhn

fh(x)− l(x)√
l(x)

converges in distribution towards a N (0, 1).

Remark 1: Remind that the definition of Ex excludes the case rx = 0.
Indeed in this case the condition of Theorem 2.1 would be limn→∞ nhn = 0,
which is in contradiction with the second condition of (2.2).

Remark 2: Note that the case rx = +∞ is covered by Theorem 2.1 (and
an example is provided on next section). In this case, the conditions (2.2)
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implies condition (2.3) and, by consequence, is sufficient to ensure Theorem
2.1.

A major point is that we obtain the asymptotic normality of the his-
togram without a continuity assumption on the density function f at the
point of estimation x. Nevertheless, this result provides a necessary condi-
tion for having a limit distribution, but not a sufficient one. This comes from
the fact that, unlike the regularity index, the r-regularity does not provide
us with an exact rate, but only an upper bound of the rate.

3 Examples of r-regularity

In a sake of compactness, the proof of the following examples are not pre-
sented in the present note. It can be found in Servien (2010).

3.1 When the regularity index does not exist

Let f1 be the probability density defined by

f1(x) =
2− cos(1/x) + 2x sin(1/x)

c

in R for x ∈ [−1, 1]\0 with c = 4 + 2 sin 1 and µ1 its probability measure.

The densityf1 is differentiable at any point of [−1, 1] except at the point
0 where it has no left and no right limits. We have

lim
h→0

F1(h)− F1(−h)

2h
=

2

c
.

Thus 0 is a Lebesgue point of µ1 but, by setting, f1(0) = 2/c,we still have
discontinuity of the second kind at the point 0. Now,

µ1([−h, h])

2h
− f1(0) =

1

c
h sin

(
1

h

)
so, at any point of [−1, 1] we have ρ-regularity with ρ(δ) = δ/c but no
regularity index at the point 0.

If we choose h1 and g1 two positive integers with 0 ∈ I = [−h1, g1] and
λ(I) < λ0. We obtain

µ1(I)

λ(I)
=

2

c
+
g2

1 sin(1/g1) + h2
1 sin(1/h1)

cλ(I)
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and, with f1(0) = 2/c, we have∣∣∣∣µ1(I)

λ(I)
− f1(0)

∣∣∣∣ ≤ g2
1 + h2

1

cλ(I)
≤ 1

c
λ(I)

which gives us a r-regularity at the point 0 with r0 = 1.

3.2 Lipschitz case

Lemma 3.1. Assume that h is a Lipschitz density with order β at the point
x ∈ R such that, for all t,

|h(x)− h(t)| ≤ Cx |x− t|β ,

and µh its associated measure. For all intervall I with λ(I) 6= 0 and x ∈ I,
we have ∣∣∣∣µh(I)

λ(I)
− h(x)

∣∣∣∣ ≤ Cxλ(I)β.

Example :
Let f2 be the probability density function on [−1/2, 1/2] defined by

f2(x) = 1−
√

2

3
+
√
|x|

and µ2 its associated measure. At the point x = 0, f2 is continuous, not
differentiable and 1

2 -lipschitzian. If 0 ∈ I and λ(I) < λ0, a straightforward
development gives us ∣∣∣∣µ0(I)

λ(I)
− f0(0)

∣∣∣∣ ≤ 2

3
λ(I)1/2.

3.3 Constant density

Assume that d is a constant density on an interval I 6= ∅ and that µd is its
associated measure. Thus, for all x ∈ I, we have

µd(I) =

∫
I
d(t)dt = d(x)λ(I)

which leads us to ∣∣∣∣µd(I)

λ(I)
− d(x)

∣∣∣∣ = 0

and, by consequence, rx = +∞. As rx increases with the regularity of the
derivative of the measure, it is logical to find that it is maximum when the
density is constant.
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3.4 When rx does not exist

Consider the probability density function f3 defined on [−0.5; 0.5] by

f3(x) =
1

log |x|
+ 1− a if x 6= 0

= 1− a if x = 0

where a is a normalization constant and µ3 its associated probability mea-
sure. At the Lebesgue point 0, Lemma 3.2 in Berlinet and Levallois (2000)
gives us ρ-regularity with ρ(δ) = −1/ log (δ) (δ < 1). By consequence, we
have E0 = ∅ and µ3 does not admit r-regularity at the point 0.

4 Proofs

Proof of Theorem 2.1 :
We have

Hn(x) = Rn(x)

√
µ(Bnq)

hn

1√
l(x)

with

Rn(x) =
√
nhn (fh(x)− l(x))

√
hn

µ(Bnq)
.

As x is a Lebesgue point with l(x) > 0, Lemma 4.1 gives us the result. �

Lemma 4.1. Under assumptions of Theorem 2.1, we have

Rn(x)
L→ N (0, 1).

Proof of Lemma 4.1 :
We have

Rn(x) = Sn(x) + Pn(x)

where

Sn(x) =
νnq − nµ(Bnq)√

nµ(Bnq)

and

Pn(x) =
√
nhn

√
hn

µ(Bnq)

(
µ(Bnq)

hn
− l(x)

)
and Lemmas 4.2 and 4.3 achieve the proof. �
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Lemma 4.2. Under assumptions of Theorem 2.1, we have

Sn(x)
L→ N (0, 1).

Proof of Lemma 4.2 :
The random variable νnq follows a binomial distribution with parameters n
and µ(Bnq). So, central limit theorem (Papoulis and Pillai, 2002) concludes
the proof. �

Lemma 4.3. Under assumptions of Theorem 2.1, we have

Pn(x)→ 0.

Proof of Lemma 4.3 :
Using the definition of Pn(x) and relation (2.1), we have that, for all r ∈]0; rx[
and as soon as hn < λ0,

|Pn(x)| ≤
√
nhr+1

n Cr√
µ(Bnq)

.

As x is a Lebesgue point we get, for all r ∈]0; rx[,

|Pn(x)| ≤
√
nh

r+1/2
n Cr√
f(x)

.

Then, as f(x) > 0 and according to condition (2.3), we obtain the lemma.�
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