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Abstract

This paper addresses the problem of automatically lo-
calizing dominant objects as spatio-temporal tubes in a
noisy collection of videos with minimal or even no super-
vision. We formulate the problem as a combination of two
complementary processes: discovery and tracking. The
first one establishes correspondences between prominent
regions across videos, and the second one associates sim-
ilar object regions within the same video. Interestingly, our
algorithm also discovers the implicit topology of frames as-
sociated with instances of the same object class across dif-
ferent videos, a role normally left to supervisory informa-
tion in the form of class labels in conventional image and
video understanding methods. Indeed, as demonstrated by
our experiments, our method can handle video collections
featuring multiple object classes, and substantially outper-
forms the state of the art in colocalization, even though it
tackles a broader problem with much less supervision.

1. Introduction

Visual learning and interpretation usually have been for-
mulated as a supervised classification problem, with manu-
ally selected bounding boxes acting as (strong) supervisory
signal [8, 10]. To reduce human effort and subjective biases
in manual annotation, recent work has addressed the dis-
covery and localization of objects from weakly-annotated
or even unlabelled datasets [4, 5, 9, 30, 32]. However, this
task is difficult, and most approaches today still lag signif-
icantly behind strongly-supervised methods. With the ever
growing popularity of video sharing sites such as YouTube,
recent research has started to address similar problems in
videos [17, 27, 29, 38], and has shown that exploiting
the space-time structure of the world, which is absent in
static images (e.g., motion information), may be crucial for
achieving object discovery or localization with less super-
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Figure 1. Given a noisy collection of videos, dominant objects are
automatically localized as spatio-temporal “tubes”. A discovery
process establishes correspondences between prominent regions
across videos (left), and a tracking process associates similar ob-
ject regions within the same video (right). (Best viewed in color.)

vision.
Concretely, this paper addresses the problem of spatio-

temporal object localization in videos with minimal super-
vision or even no supervision. Given a noisy collection of
videos with multiple object classes, dominant objects are
identified as spatio-temporal “tubes” (see definition in Sec-
tion 1.2) for each video. We formulate the problem as a
combination of two complementary processes: object dis-
covery and tracking (Fig. 1). Object discovery establishes
correspondences between regions depicting similar objects
in frames of different videos, and object tracking temporally
associates prominent regions within individual videos. Bet-
ter object discovery enhances tracking, which in turn cor-
rects erroneous discovery results and improves the corre-
spondences across videos. Building upon recent advances
in efficient matching [4] and tracking [26], we combine
region matching across different videos and region track-
ing within each video into a joint optimization framework.
We demonstrate that the proposed method substantially out-
performs the state of the art in colocalization [17] on the
YouTube-Object dataset, even though it tackles a broader
problem with much less supervision.

1.1. Related work

Our approach combines object discovery and tracking.
The discovery part establishes correspondences between
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frames across videos to detect object candidates. Related
approaches have been proposed for salient region detec-
tion [18], image cosegmentation [36, 37], and image colo-
calization [4]. Conventional object tracking methods [41]
usually require annotations for at least one frame [13, 15,
40], or object detectors trained for target classes in a super-
vised manner [1, 2, 26]. Our method does not require such
supervision and instead alternates discovery and tracking of
object candidates.

The problem we address is closely related to video ob-
ject colocalization [17, 27], whose goal is to localize com-
mon objects in a video collection. Prest et al. [27] generate
spatio-temporal tubes of object candidates, and select one
of these per video through energy minimization. Since the
candidate tubes rely only on clusters of point tracks [3], this
approach is not robust against noisy tracks and incomplete
clusters. Joulin et al. [17] extend the image colocalization
framework [32] to videos using an efficient optimization
approach. Their method does not explicitly consider cor-
respondences between frames from different videos, which
are shown to be critical for robust localization of common
objects by our experiments (Section 5.3).

Our setting is also related to object segmentation or
cosegmentation in videos. For video object segmentation,
clusters of long-term point tracks have been used [3, 22, 23],
assuming that points from the same object have similar
tracks. In [19, 20, 25, 35], the appearance of potential ob-
ject and background regions is modeled and combined with
motion information. These methods produce results for in-
dividual videos and do not investigate relationships between
videos and the objects they contain. Video object coseg-
mentation aims to segment a detailed mask of common ob-
ject out of videos. This problem has been addressed with
weak supervision such as an object label per video [33] and
additional labels for a few frames that indicate whether the
frames contain a target object or not [38].

Finally, spatio-temporal proposals of [16, 24] and action
localization [39, 42] are relevant to our work as they also re-
turn spatio-temporal tubes as output. However, our method
localizes an object through a single volume, whereas the
proposals [16, 24] form a large number of hypotheses that
have to be validated by post-processing. Furthermore, un-
like action localization techniques [39, 42], our approach
does not require any training data.

1.2. Proposed approach

We consider a set of videos v, each consisting of T
frames (images) vt (t = 1, . . . , T ), and denote by R(vt)
a set of candidate regions identified in vt by some separate
bottom-up region proposal process [21]. We also associate
with vt a matching neighborhood N(vt) formed by the k
closest frames wu among all videos w 6= v, according to
a robust criterion based on probabilistic Hough matching

(see [4] and Section 2.1). The network structure defined
by N links frames across different videos. We also link
regions in successive frames of the same video, so that rt
in R(vt) and rt+1 in R(vt+1) are tracking neighbors when
there exists some point track originating in rt and termi-
nating in rt+1. A spatio-temporal tube is any sequence
r = [r1, . . . , rT ] of temporal neighbors in the same video.
Our goal is to find, for every video v in the input collection,
the top tube r according to the criterion

Ωv(r) =

T∑
t=1

ϕ[rt, vt, N(vt)] + λ

T−1∑
t=1

ψ(rt, rt+1), (1)

where ϕ[rt, vt, N(vt)] is a measure of confidence for rt be-
ing an object (foreground) region, given vt and its matching
neighbors, and ψ(rt, rt+1) is a measure of temporal con-
sistency between rt and rt+1; λ is a weight on temporal
consistency.

As will be shown in the sequel, given the matching net-
work structureN , finding the top tube (or for that matter the
top p tubes) for each video can be done efficiently using dy-
namic programming. The top tubes then help to find a bet-
ter matching network structure since the tubes tend to focus
on objects and disregard background clutters when finding
matching neighborhoods. Thus we adopt an iterative pro-
cess, alternating between steps whereN is fixed and the top
tubes are computed for each video, and steps where the top
tubes are fixed, and used to update the matching network.
After a few iterations, we stop, and finally pick the top
scoring tube for each video. We dub this iterative process
a discovery and tracking procedure since finding the tubes
maximizing foreground confidence across videos is akin to
unsupervised object discovery [4, 11, 12, 28, 31], whereas
finding the tubes maximizing temporal consistency within a
video is similar to object tracking [1, 2, 13, 26, 40, 41].

Interestingly, because we update the matching neighbor-
hood structure at every iteration, our discovery and tracking
procedure does much more than finding the spatio-temporal
tubes associated with dominant objects: It also discovers the
implicit neighborhood structure of frames associated with
instances of the same class, which is a role normally left to
supervisory information in the form of class labels in con-
ventional image and video understanding methods. Indeed,
as demonstrated by our experiments, our method can han-
dle video collections featuring multiple object classes with
minimal or zero supervision (it is, however, limited for the
time being to one object instance per frame).

We describe in the next two sections the foreground con-
fidence and temporal consistency terms in Eq. (1), before
describing in Section 4 our discovery and tracking algo-
rithm, presenting experiments in Section 5, and concluding
in Section 6 with brief remarks about future work.



2. Foreground confidence
Our foreground confidence term is defined as a weighted

sum of appearance- and motion-based confidences:

ϕ[rt, vt, N(vt)] = ϕa[rt, vt, N(vt)] + α ϕm(rt). (2)

where α is a weight on motion-based confidence. For
appearance-based confidence, we follow [4] and use a
standout score based on region matching confidence. For
motion-based confidence, we build on long-term point track
clusters [3] and propose a motion coherence score that mea-
sures how well a box region aligns with motion clusters.

2.1. Appearance-based confidence

Given a set of images containing foreground objects of
the same class with different backgrounds, object regions in
an image are more likely to match with other images than
background regions, and a region tightly enclosing the ob-
ject stands out over its background. Recent work on unsu-
pervised object discovery [4] implements this concept in a
standout score based on a region matching algorithm, called
probabilistic Hough matching (PHM). Here we extend the
idea to video frames.

PHM is an efficient region matching algorithm which
calculates scores for region matches using appearance and
geometric consistency. Assume two sets of region propos-
als have been extracted from vt and vu: Rt = R(vt) and
Ru = R(vu). Let rt = (ft, lt) ∈ Rt be a region with
its 8 × 8 HOG descriptor ft [7, 14] and its location lt, i.e.,
position and scale. The score for match m = (rt, ru) is
decomposed into an appearance term ma = (ft, fu) and
a geometry term mg = (lt, lu). Let x denote the location
offset of a potential object common to vt and vu. Given
Rt and Ru, PHM evaluates the match score c(m|Rt, Ru)
by combining the Hough space vote h(x|Rt, Ru) and the
appearance similarity in a pseudo-probabilistic way:

c(m|Rt, Ru) = p(ma)
∑
x

p(mg|x)h(x|Rt, Ru), (3)

h(x|Rt, Ru) =
∑
m

p(ma)p(mg|x), (4)

where p(ma) is the appearance-based similarity between
two descriptors ft and fu, and p(mg|x) is the likelihood
of displacement lt − lu, which is defined as a Gaussian dis-
tribution centered on x. As noted in [4], this can be seen as a
combination of bottom-up Hough space voting (Eq. [4]) and
top-down confidence evaluation (Eq. [3]). Given neighbor
frames N(vt) where an object in vt may appear, the cor-
responding region saliency is defined as the sum of max-
pooled match scores from R′u to r:

g(rt|Rt, Ru) =
∑

vu∈N(vt)

max
ru∈Ru

c
(
(rt, ru)|Rt, Ru

)
. (5)

We omit the termsRt andRu in g for the sake of brevity af-
terwards. The region saliency g(rt) is high when r matches
the neighbor frames well in terms of both appearance and
geometric consistency. While useful as an evidence for
foreground regions, the region saliency of Eq. (5) may be
higher on a part than a whole object because part regions
often match more consistently than entire object regions. To
counteract this effect, a standout score measures how much
the region rt “stands out” from its potential backgrounds in
terms of region saliency:

s(rt) = g(rt)− max
rb∈B(rt)

g(rb),

s.t. B(rt) = {rb|rt ( rB, rb ∈ Rt}, (6)

where rt ( rb indicates that region rt is contained in re-
gion rb. As can be seen from Eq.(5), the standout score
s(rt) evaluates a foreground likelihood of rt based on re-
gion matching between frame vt and its neighbor frames
from different videos N(vt). Now we denote it more ex-
plicitly using s

(
rt|vt, N(vt)

)
. The appearance-based fore-

ground confidence for region rt is defined as the standout
score of rt:

ϕa[rt, vt, N(vt)] = s
(
rt|vt, N(vt)

)
. (7)

In practice, we rescale the score to the [0, 1] in each frame.

2.2. Motion-based confidence

Motion is an important cue for localizing moving ob-
jects in videos [25] since these often exhibit motions that
differentiate the objects from the background. To exploit
this information, we build on long-term point tracks [3] and
propose a motion coherence score for motion-based fore-
ground confidence. These tracks are more “global” than
conventional optical flow in the sense that they use more
frames. Motion clusters based on the long-term tracks are
even more “global” since they incorporate both temporal
and spatial coherence. We propose to compute the motion
coherence score for a box in three steps: (1) edge motion
binning, (2) motion cluster weighting, (3) edge-wise max
pooling. First, we divide the box into 5 × 5 cells, and con-
struct bins along the four edges of the box as illustrated in
Fig. 2. Then, for each bin b, we assign its cluster label lb by
majority voting using the tracks that falls into the bin. Bins
with no tracks remain empty. Second, we compute a motion
cluster weight for each cluster label i:

w(l) =
# of tracks of cluster l within the box
# of all tracks of cluster l in the frame

, (8)

evaluating how much of the motion cluster the box includes,
compared to the entire frame. The weight is assigned to the
corresponding bin, and suppresses the effect of background
clusters in the bins. Third, we select the bin with the max-
imum cluster weight along each edge, and define the sum



(a) Video frame and its color-coded motion clusters.

(b) Measuring the motion coherence score for a box.

(c) Heat map of the scores and the top 5 boxes.

Figure 2. (a) Given a video clip, its motion clusters are com-
puted for each frame [3]. The example shows a frame (left) and its
motion cluster with color coding (right). (b) Given a region box
(yellow), the motion coherence score for the box is computed in
three steps: box-boundary binning (left), cluster weighting (mid-
dle), and edge-wise max pooling (right). For the details, see text.
(c) Heat map of the motion coherence scores (left) and the top 5
boxes with the best scores (right). (Best viewed in color.)

of the weights as the motion coherence score for the box,
which is used for the motion-based confidence:

ϕm(rt) =
∑

e∈{L,R,T,B}

max
b∈Ee

w(lb), (9)

where e represents one of four edges of the box region (left,
right, top, bottom), Ee a set of bins on the edge, and lb the
cluster label of bin b. This score is designed to be high for a
box region that meets motion cluster boundaries (edge-wise
max pooling) and contains the entire clusters (motion clus-
ter weighting). Note that an object does not often fit a box
shape correctly, but only touches the four edges. On this ac-
count, edge-wise max pooling provides a more robust score
than average pooling on entire cells. This motion coherence
score is useful to discover moving objects in video frames,
and acts a complementary cue to the standout score in Sec-
tion 2.1.

3. Temporal consistency
Regions with high foreground confidences may turn out

to be temporally inconsistent. They can be misaligned due
to imperfect confidence measures and ambiguous observa-
tions. Also, given multiple object instances of the same cat-
egory, foreground regions may correspond to different in-
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Figure 3. We compare two sets of corresponding points in con-
secutive regions by transforming them into a unit square from the
regions. The configuration of points does not align with each other
unless two regions match well (e.g., black and green). The motion-
based consistency uses the sum of distances between the corre-
sponding points in the transformed domain. If two regions share
no point track, we assign a constant θ as the consistency term.
(Best viewed in color.)

stances in a video. Our temporal consistency term is used
to handle these issues so that selected spatio-temporal tubes
are temporally more stable and consistent. We exploit both
appearance- and motion-based evidences for this purpose.
We denote by ψa(rt, rt+1) and ψm(rt, rt+1) appearance-
and motion-based terms, respectively. The consistency term
of Eq. (1) is obtained as

ψ(rt, rt+1) = ψa(rt, rt+1) + ψm(rt, rt+1). (10)

We describe these terms in the following subsections.

3.1. Appearance-based consistency

We use appearance similarity between two consecutive
regions as a temporal consistency term. Region rt is de-
scribed by an 8 × 8 HOG descriptor ft, as in Section 2.1,
and the appearance-based consistency is defined as the op-
posite of the distance between descriptors:

ψa(rt, rt+1) = −||ft − ft+1||2, (11)

which is rescaled in practice to cover [0, 1] at each frame.

3.2. Motion-based consistency

Two consecutive regions rt and rt+1 associated with the
same object typically share the same point tracks, and con-
figurations of the points in the two regions should be simi-
lar. Long-term point tracks [3] provide correspondences for
such points across frames, which we exploit to measure the
motion-based consistency between a pair of regions.

To compare the configurations of shared point tracks, we
linearly transform each box region and internal point coor-
dinates into a 1× 1 unit square, as illustrated in Fig. 3. This
normalization allows us to account for non-uniform scal-
ing when comparing point configurations across different



regions. Let p be an individual point track and pt the po-
sition of p at frame t. Then, the position of p relative to
region rt is denoted by τ(pt|rt). If two consecutive regions
rt and rt+1 cover the same object and share a point track
p, τ(pt|rt) and τ(pt+1|rt+1) should be close to each other.
The motion consistency ψm(rt, rt+1) reflects this observa-
tion. Let Prt be the set of points occupied by region rt. The
motion-based consistency is defined as

ψm(rt, rt+1) = −
∑

p∈Prt∩Prt+1

||τ(pt|rt)− τ(pt+1|rt+1)||1
2 | Prt ∩ Prt+1

|
. (12)

If rt and rt+1 share no point track, we assign a constant
value ψm(rt, rt+1) = θ, which is smaller than -1, the mini-
mum value of ψm(rt, rt+1), to penalize transitions between
regions having no point correspondence. Through this con-
sistency term, we can measure variations in spatial position,
aspect ratio, and scale between regions at the same time.

4. Discovery and tracking algorithm
We initialize each tube r as an entire video (a sequence

of entire frames), and alternate between (1) updating the
neighborhood structure across videos and (2) optimizing
Ωv(r) within each video. The intuition is that better object
discovery may lead to more accurate object tracking, and
vice versa. These two steps are repeated for a few iterations
until (near-) convergence. In our experiments, using more
than 5 iterations does not improve performance. The num-
ber of neighbors for each frame is fixed as k = 10. The final
result is obtained by selecting the best tube for each video
after 5 iterations . As each video is independently processed
at each iteration, the algorithm is easily parallelized.
Neighbor update. Given a localized tube r fixed for
each video, we update the neighborhood structure N by k
nearest-neighbor retrieval for each localized object region.
At the first iteration, the nearest-neighbor search is based
on distances between GIST descriptors [34] of frames as
the tube r is initialized as the entire video. From the second
iteration, the metric is defined as the appearance similarity
between potential object regions localized at the previous
iteration. Specifically, we select the top 20 region proposals
inside potential object regions according to region saliency
(Eq. [5]), and perform PHM between those small sets of re-
gions. The similarity is then computed as the sum of all re-
gion saliency scores given by the matching. This selective
region matching procedure allows us to perform efficient
and effective retrieval for video frames.
Object relocalization. Given the neighborhood structure
N , we optimize the objective of Eq. (1) for each video v.
To exploit the tubes localized at the previous iteration, we
confine region proposals in neighbor frames to those con-
tained in the localized tube of the frames. This is done in
Eq.(7) by substituting the neighbor frames of each frame vt

with the regions ru localized in the frames: set wu = ru for
all wu in N(vt). Before the optimization, we compute fore-
ground confidence scores of region proposals, and select the
top 100 among these according to their confidence scores.
Only the selected regions are considered during optimiza-
tion for efficiency. The objective of Eq.(1) is then efficiently
optimized by dynamic programming (DP) [6, 26]. Note that
using the p best tubes (p = 5 in all our experiments) for each
video at each iteration (except the last one), instead of re-
taining only one candidate, increases the robustness of our
approach. This agrees with the conclusions of [4] in the still
image domain, and has also been confirmed empirically by
our experiments. We obtain p best tubes by sequential DP,
which iteratively removes the best tube and re-run dynamic
programming again.

5. Implementation and results
Our method is evaluated on the YouTube-Object dataset

[27], which consists of videos downloaded from YouTube
by querying for 10 object classes from PASCAL VOC [10].
Each video of the dataset comes from a longer video and
is segmented by automatic shot boundary detection. This
dataset is challenging since the videos involve large camera
motions, view-point changes, decoding artifacts, editing ef-
fects, and incorrect shot boundaries. Ground-truth boxes are
given for a subset of the videos, and one frame is annotated
per video. Following [17], our experiments are conducted
on all the annotated videos.

We demonstrate the effectiveness of our method through
various experiments. First, we evaluate our method in the
conventional colocalization setting, where videos contain at
least one object of a sample category. Our method is also
tested in a fully unsupervised mode, where all videos from
all classes of the dataset are mixed; we call this challenging
setting unsupervised object discovery.

5.1. Implementation details

Key frame selection. We sample key frames from each
video uniformly with stride 20, and our method is used
only on the key frames. This is because temporally adja-
cent frames typically have redundant information, and it is
time-consuming to process all the frames. Note that long-
term point tracks enable us to utilize continuous motion in-
formation although our method works on temporally sparse
key frames. To obtain temporally dense localization results,
object regions in non-key frames are estimated by interpo-
lating localized regions in temporally adjacent key-frames.
Parameter setting. The weight for the motion-based con-
fidence α and that for the temporal consistency terms λ are
set to 0.5 and 2, respectively. To penalize transitions be-
tween regions sharing no point track, θ is set to -2, which
is smaller than the minimum value of ψm (see Section 3.2).
The number of region candidates for object relocalization



Table 1. Colocalization performance in CorLoc on the YouTube-Object dataset.
Method aeroplane bird boat car cat cow dog horse motorbike train Average

Prest et al. [27] 51.7 17.5 34.4 34.7 22.3 17.9 13.5 26.7 41.2 25.0 28.5
Joulin et al. [17] 25.1 31.2 27.8 38.5 41.2 28.4 33.9 35.6 23.1 25.0 31.0

F(A) 38.2 67.3 30.4 75.0 28.6 65.4 38.3 46.9 52.0 25.9 46.8
F(A)+T(M) 44.4 68.3 31.2 76.8 30.8 70.9 56.0 55.5 58.0 27.6 51.9

F(A)+T(A,M) 52.9 72.1 55.8 79.5 30.1 67.7 56.0 57.0 57.0 25.0 55.3
F(A,M)+T(A,M) 56.5 66.4 58.0 76.8 39.9 69.3 50.4 56.3 53.0 31.0 55.7

Table 2. Unsupervised object discovery performance in CorLoc on the YouTube-Object dataset.
Method aeroplane bird boat car cat cow dog horse motorbike train Average

Brox and Malik [3] 53.9 19.6 38.2 37.8 32.2 21.8 27.0 34.7 45.4 37.5 34.8
Papazoglou and Ferrari [25] 65.4 67.3 38.9 65.2 46.3 40.2 65.3 48.4 39.0 25.0 50.1

F(A,M)+T(A,M) 55.2 58.7 53.6 72.3 33.1 58.3 52.5 50.8 45.0 19.8 49.9
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Figure 4. Average CorLoc scores (left) and average overlap ratios
(right) versus iterations on the YouTube-Object dataset in the colo-
calization setting.

(Section 4) is restricted to 100 to reduce computation. The
other parameters k = 10 and p = 5 in Section 4 are adopted
directly from [4]. All the parameters are fixed for all exper-
iments. For analysis and discussion of the parameters, see
Section 5.5.

Execution time. Our method is implemented in MAT-
LAB without sophisticated optimization. On a machine
with a Xeon CPU (2.6GHz, 12 cores), it currently takes
about 60 hours to handle the entire dataset with 5 iterations.

5.2. Evaluation metrics

Our method not only discovers and localizes objects, but
also reveals the topology between different videos and the
objects they contain. We evaluate our results on those two
tasks with different measures.

Localization accuracy is measured using CorLoc [17,
25, 27], which is defined as the percentage of images
correctly localized according to the PASCAL criterion:
area(rp∩rgt)
area(rp∪rgt) > 0.5, where rp is the predicted region and
rgt is the ground-truth.

In the unsupervised object discovery setting, we mea-
sure the quality of the topology revealed by our method as
well as localization performance. To this end, we first em-
ploy the CorRet metric, originally introduced in [4], which
is defined in our case as the mean percentage of retrieved
nearest neighbor frames that belongs to the same class as
the target video. We also measure the accuracy of nearest
neighbor classification, where a query video is classified by

the most frequent labels of its neighbor frames retrieved by
our method. The classification accuracy is reported by the
top-k error rate, which is the percentage of videos whose
ground-truth labels do not belong to the k most frequent la-
bels of their neighbor frames. All the evaluation metrics are
given as percentages.

5.3. Object colocalization per class

We compare our method with two colocalization meth-
ods for videos [17, 27]. We also compare our method with
several of its variants to highlight benefits of each of its
components. Specifically, the components of our method
are denoted by combinations of four characters: ‘F’ for
foreground confidence, ‘T’ for temporal consistency, ‘A’ for
appearance, and ‘M’ for motion. For example, F(A) means
foreground saliency based only on appearance (i.e., ϕa),
and T(A,M) indicates temporal smoothness based on both
of appearance and motion (i.e., ψa + ψm = ψ). Our full
model corresponds to F(A,M)+T(A,M).

Quantitative results are summarized in Table 1. Our
method outperforms the previous state of the art in [17]
on the same dataset, with a substantial margin. Compar-
ing our full method to its simpler versions, we observe that
performance improves by adding each of the temporal con-
sistency terms. The motion-based confidence can damage
performance when motion clusters include only a part of
object (e.g., “bird”, “dog”) and/or background has distinc-
tive clusters due to complex 3D structures (e.g., car, mo-
torbike). However, it enhances localization when the ob-
ject is highly non-rigid (e.g., “cat”) and/or is clearly sep-
arated from the background by motion (e.g., “aeroplane”,
“boat”). In the “train” class case, where our method without
motion-based confidence often localizes only a part of long
trains, the motion-based confidence improves localization
accuracy. Figure 4 shows the performance of our method
over iterations. Our full method performs better than its
variants at every iteration, and most quickly improves both
of CorLoc score and overlap ratio in early stages.

Qualitative examples are shown in Fig. 5 and 6, where
the regions localized by our full model are compared with
those of F(A), which relies only on image-based informa-



Figure 5. Visualization of examples that are correctly localized by our full method: (red) our full method, (green) our method without
motion information, (yellow) ground-truth localization. The sequences come from (a) “aeroplane”, (b) “car”, (c) “cat”, (d) “dog”, (e)
“motorbike”, and (f) “train” classes. Frames are ordered by time from top to bottom. The localization results of our full method are spatio-
temporally consistent. On the other hand, the simpler version often fails due to pose variations of objects (a, c–f) or produces inconsistent
tracks when multiple target objects exist (b). More results are included in the supplementary file. (Best viewed in color.)

Figure 6. Examples incorrectly localized by our full method: (red) our full method, (green) our method without motion information, (yel-
low) ground-truth localization. The sequences come from (a) “aeroplane”, (b) “bird”, (c) “car”, (d) “cow”, (e) “horse”, and (f) “motorbike”.
Frames are ordered by time from top to bottom. Our full method fails when background looks like an object and is spatio-temporally more
consistent than the object (a, c), or the boundaries of motion clusters include the multiple objects or background together (b, d–f). The
localization results in (b) and (f) are reasonable although they are incorrect according to the PASCAL criterion. (Best viewed in color.)

Table 3. CorRet scores and top-k error rates of our method on the YouTube-Object dataset in the fully unsupervised setting.
Metric aeroplane bird boat car cat cow dog horse motorbike train Average

CorRet 66.9 36.1 49.5 51.8 15.9 30.6 20.7 22.6 15.3 45.5 35.5
Top-1 error rate 12.1 51.9 34.1 25.0 84.2 45.7 70.2 73.4 83.0 33.6 51.3
Top-2 error rate 4.6 46.2 10.9 18.8 60.9 24.4 41.1 49.2 63.0 20.7 34.0

tion. F(A) already outperforms the previous state of the art,
but its results are often temporally inconsistent when the ob-
ject undergoes severe pose variation or multiple target ob-
jects exist in a video. We handle this problem by enforcing
temporal consistency on the solution.

5.4. Unsupervised object discovery

In the unsupervised setting, where videos with differ-
ent object classes are all mixed together, our method still

outperforms existing video colocalization techniques even
though it does not use any supervisory information, as sum-
marized in Table 2. It performs slightly worse than the state
of the art in video segmentation [25], which uses a fore-
ground/background appearance model. Note however that
(1) such a video-specific appearance model would proba-
bly further improve our localization accuracy; and (2) our
method attacks a more difficult problem, and, unlike [25],
discovers the underlying topology of the video collection.



Figure 7. A query frame (bold outer box) from the “horse” class
and its nearest neighbor frames at the last iteration of the unsuper-
vised object discovery and tracking. The top-5 object candidates
(inner boxes) of the nearest neighbors look similar with those of
the query, although half of them come from the “cow” class (4th,
6th, 8th, and 9th) or the “car” class (5th).

Figure 8. Confusion matrix of nearest neighbor retrieval. Rows
correspond to query classes and columns indicate retrieved classes.
Diagonal elements correspond to the CorRet values on Table 3.

The quality of nearest-neighbor retrieval is measured by
CorRet and quantified in Table 3. Even in the case where
some neighbors do not come from the same class as the
query, object candidates in the neighbor frames usually re-
semble to those in the query frame, as illustrated in Fig. 7.
To illustrate the recovered topology between classes, we
provide a confusion matrix of the retrieval results in Fig. 8,
showing that most classes are most strongly connected to
themselves, and some classes with somewhat similar ap-
pearances (e.g., “cat”, “dog”, “cow”, and “horse”) have
some connections between them. Finally, we measure the
accuracy of nearest neighbor classification that is based on
neighbor frames provided by our method and their ground-
truth labels. The classification accuracy in top-1 and top-2
error rates is summarized in Table 3. The error rates are
low when the query class usually shows unique appearances
(e.g., “aeroplane”, “boat”, “car”, and “train”), and high if
there are other classes with similar appearances (e.g., “cat”,
“dog”, “cow”, and “horse”).
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Figure 9. Average Cor-
Loc scores for different val-
ues of the two weight pa-
rameters α and λ on the
YouTube-Object dataset in
the colocalization setting.
The CorLoc score of our
full method (55.7) in Ta-
ble 1 corresponds to α =
0.5, λ = 2.

5.5. Effect of parameters α and λ

To study the influence of weight parameters α and λ,
we have conducted additional experiments by evaluating
our method on a 3×3 grid of weight parameters: α ∈
{0, 0.25, 0.5} and λ ∈ {0, 1, 2}. The results in the colo-
calization setting are shown in Fig. 9. Note that F(A) cor-
responds to α = 0, λ = 0. A substantial improvement
over F(A) is achieved by assigning a non-zero value to α
or λ in all cases, which shows that both motion-based con-
fidence and temporal consistency contribute to the perfor-
mance. Also, when both of α and λ are non-zero, the score
varies between 53.0 and 58.0, which is relatively stable. We
believe that similar results will be observed in the totally
unsupervised setting, although we did not investigate the
effect of the parameters in that setting.

The best performance in this experiment has been
acheived with α = 0.25, λ = 1, which outperforms the
results reported in Table 1. Note that in the previous exper-
iments, we did not optimize α and λ for the entire dataset,
but selected their values from only a few candidates vali-
dated in a small portion of the data. In a totally unsuper-
vised setting such as ours, there is no perfect way to opti-
mize those parameters.

6. Discussion and Conclusion
We have proposed a novel approach to localizing objects

in an unlabeled video collection by a combination of ob-
ject discovery and tracking. We have demonstrated the ef-
fectiveness of the proposed method on the YouTube-Object
dataset, where it significantly outperforms the state of the
art in colocalization even though it uses much less supervi-
sion. Some issues still remain for further exploration. As it
stands, our method is not appropriate for videos with a sin-
gle dominant background and highly non-rigid object (e.g.,
the UCF-sports dataset). Next on our agenda is to address
these issues, using for example video stabilization and fore-
ground/background models [19, 20, 25].
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