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RENEWAL STRUCTURE AND LOCAL TIME FOR DIFFUSIONS IN
RANDOM ENVIRONMENT

PIERRE ANDREOLETTI, ALEXIS DEVULDER, AND GRÉGOIRE VÉCHAMBRE

Abstract. We study a one-dimensional diffusion X in a drifted Brownian potential Wκ, with
0 < κ < 1, and focus on the behavior of the local times (L(t, x), x) of X before time t > 0.
In particular we characterize the limit law of the supremum of the local time, as well as the
position of the favorite sites. These limits can be written explicitly from a two dimensional
stable Lévy process. Our analysis is based on the study of an extension of the renewal structure
which is deeply involved in the asymptotic behavior of X.

1. Introduction

Let (X(t), t ≥ 0) a diffusion in a random càdlàg potential (V (x), x ∈ R), defined informally
by X(0) = 0 and

dX(t) = dβ(t)− 1

2
V ′(X(t))dt,

where β is a Brownian motion independent of V . Rigorously, X is defined by its conditional
generator given V ,

1

2
eV (x) d

dx

(
e−V (x) d

dx

)
.

We put ourself in the case where V is a negative drifted brownian motion : V (x) = Wκ(x) :=
W (x)− κ

2x, x ∈ R with 0 < κ < 1 and W a two sided Brownian motion. We explain at the end
of Section 1.1, what should be done to extend our results to a more general Lévy process.
In our case, the diffusion X is a.s. transient and its asymptotic behavior was first studied by K.
Kawazu and H. Tanaka : if H(r) is the hitting time of r ∈ R by X

H(r) := inf{s > 0, X(s) = r}, (1.1)

Kawazu et al. [25] proved that, for 0 < κ < 1 under the so-called annealed probability P,
H(r)/r1/κ converges in law to a κ-stable distribution (see also Y. Hu et al. [24], and H. Tanaka
[33]). Here we are interested in the local time of X denoted (L(t, x), x ∈ R, t > 0) until an
asymptotic instant t.
For Brox’s diffusion, (when κ = 0) it is proved in [4] that the process local time until the instant
t re-centered at the localization coordinate bt (see [10]) converges in law, this allows the author
to derive the law of the supremum of the local time before time t ∈ R+,

L∗(t) := sup
x∈R
L(t, x).

We recall their result below in order to compare it with what we obtain here :
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Theorem 1.1. [4] If κ = 0, then

lim
t→+∞

L∗(t)
t

=
1

Rκ
,

with

Rκ :=

∫ +∞

0
e−W

↑
κ (x)dx+

∫ +∞

0
e−W̃

↑
κ (x)dx. (1.2)

(W ↑κ (x), x ≥ 0) and (W̃ ↑κ , x ≥ 0) are two independent copies of the process (Wκ(x), x ≥ 0)
Doob-conditioned to remain positive.

Extending their approach, and following the results of Shi [30], Diel [15] obtains the non-trivial
normalisations for the almost sure behavior of the lim sup and lim inf of L∗(t). Notice that these
results have been previously established for the discrete analogue of X, the so called Sinai’s
random walk in [13] and [22].
One of our aim in this paper is to extend the study of the local time in the case 0 < κ < 1, and
deduce from that the weak asymptotic behavior of L∗(t).
Before going any further let us recall to the reader what is known for the slow transient cases.
When the time and space are discrete (see [26], for the seminal paper), a result of Gantert and Shi
[23] states the almost sure behavior for the lim sup of the supremum of the local time (L∗S(n)) of
these random walks (denoted S), before time n : a.s. lim supn→+∞ L∗S(n)/n = c > 0. Contrarily
to the recurrent case ([22]) their method, based on a link with the local time of S and a branching
process in random environment, is not able to determine the law of the limit of L∗S(n)/n.
For the continuous time and space case we are treating here, the only paper dealing with L∗(t) is
Devulder’s work [14], who proves that the lim supt→+∞ L∗(t)/t = +∞ almost surely. But once
again his method can not be used to characterize the limit law of L∗(t)/t.
Our motivation here is twofold, first we prove that our approach enables to characterize the limit
law of L∗(t)/t and open a way to determine the correct almost sure behavior of L∗(t) like for
Brox’s diffusion. Second we make a first step on a specific way to study the local time which
could be used in estimation problems with random environment [1], [2], [5], [12], [11], [20], [6].
The method we develop here is an improvement of the one used in [3] about the localization of
Xt for large t.
Let us recall the main result of this paper, for that we introduce some new objects. First the
notion of h-extrema, with h > 0, introduced by Neveu et al. [27] and studied more specifically
in our case of drifted Brownian motion by Faggionato [19]. For h > 0, we say that x ∈ R is a
h-minimum for a given continuous process V if there exist u < x < v such that V (y) ≥ V (x) for
all y ∈ [u, v], V (u) ≥ V (x) + h and V (v) ≥ V (x) + h. Moreover, x is an h-maximum for V if x
is an h-minimum for −V , and x is an h-extrema for V iff it is an h-maximum or an h-minimum
for V .
As we are interested in the process X until time t, we only focus on ht-extrema of Wκ where

ht := log t− φ(t), with 0 < φ(t) = o(log t), log log t = o(φ(t)).

It is known (see [19]) that almost surely, the ht-extrema of Wκ form a sequence indexed by Z,
unbounded from below and above, and that the ht-minima and ht-maxima alternate. We denote
respectively by (mj , j ∈ Z) and (Mj , j ∈ Z) the increasing sequences of ht-minima and of
ht-maxima of Wκ, such that m0 ≤ 0 < m1 and mj < Mj < mj+1 for every j ∈ Z. Define

Nt := max
{
k ∈ N, sup

0≤s≤t
X(s) ≥ mk

}
,

the number of ht-minima visited by X until the instant t, we then have the following result
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Theorem 1.2. [3] Assume 0 < κ < 1. There exists a constant C1 > 0, such that

lim
t→+∞

P
(
|X(t)−mNt | ≤ C1φ(t)

)
= 1.

This result proves that the process X before the instant t visits a sequence of ht-minima,
and then gets stuck in an ultimate one. Notice that this result was proved in the discrete case
model by Enriquez-Sabot-Zindy in [17]. This phenomenon is due to two facts : the first one is
the appearance of a renewal structure which is composed of the time it takes to the process to
move from a ht-minima to the following one. The second is the fact that like in Brox’s case, the
process is trapped a significant amount of time in the neighborhood of the local minima mNt .
It is the extension of this renewal structure to the sequence of local time at the ht-minima that
we study here. We now detail our results.

1.1. Results . Let us introduce a few notations involved in the statement of our results. Denote
(D([0,+∞),R2), J1) the space of càdlàg functions with J1-Skorokhod topology and denote by
LS→ the convergence in law for this topology. On this space, define a 2-dimensional Lévy process
(Y1,Y2) with value in R+×R+ which is a pure positive jump process with κ-stable Lévy measure
ν given by

∀x > 0, y > 0, ν ([x,+∞[×[y,+∞[) =
1

yκ
E
[
(Rκ)κ1Rκ≤ yx

]
+

1

xκ
P
(
Rκ >

y

x

)
,

where Rκ is defined in (1.2).

For a given function f in D([0,+∞),R), define for any s > 0, a > 0:

f \(s) := sup
0≤r≤s

(f(r)− f(r−)), f−1(a) := inf{x > 0, f(x) > a},

f \(s) is the largest jump of f before instant s, f−1(a) is the first time f is larger than a. Also
define the couple of random variables (I1, I2)

I1 := Y\1(Y−1
2 (1)−), I2 :=

(
1− Y2(Y−1

2 (1)−)
)
× Y1(Y−1

2 (1))− Y1(Y−1
2 (1)−)

Y2(Y−1
2 (1))− Y2(Y−1

2 (1)−)
.

We are now ready to state the result, the convergence in law denoted L→ takes place when t goes
to infinity :

Theorem 1.3.
L∗(t)
t

L→ I = max(I1, I2).

There is an intuitive interpretation of this theorem which explains the appearance of the Lévy
process (Y1,Y2). We focus on this interpretation now.

First for any s > 0, Y1(s) is the limit of the sum of the first bseκφ(t)c normalised (by t) local
times taken specifically at the bseκφ(t)c first ht-minima. Y2 plays a similar role but for the exit
time of the bseκφ(t)c first ht-valleys. Where an ht-valley is defined as a large neighborhood of an
ht-minima, see Section 2.2 for a rigorous definition as well as Figure 1.
So by definition I1 is the largest jump of the process Y1 before Y2 is larger than 1 and can
be interpreted as the largest local time (re-normalized) among the local time at the ht-minima
visited by X until time t and from where X escape. That is to say I1 is the limit of the random
variable supk≤Nt−1 L(mk, t)/t.
I2 is a product of two terms : the first

(
1− Y2(Y−1

2 (1)−)
)
corresponds to the (re-normalized)

amount of time left to the process X before instant t after it has reached the ultimate visited
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ht-minima, mNt . The second term corresponds to the local time of X at this ultimate ht-minima.
Intuitively Y2 is construct from Y1 multiplying each of its jumps by an independent copy of the
variable Rκ. Therefore this second term can be seen as an independent copy of 1/Rκ taken at
the instant of the overshoot of Y2 which makes it larger than 1. Notice that this variable Rκ
plays a similar role than R0 of Theorem 1.1. Indeed as in the case κ = 0, the process X is
prisoner in the neighborhood of the last ht-minima visited before time t.

We prove this result by showing first that portions of the trajectory of X re-centered at the
local ht-minima, until the instant t, is made (in probability) with independent parts. This has
been partially proved in [3] but we have to improve their results and add simultaneously the
study of the local time.
Second we prove that what we seek for the supremum of the local time is, mainly, a function
of the sum of theses independent parts, which converges to a Lévy process. Let us give some
details about this :
Let (Q(s), s ≥ 0) a canonical process, taking values in R+, with infinitesimal generator given
for every x > 0 by

1

2

d2

dx2
+
ζ

2
coth

(
ζ

2
x

)
d

dx
.

This process Q can be thought of as a (−ζ/2)-drifted Brownian motion Wζ Doob-conditioned to
stay positive, with the terminology of [7], which is called Doob conditioned to reach +∞ before
0 in [19] (see Section 2.1 in [3] for more details). We call BES(3, κ/2), the law of (Q(s), s ≥ 0).
For a < b,

(
W b
κ(s), 0 ≤ s ≤ τW

b
κ(a)

)
is a (−κ/2)-drifted Brownian motion starting from b and

killed when it first hits a. For any process (U(t), t ∈ R+) we denote by

τU (a) := inf{t > 0, U(t) = a},

the first time this process hits a, with the convention inf ∅ = +∞. We now introduce functional
of Wκ and Q :

F±(x) :=

∫ τQ(x)

0
exp(±Q(s))ds, x > 0, G±(a, b) :=

∫ τW
b
κ (a)

0
exp

(
±W b

κ(s)
)
ds, a < b.

(1.3)
Also for any δ > 0, and t > 0, define

nt := beκφ(t)(1+δ)c,

which is an upper bound of Nt as stated in Lemma 3.1.

Then let (Sj(t), Rj(t), ej(t), j ≤ nt) a sequence of i.i.d. random variables with Sj , Rj and ej

independent with S1
L
= F+(ht) +G+(ht, ht/2), R1

L
= F−(ht/2) + F̃−(ht/2) and e1

L
= E(1/2) [an

exponential random variable with parameter 1/2] where F̃− an independent copy of F− and F+

independent of G+. Define `j := ejSj , Hj := `jRj , note that for notational simplicity we do not
make appear the dependence in t in the sequel. Typically `j plays the roll of the local time at
the jth positive ht-minima if the walk escape from it before the instant t and Hj the roll of the
time it takes for the walk to escape from the corresponding valley.
Define the family of processes (Y1, Y2)t indexed by t, by

∀s ≥ 0, (Y1, Y2)ts :=
1

t

bseκφ(t)c∑
j=1

(`j ,Hj),

then
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Proposition 1.4. We have

(Y1, Y2)t
LS→ (Y1,Y2).

Once this is proved, we check that what we need for the supremum of the local time can be
written as a function of (Y1, Y2)t. We obtain an expression in this sens in Proposition 5.1. Then
to obtain the limit, we prove the continuity (in J1-topology) of the involved mapping and apply a
continuous mapping Theorem (see Section 4.3). It appears that with this method we can obtain
other asymptotics, like for the supremum of the local time before the last valley is reach (before
the instant t) and once it left it for good as well as for the position of the favorite site :

Theorem 1.5. We have
L∗(H(mNt+1))

t

L→ Y\1(Y−1
2 (1)),

L∗(H(mNt))

t

L→ Y\1(Y−1
2 (1)−).

Let us call F ∗t , the position of the first favorite site, F ∗t := inf{s > 0,L(t, s) = L∗(t)}, then
F ∗t
Xt

L→ BU[0,1] + 1− B

where B is a Bernoulli with parameter P(I1 < I2) independent of the uniform random variable
on [0, 1] : U[0,1].

One question we may ask here is what’s happen in the discret case or with a more general
Lévy process ?
For the discrete case, we should have a very similar behavior as the renewal structure which
appears in both cases (continuous and discrete) is very similar (see the works of Enriquez-Sabot-
Zindy [17]). The main difference comes essentially from the functional Rκ which should be
replaced by a sum of exponential of a simple random walk conditioned to remain positive (see
[18], [17]).
For a more general Lévy process, we think for example, of a spectraly negative Lévy process
(studied in the case of diffusion in random environment by Singh [32]), more work needs to be
done, especially for the environment. First to obtain a specific decomposition of the Lévy’s path
(similar to what is done for the drifted Brownian motion in Faggionato [19]) and also to study
the more complicated functional Rκ which is less known than in the brownian case. This is a
work in preparation by Véchambre [34].

The rest of the paper is organized as follows :
In Section 2 we recall the results of Faggionato on the path decomposition of the trajectories of
Wκ. Also we recall from [3] the construction of specific ht-minima which plays an important role
in the appearance of independence, under P, on the path of X before time t.

In Section 3 we study the joint process of the first nt hitting times and local times. We show
that parts of the trajectory of X is not important for what we seek (this part is technical, makes
use of some technical results of the paper [3] and can be omitted in the first instance). We then
prove the main result of this section : Proposition 3.5. It proves that the joint process (exit time,
local time) can be approximated in probability by i.i.d random variables, again the proofs make
use of some technical parts of [3] though the main ideas are discuss in the present paper.

In Section 4 we prove Proposition 1.4, and study the continuity of certain functional of (Y1,Y2)
which appears in the expression of the law we have detailed above. This section is independent
of the other, we essentially prove a basic functional limit theorem and prepare to the application
of continuous mapping theorem.
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Section 5 is where we make appear the renewal structure in the problem we want to solve. In
particular we prove how the distribution of the supremum of the local time can be approximated
by the distribution of a certain function of the couple (Y1, Y2)t, the main step being Proposition
5.1.

The appendix is a reminder of some estimates on the brownian motion, Bessel processes, and
functionals of both of these processes.

1.2. Notations. In this section we introduce typical notations for the study of diffusions in
random media, as well as elementary tools for the continuous one-dimension case. We denote by
P the probability measure associated to Wκ(.). The probability conditionally on the potential
Wκ is denoted by PWκ and is called the quenched probability. We also define the annealed
probability as

P(.) :=

∫
PWκ(.)P (Wκ ∈ dω).

We denote respectively by EWκ , E, and E the expectancies with regard to PWκ , P and P .

For any process (U(t), t ∈ R+) we denote by LU a bicontinuous version of the local time of U
when it exists. Notice that for our main process X we simply write L. We also denote by Ua
the process U starting from a, and by P a the law of Ua; with the notation U = U0. Now let us
introduce the following functional of Wκ,

A(r) :=

∫ r

0
eWκ(x)dx, r ∈ R,

and recall that whenever κ > 0, A∞ := limr→+∞A(r) < ∞ a.s. As in Brox [10], there exists a
Brownian motion B independent of Wκ, such that X(t) = A−1[B(T−1(t))], where

T (r) :=

∫ r

0
exp{−2Wκ[A−1(B(s))]}ds, 0 ≤ r ≤ τB(A∞). (1.4)

The local time of the process X at x until instant t simply denoted L(t, x), can be written as
(see [30])

L(t, x) = e−Wκ(x)LB(T−1(t), A(x)). (1.5)

With these notations, we recall the following expression of H(r), for all r ≥ 0,

H(r) = T [τB(A(r))] =

∫ r

−∞
e−Wκ(u)LB[τB(A(r)), A(u)]du. (1.6)

2. Path decomposition and Valleys

2.1. Path decomposition in the neighborhood of the ht-minima mi. First we recall some
results for h-extrema of Wκ. Let

V (i)(x) := Wκ(x)−Wκ(mi), x ∈ R, i ∈ N∗,

which is the potential Wκ translated so that it is 0 at the local minimum mi. We also define

τ−i (h) := sup{s < mi, V
(i)(x) = h}, τi(h) := inf{s > mi, V

(i)(x) = h}, h > 0.

The following result has been proved by Faggionato [19] [for (i) and (ii)], and the last fact
comes from the strong Markov property.
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Fact 2.1. (path decomposition of Wκ around the ht-minima mi)
(i) The truncated trajectories

(
V (i)(mi − s), 0 ≤ s ≤ mi − τ−i (ht)

)
,
(
V (i)(mi + s), 0 ≤ s ≤

τi(ht)−mi

)
, i ≥ 1 are independent.

(ii) Let (Q(s), s ≥ 0) be a process with law BES(3, κ/2). All the truncated trajectories
(
V (i)(mi−

s), 0 ≤ s ≤ mi − τ−i (ht)
)
for i ≥ 2 and

(
V (j)(mj + s), 0 ≤ s ≤ τj(ht)−mj

)
for j ≥ 1 are equal

in law to
(
Q(s), 0 ≤ s ≤ τQ(ht)

)
.

(iii) For i ≥ 1, the truncated trajectory
(
V (i)(s+ τi(ht)), s ≥ 0

)
is independent of

(
Wκ(s), s ≤

τi(ht)
)
and is equal in law to

(
W ht
κ (s), s ≥ 0

)
, that is, to a (−κ/2)-drifted Brownian motion

starting from ht.

2.2. Definition of valleys and standard ht-minima m̃j, j ∈ N∗.
We are interested in the potential around the ht-minima mi, i ∈ N∗, in fact intervals containing
at least [τ−i ((1 + κ)ht),Mi], however, these valleys could intersect. In order to define valleys
which are well separated and i.i.d., we introduce the following notations. These notations are
used to define valleys of the potential around some m̃i, which are shown in Lemma 2.2 to be
equal to the mi for 1 ≤ i ≤ nt with large probability.

Let
h+
t := (1 + κ+ 2δ)ht,

and define L̃+
0 := 0, m̃0 := 0, and recursively for i ≥ 1 (see Figure 1),

L̃]i := inf{x > L̃+
i−1, Wκ(x) ≤Wκ(L̃+

i−1)− h+
t },

τ̃i(ht) := inf
{
x ≥ L̃]i , Wκ(x)− inf

[L̃]i ,x]
Wκ ≥ ht

}
, (2.7)

m̃i := inf
{
x ≥ L̃]i , Wκ(x) = inf

[L̃]i ,τ̃i(ht)]
Wκ

}
,

L̃+
i := inf{x > τ̃i(ht), Wκ(x) ≤Wκ(τ̃i(ht))− ht − h+

t }.

We also introduce the following random variables for i ∈ N∗:

M̃i := inf{s > m̃i, Wκ(s) = maxm̃i≤u≤L̃+
i
Wκ(u)},

L̃∗i := inf{x > τ̃i(ht), Wκ(x)−Wκ(m̃i) = 3ht/4},

L̃i := inf{x > τ̃i(ht), Wκ(x)−Wκ(m̃i) = ht/2},
τ̃i(h) := inf{s > m̃i, Wκ(x)−Wκ(m̃i) = h}, h > 0, (2.8)

τ̃−i (h) := sup{s < m̃i, Wκ(x)−Wκ(m̃i) = h}, h > 0,

L̃−i := τ̃−i (h+
t ).

We stress that these r.v. depend on t, which we do not write as a subscript to simplify
the notations. Notice also that τ̃i(ht) is the same in definitions (2.7) and (2.8) with h = ht.
Moreover by continuity of Wκ, Wκ(τ̃i(ht)) = Wκ(m̃i) + ht. So, the m̃i, i ∈ N∗, are ht-minima,
since Wκ(m̃i) = inf [L̃+

i−1,τ̃i(ht)]
Wκ, Wκ(τ̃i(ht)) = Wκ(m̃i) + ht and Wκ(L̃+

i−1) ≥ Wκ(m̃i) + ht.
Moreover,

L̃+
i−1 < L̃]i ≤ m̃i < τ̃i(ht) < L̃i < L̃+

i , i ∈ N∗, (2.9)

L̃+
i−1 ≤ L̃

−
i < m̃i < τ̃i(ht) < M̃i < L̃+

i , i ∈ N∗. (2.10)

Furthermore by induction the r.v. L̃]i , τ̃i(ht) and L̃+
i , i ∈ N∗ are stopping times for the natural

filtration of (Wκ(x), x ≥ 0), and so L̃i, i ∈ N∗, are also stopping times. Also by induction,

Wκ(L̃]i) = inf
[0,L̃]i ]

Wκ, Wκ(m̃i) = inf
[0,τ̃i(ht)]

Wκ, Wκ(L̃+
i ) = inf

[0,L̃+
i ]
Wκ = Wκ(m̃i)−h+

t , (2.11)
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L̃+
i

h+
t

h+
t ht

L̃+
i−1 L̃

]
i L̃−

i m̃i

h+
t

1
2
ht

τ̃i(ht) M̃i L̃∗
i

3
4
ht

L̃i

Figure 1. Schema of the potential between L̃+
i−1 and L̃+

i , in the case L̃]i < L̃−i

for i ∈ N∗. We also introduce the analogue of V (i) for m̃j as follows:

Ṽ (i)(x) := Wκ(x)−Wκ(m̃i), x ∈ R, i ∈ N∗.

We call i th ht-valley the translated truncated potential
(
Ṽ (i)(x), L̃−i ≤ x ≤ L̃i

)
, for i ≥ 1.

The following lemma states that, with an overwhelming high probability, the first nt + 1
positive ht-minima mi, 1 ≤ i ≤ nt + 1, coincide with the r.v. m̃j , 1 ≤ i ≤ nt + 1. We introduce
the corresponding event Vt := ∩nt+1

i=1 {mi = m̃i}.

Lemma 2.2. Assume 0 < δ < 1. For t large enough,

P
(
Vt
)
≤ C1nte

−κht/2 = e[−κ/2+o(1)]ht , C1 > 0.

Moreover, the sequence
((
Ṽ (i)(x+ L̃+

i−1), 0 ≤ x ≤ L̃+
i − L̃

+
i−1

)
, i ≥ 1

)
, is i.i.d.

Proof:
This Lemma is proved in [3] : Lemma 2.3. �

The following remark is used several times in the rest of the paper.

Remark 2.3. On Vt, we have for every 1 ≤ i ≤ nt, mi = m̃i, and as a consequence, Ṽ (i)(x) =

V (i)(x), x ∈ R, τ−i (h) = τ̃−i (h) and τi(h) = τ̃i(h) for h > 0. Moreover, M̃i = Mi. Indeed, M̃i

is an ht-maximum for Wκ, which belongs to [m̃i, m̃i+1] = [mi,mi+1] on Vt, and there is exactly
one ht-maximum in this interval since the ht-maxima and minima alternate, which we defined
as Mi, so M̃i = Mi. So in the following, on Vt, we can write these r.v. with or without tilde.

3. Contributions for hitting and local times

3.1. Negligible parts for hitting times.
In the following Lemma we recall results of [3] which tell that the time spent between valleys
is negligible compared to the amount of time spent to escape from the valleys. It also gives an
upper bound for the number of visited valleys, and the fact that the process never backtracks in
a previous visited valley. For any i ≤ nt, define

Ui := H(L̃i)−H(m̃i), U0 = 0
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and for any m ≥ 1 the events

B1(m) :=
m⋂
k=1

{
0 ≤ H(m̃k)−

k−1∑
i=1

Ui < ṽt

}
,

where ṽt := 2t/ log ht. Finally

B2(m) :=
m⋂
j=1

{H(L̃j)−H(m̃j) < H+(L̃−j )−H(m̃j), H(m̃j+1)−H(L̃j) < H+(L̃∗j )−H(L̃j)},

with H+(xj) := inf{k > m̃j , Xk = xj} for any x.

Lemma 3.1. For any δ small enough and t large enough

P (H(m̃1) < ṽt) ≥ P (B1(nt)) ≥ 1− C2vt, (3.12)

with vt := nt · (log ht)e
−φ(t) = o(1), C2 > 0. Also we have :

P (B2(nt)) ≥ 1− C3nte
−δκht , (3.13)

P(Nt < nt) ≥ 1− C4e
−δκφ(t), (3.14)

with C3 > 0 and C4 > 0.

Proof:
The first statement is Lemma 3.7 in [3], the second one is proved in Lemmata 3.2 and 3.3 in [3].
Finally (3.14) is proved in Lemma 5.2 of the same paper. �

3.2. Negligible parts for local times.
We now provide estimations on the local time, more especially we prove that in the complemen-
tary of a small interval in the neighborhood of the first nt ht-minima, the local time at each site
is negligible compared to t. We split this section into two, the first one deals with coordinate
away from the valleys, the second with coordinates in the valleys excluding the points near the
bottom.

3.2.1. Supremum of the local time outside the valleys.
The aim of this subsection is to prove that at time t, the maximum of the local time outside the
valleys is negligible compared to t. More precisely, define the following events

B1
3(m) :=

{
sup

x∈[0,m̃1]
L(H(m̃1), x) ≤ f(t)

}
∩
m−1⋂
j=1

{
sup

x∈[L̃j ,m̃j+1]

L(H(m̃j+1), x) ≤ f(t)

}
,

B2
3(m) :=

m−1⋂
j=1

{
supx≤L̃j

(
L(H(m̃j+1), x)− L

(
H
(
L̃j
)
, x
))
≤ f(t)

}
,

B3(m) := B1
3(m) ∩ B2

3(m), f(t) = te[κ(1+3δ)−1]φ(t).

In this section we prove

Lemma 3.2. Assume δ small enough such that κ(1 + 3δ) < 1. There exists C5 > 0 such that
for any large t

P (B3(nt)) ≥ 1− C5wt,

with wt := e−κδφ(t).
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The proof is based on the lemma below, let us introduce a few notation with respect to the
environment.

τ∗1 (h) := inf{u ≥ 0, Wκ(u)− inf [0,u]Wκ ≥ h}, h > 0,

m∗1(h) := inf{y ≥ 0, Wκ(y) = inf [0,τ∗1 (h)]Wκ}.

All along this work C+ is a positive constant that may grow from line to line.

Lemma 3.3. For large t,

P
(

supx∈[0,m∗1(ht)] L[H(τ∗1 (ht)), x] > te[κ(1+3δ)−1]φ(t)
)
≤ C+

nteκδφ(t)
. (3.15)

Proof of Lemma 3.3: Thanks to (1.5) and (1.6) there exists a Brownian motion (B(s), s ≥ 0),
independent of Wκ, such that

L[H(τ∗1 (ht)), x] = e−Wκ(x)LB[τB(A(τ∗1 (ht))), A(x)], x ∈ R. (3.16)

By the first Ray–Knight theorem (see e.g. Revuz and Yor [29], chap. XI), for every α > 0, there
exists a Bessel processes Q2 of dimension 2 starting from 0, such that LB(τB(α), x) is equal to
Q2

2(α − x) for every x ∈ [0, α]. Consequently, using (3.16) and the independence of B and Wκ,
there exists a 2-dimensional Bessel process Q2 such that

L[H(τ∗1 (ht)), x] = e−Wκ(x)Q2
2

[
A(τ∗1 (ht))−A(x)

]
0 ≤ x ≤ τ∗1 (ht). (3.17)

In order to evaluate this quantity, the idea is to say that loosely speaking, Q2
2 grows almost

linearly. More formally, we consider the functions k(t) := e2κ−1φ(t), a(t) := 4φ(t) and b(t) :=
6κ−1φ(t)eκht and define the following events

A0 :=

{
A∞ :=

∫ +∞

0
e−Wκ(x)dx ≤ k(t)

}
,

A1 :=
{
∀u ∈ (0, k(t)], Q2

2(u) ≤ 2eu
[
a(t) + 4 log log[ek(t)/u]

]}
,

A2 :=
{

inf [0,τ∗1 (ht)]Wκ ≥ −b(t)
}
.

We know that P (A∞ ≥ y) ≤ C+y
−κ for y > 0 since 2/A∞ is a gamma variable of parameter (κ, 1)

(see Dufresne [16]), so P
(
A0

)
≤ C+k(t)−κ = C+e

−2φ(t). Moreover, P
(
A1

)
≤ C+ exp[−a(t)/2] =

C+e
−2φ(t) by Lemma 6.5. Also we know that − inf [0,τ∗1 (h)]Wκ, denoted by −β in (Faggionato

[19], eq. (2.2)) is exponentially distributed with mean 2κ−1 sinh(κh/2)eκh/2 ([19], eq. (2.4)). So,

P
(
A2

)
= P [− inf [0,τ∗1 (ht)]Wκ > b(t)] = exp

[
− b(t)κ/(2 sinh(κht/2)eκht/2)

]
≤ e−2φ(t)

for large t.
Now assume we are on A0 ∩ A1 ∩ A2. Due to (3.17), we have for every 0 ≤ x < τ∗1 (ht), since
0 < A(τ∗1 (ht))−A(x) ≤ A∞ ≤ k(t),

L[H(τ∗1 (ht)), x] ≤ e−Wκ(x)2e[A(τ∗1 (ht))−A(x)]
{
a(t) + 4 log log

[
ek(t)/[A(τ∗1 (ht))−A(x)]

]}
.

(3.18)
We now introduce

fi := inf{x ≥ 0, Wκ(x) ≤ −i} = τWκ(−i), i ∈ N,
and let 0 ≤ x < τ∗1 (ht). There exists i ∈ N such that fi ≤ x < fi+1. Moreover, we are on A2,
so i ≤ b(t). Furthermore, x < fi+1, so Wκ(x) ≥ −(i+ 1) and then e−Wκ(x) ≤ ei+1 = e−Wκ(fi)+1.
All this leads to

e−Wκ(x)[A(τ∗1 (ht))−A(x)
]

= e−Wκ(x)

∫ τ∗1 (ht)

x
eWκ(u)du ≤ e

∫ τ∗1 (ht)

fi

eWκ(u)−Wκ(fi)du. (3.19)
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To bound this, we introduce the event

A3 :=

bb(t)c⋂
i=0

{∫ τ∗1 (ht)

fi

eWκ(u)−Wκ(fi)du ≤ e(1−κ)htb(t)nte
κδφ(t)

}
.

We now consider τ∗1 (u, ht) := inf{y ≥ u, Wκ(y)− inf [u,y]Wκ ≥ ht} ≥ τ∗1 (ht) for u ≥ 0. We have

E

(∫ τ∗1 (ht)

fi

eWκ(u)−Wκ(fi)du
)
≤ E

(∫ τ∗1 (fi,ht)

fi

eWκ(u)−Wκ(fi)du
)

= β0(ht),

by the strong Markov property applied at stopping time fi, where β0(h) := E
(∫ τ∗1 (h)

0 eWκ(u)du
)
.

We know (see [3] eq. (3.38), in the proof of Lemma 3.6) that β0(h) ≤ C+e
(1−κ)h for large h.

Hence for large t by Markov inequality,

P
(
A3

)
≤

bb(t)c∑
i=0

P

(∫ τ∗1 (ht)

fi

eWκ(u)−Wκ(fi)du > e(1−κ)htb(t)nte
κδφ(t)

)
≤ [b(t) + 1]β0(ht)

e(1−κ)htb(t)nteκδφ(t)
≤ C+

nteκδφ(t)
.

Now, on ∩3
j=0Aj , (3.18) and (3.19) lead to

L[H(τ∗1 (ht)), x] ≤ 2e2+(1−κ)htb(t)nte
κδφ(t)

{
a(t) + 4 log log

[
ek(t)/[A(τ∗1 (ht))−A(x)]

]}
. (3.20)

For any 0 ≤ x ≤ m∗1(ht), inf [0,τ∗1 (ht)]Wκ ≥ −b(t) so

A(τ∗1 (ht))−A(x) =

∫ τ∗1 (ht)

x
eWκ(u)du ≥

∫ τ∗1 (ht)

m∗1(ht)
eWκ(u)du ≥ e−b(t)[τ∗1 (ht)−m∗1(ht)] ≥ e−b(t)

on the event ∩4
i=0Ai with A4 := {τ∗1 (ht)−m∗1(ht) ≥ 1}. Since m1 = m∗1(ht) and τ1(ht) = τ∗1 (ht)

on {M0 ≤ 0} by definition of ht-extrema, we have

P
(
A4

)
≤ P (0 < M0 < m1) + P [τ1(ht)−m1 < 1]

≤ 2κhte
−κht + P (τQ(ht)− τQ(ht/2) < 1) ≤ 2κhte

−κht + C+ exp[−(c−)h2
t ]

due to ([3], eq. (2.8), coming from Faggionato [19]), Fact 2.1 (ii) and (6.85).
c− is a positive constant that may decrease from line to line in the sequel of the paper. Now, we
have ek(t)/[A(τ∗1 (ht))−A(x)] ≤ ek(t)eb(t) on ∩4

i=0Ai, and then, on this event, (3.20) leads to

L[H(τ∗1 (ht)), x] ≤ 2e2+(1−κ)htb(t)nte
κδφ(t)

{
a(t) + 4 log log

[
ek(t)eb(t)

]}
.

≤ C+tφ(t)e[κ(1+δ)−1]φ(t)eκδφ(t)ht,

since φ(t) = o(log t), ht = log t − φ(t) and nt = beκ(1+δ)φ(t)c. We notice that for large t,
C+φ(t)ht ≤ eκδφ(t) since log log t = o(φ(t)). Hence, for large t,

L[H(τ∗1 (ht)), x] ≤ te[κ(1+3δ)−1]φ(t),

on ∩4
i=0Ai for every 0 ≤ x ≤ m∗1(ht). This gives for large t,

P
(

supx∈[0,m∗1(ht)] L[H(τ∗1 (ht)), x] ≤ te[κ(1+3δ)−1]φ(t)
)
≥ P

(
∩4
i=0Ai

)
≥ 1− C+

nteκδφ(t)
,

due to the previous bounds for P
(
Ai
)
, 0 ≤ i ≤ 4. This proves the lemma. �

With the help of the previous lemma, we can now prove Lemma 3.2:
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Proof of Lemma 3.2: The method is similar to the proof of Lemma 3.7 of [3]. Recall the
definition of L̃∗i < L̃i just above (2.8), also let

τ̃∗i+1(ht) := inf
{
u ≥ L̃∗i , Wκ(u)− inf [L̃∗i ,u]Wκ ≥ ht

}
≤ τ̃i+1(ht), i ≥ 1,

m̃∗i+1(ht) := inf
{
u ≥ L̃∗i , Wκ(u) = inf [L̃∗i ,τ̃

∗
i+1(ht)]

Wκ

}
, i ≥ 1,

A5 := ∩nt−1
i=1

{
τ̃∗i+1(ht) = τ̃i+1(ht)

}
,

Xi(u) := X
(
u+H

(
L̃i
))
, X∗i (u) := X

(
u+H

(
L̃∗i
))
, u ≥ 0. (3.21)

By the strong Markov property, Xi and X∗i are diffusions in the environment Wκ, starting
respectively from L̃i and L̃∗i . We denote respectively by LXi , LX∗i , HXi and HX∗i

the local times
and hitting times of Xi and X∗i . We have for every x ≥ L̃∗i ,

L(H(m̃i+1), x)− L(H(L̃i), x) ≤ L(H(m̃i+1), x)− L(H(L̃∗i ), x) = LX∗i
(
HX∗i

(m̃i+1), x
)
.

Consequently, on A5 ∩ A6 with A6 := ∩nt−1
j=1

{
HXj (m̃j+1) < HXj

(
L̃∗j
)}

, for 1 ≤ i ≤ nt − 1,

sup
x∈R

(
L(H(m̃i+1), x)− L

(
H
(
L̃i
)
, x
))

= sup
L̃∗i≤x≤m̃i+1

(
L(H(m̃i+1), x)− L

(
H
(
L̃i
)
, x
))

≤ sup
L̃∗i≤x≤m̃i+1

LX∗i
(
HX∗i

(m̃i+1), x
)

≤ sup
L̃∗i≤x≤m̃∗i+1

LX∗i
(
HX∗i

(τ̃∗i+1(ht)), x
)
, (3.22)

since m̃∗i+1 = m̃i+1 ≤ τ̃i+1(ht) = τ̃∗i+1(ht) on A5. Now, notice that the right hand side of (3.22)
is the supremum of the local times of X∗i − L̃∗i , up to its first hitting time of τ̃∗i+1(ht)− L̃∗i , over
all locations in [0, m̃∗i+1 − L̃∗i ]. Since X∗i − L̃∗i is a diffusion in the environment

(
Wκ(L̃∗i + x) −

Wκ(L̃∗i ), x ∈ R
)
, which has on [0,+∞) the same law as (Wκ(x), x ≥ 0) because L̃∗i is a stopping

time for Wκ, the right hand side of (3.22) has the same law, under the annealed probability P,
as supx∈[0,m∗1(ht)] L[H(τ∗1 (ht)), x]. Consequently,

P
( nt−1⋃

i=1

{
sup
x∈R

(
L(H(m̃i+1), x)− L(H(L̃i), x)

)
> te[κ(1+3δ)−1]φ(t)

})
≤ nt

[
P
(

supx∈[0,m∗1(ht)] L
[
H(τ∗1 (ht)), x

]
> te[κ(1+3δ)−1]φ(t)

)
+ P

(
A5

)
+ P

(
A6

)]
≤ C+e

−κδφ(t) (3.23)

by Lemma 3.3, since P
(
A5

)
≤ C+nthte

−κht by ([3], eq. (3.41)), P
(
A6

)
≤ C+nte

−κht/16 by
([3], Lemma 3.3), and since φ(t) = o(log t). Notice that, as before, m̃1 = m1 = m∗1(ht) on
Vt ∩ {M0 ≤ 0}. Finally,

P
(

sup
x∈[0,m̃1]

L(H(m̃1), x) > te[κ(1+3δ)−1]φ(t)
)
≤ C+

eκδφ(t)
+ P

(
Vt
)

+ P (0 < M0 < m1) ≤ C+

eκδφ(t)

also by Lemma 3.3, Lemma 2.2, and since P (0 < M0 < m1) ≤ 2κhte
−κht due to ([3], eq. (2.8)).

This and (3.23) prove the lemma. �

3.2.2. Local time in the valley [L̃−j , L̃j ] but far from m̃j.
Let

Dj := [m̃j − rt, m̃j + rt], with rt := (φ(t))2. (3.24)
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B4(m) :=

m⋂
j=1

 sup
x∈D̄j∩[τ−j (h+t ),L̃j ]

(L(H(L̃j), x)− L(H(m̃j), x)) < te−2φ(t)

 , m ≥ 1.

with Dj the complementary of Dj .

Lemma 3.4. Assume 0 < δ < 1/8. There exists C6 > 0 such that

P
[
B4(nt)

]
≥ 1− C6nte

−2φ(t),

Proof: We make the proof replacing r(t) = (φ(t))2 by r(t) = C0φ(t) with C0 a constant large
enough, this is a little more precise than what we need here and may be used for other purposes.
Let j ∈ [1, nt]. First under PWκ

mj , there exists a Brownian motion (B(s), s ≥ 0), independent of
Ṽ (j), such that

L
[
H(L̃j), x

]
= e−Ṽ

(j)(x)LB[τB(Aj(L̃j)), A
j(x)], x ∈ R,

where Aj(x) :=
∫ x
m̃j
eṼ

(j)(s)ds. By scaling, there exists another Brownian motion B̃ that we still

denote B for simplicity, independent of Ṽ (j), such that

L
[
H(L̃j), x

]
= e−Ṽ

(j)(x)Aj(L̃j)LB[τB(1), Aj(x)/Aj(L̃j)] x ∈ R. (3.25)

In order to bound the terms LB
[
τB(1), .

]
and Aj(L̃j) in (3.25), we first introduce

A1 :=
{

supu∈R LB[τB(1), u] ≤ e2φ(t)
}
, A2 :=

{
Aj(L̃j) ≤ 2eht+2φ(t)/κ

}
. (3.26)

We have P
(
A2

)
≤ 2e−2φ(t) for large t by Lemma 6.4 eq. (6.94) and (6.95). Moreover on Vt, we

have by Remark 2.3 and Fact 2.1 (ii) and (iii), Aj
(
L̃j
)
≤
[
τj(ht)−mj

]
eht +

∫ Lj
τj(ht)

eV
(j)(s)ds L=

ehtτQ(ht) + G+(ht/2, ht), where recall that Q has law BES(3, κ/2) and is independent of
G+(ht/2, ht), which is defined in (1.3), and with Lj := inf{s > τj(ht), V

(j)(s) = ht/2}. Conse-
quently,

P
(
A2

)
≤ P

(
τQ(ht) > e2φ(t)/κ

)
+ P

(
G+(ht/2, ht) > eht+2φ(t)/κ

)
+ P

(
Vt
)
≤ C+e

−2φ(t)

for large t by eq. (6.86), Lemma 6.3 eq. (6.92) and Lemma 2.2, and since φ(t) = o(log t) and
log log t = o(φ(t)).

Now, we would like to bound the term e−Ṽ
(j)(x) that appears in (3.25). To this aim, we define

A3 :=
{
τ̃j [κC0φ(t)/8] ≤ m̃j + C0φ(t)

}
, A4 :=

{
inf

[τj [κC0φ(t)/8],τj(ht)]
V (j) ≥ κC0φ(t)/16

}
.

We can prove using Fact 2.1 (see [3] Lemma 2.5 for details) that P
(
A3

)
≤ C+e

−[κ2C0φ(t)]/(16
√

2) ≤
e−2φ(t) if we choose C0 large enough. Moreover with Fact 2.1 again (see [3], eq. (2.31) applied with
h = C0φ(t), α = κ/8, γ = κ/16 and ω = ht/(C0φ(t))) we get P

(
A4

)
≤ e−κ

2C0φ(t)/16 ≤ e−2φ(t)

for large t. We notice that inf [m̃j+C0φ(t),τ̃j(ht)] Ṽ
(j) ≥ κC0φ(t)/16 on A3 ∩ A4 ∩ Vt, thanks

to Remark 2.3. We prove similarly that P
(
A5

)
≤ C+e

−κ2C0φ(t)/(16
√

2) + P
(
Vt
)
≤ 2e−2φ(t),

where A5 :=
{

inf [τ̃−j (ht),m̃j−C0φ(t)] Ṽ
(j) ≥ κC0φ(t)/16

}
. Also by ([3], Lemma 2.7), P

(
A6

)
≤

e−κht/8, with A6 :=
{

inf [τ̃−j (h+t ),τ̃−j (ht)]
Ṽ (j) ≥ ht/2

}
. We also know that Ṽ (j)(x) ≥ ht/2 for all

τ̃j(ht) ≤ x ≤ L̃j by definition of L̃j . Consequently on ∩6
i=3Ai ∩ Vt, for all x ∈ Dj ∩ [τ̃−j (h+

t ), L̃j ],
we have e−Ṽ (j)(x) ≤ e−κC0φ(t)/16.
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Hence on ∩6
i=1Ai ∩ Vt, we have under PWκ

m̃j
, by (3.25) and (3.26),

sup
x∈Dj∩[τ̃−j (h+t ),L̃j ]

L
[
H(L̃j), x

]
≤ 2te(1+2/κ)φ(t)e−κC0φ(t)/16 ≤ te−2φ(t),

if we choose C0 large enough. So, conditioning by Wκ and applying the strong Markov property
at time H(m̃j), we get

P
[

sup
x∈Dj∩[τ̃−j (h+t ),L̃j ]

(
L
[
H(L̃j), x

]
− L

[
H(m̃j), x

])
≤ te−2φ(t)

]
≥ E

(
PWκ
m̃j

(
∩6
i=1 Ai ∩ Vt

))
≥ 1− C+e

−2φ(t)

uniformly for large t due to the previous estimates and thanks to Lemma 2.2. This proves the
lemma. �

3.3. Convergence of the main contributions.
In this section we make a link between the families {[Uj := H(L̃j)−H(m̃j),L(H(L̃j), m̃j)], j ≤
nt}, and the i.i.d. sequence {(Hj , `j), j ≤ nt} described in the introduction.

Let F±1 (a), F±2 (a) and F±3 (a) independent copies of F±(a) also independent of G±(a, b).

Proposition 3.5. Let t > 0 large, for δ > 0 small enough (recall that δ appears in the definitions
of nt and h+

t ) there exists d1 = d1(δ, κ) > 0, D1(d1) > 0 and a sequence {(Sj(t), Rj(t), ej(t)), j ≤
nt} of i.i.d. random variables with Sj, Rj and ej independent and S1

L
= F+

1 (ht) +G+(ht, ht/2),

R1
L
= F−2 (ht/2) + F−3 (ht/2) and e1

L
= E(1/2) such that

P
(
∩ntj=1{|Uj −Hj | ≤ εtHj , |L(H(L̃j), m̃j)− `j | ≤ εt`j}

)
≥ 1− e−D1ht ,with

`j := Sjej , Hj := Rj`j , εt := e−d1ht .

The proof of the above Proposition, which is in the spirit of the proofs of Propositions 3.4 and
4.4 in [3] makes use of the following Lemma:

Lemma 3.6. Let t > 0 large,
i) There exists a sequence (ej(t), j ≤ nt) of i.i.d. random variables with exponential law of mean
2 and independent of Wκ such that there exist constants d− > 0, D− = D−(d−) > 0 possibly
depending on κ and δ such that

P

 nt⋂
j=1

{|Uj −Hj | ≤ e−d−htHj ,L(H(L̃j), m̃j) = Lj}

 ≥ 1− e−D−ht , (3.27)

where Lj := ej
∫ L̃j
m̃j
eṼ

(j)(x)dx, Hj := LjRj, Rj :=
∫ τ̃+j (ht/2)

τ̃−j (ht/2)
e−Ṽ

(j)(x). Moreover the random vari-

ables {(Lj ,Hj), j ≥ 1} are i.i.d.
ii) Also there exists a sequence of independent and identically distributed random variables
(Sj , j ≤ nt), independent of (Rj , j ≤ nt) and (ej , j ≤ nt) such that

P

 nt⋂
j=1

{∣∣∣∣∣
∫ L̃j

m̃j

eṼ
(j)(x)dx− Sj

∣∣∣∣∣ ≤ e−d−htSj
} ≥ 1− e−D−ht , and S1

L
= F+(ht). (3.28)
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Proof of Lemma 3.6
For (3.27) : by the strong Markov property, formula (1.5) and (1.6) the sequence {Uj ,L(H(L̃j), m̃j), j ≤
nt} is equal to the sequence {Hj(L̃j), Lj(Hj(L̃j), m̃j), j ≤ nt}, where

Hj(L̃j) :=

∫ L̃j

−∞
e−Ṽ

(j)(u)LBj [τB
j
(Aj(L̃j)), A

j(u)]du,

Lj(Hj(L̃j), m̃j) := LBj [τB
j
(Aj(L̃j)), 0], Aj(u) :=

∫ u

m̃j

eṼ
(j)(x)dx, (3.29)

with (Bj , j ≤ nt) a sequence of independent standard Brownian motions independent ofWκ, such
that Bj starts at Aj(m̃j) = 0 and is killed when it first hits Aj(L̃j). Also LBj is the local time
associated with Bj . Define Aj := {maxu<L̃−j

LBj [τB
j
(Aj(L̃j)), A

j(u)] = 0}, we can prove with

exactly the same method than in the proof of Lemma 3.2 in [3] (see the estimation of PWκ(Ej))
that there exists c− > 0 (possibly depending on κ and δ) such that P(∩ntj=1Aj) ≥ 1− e−c−ht . So

P

 nt⋂
j=1

{
Hj(L̃j) = hj

} ≥ 1− e−c−κht ,

with hj :=
∫ L̃j
L̃−j

e−Ṽ
(j)(x)LBj [τB

j
(Aj(L̃j)), A

j(u)]du. We also notice that (hj ,Lj(Hj(L̃j), m̃j))

are strictly function of Bj and (Ṽ (j)(x + L̃+
j−1), 0 ≤ x < L̃+

j − L̃
+
j−1), where by construction

L̃+
i−1 < L̃−j so the random variables (hj ,Lj(Hj(L̃j), m̃j), j ≤ nt) are i.i.d by the second fact of

Lemma 2.2.
By scale invariance of brownian motion Bj we have that (LBj [τB

j
(Aj(L̃j)), A

j(u)], L̃−j ≤ u ≤ L̃j)
is equal in law to (Aj(L̃j)LB̃j [τ

B̃j (1), Aj(u)/Aj(L̃j)], L̃
−
j ≤ u ≤ L̃j), where B̃j is a standard

Brownian motion independent of Wκ which we still denote by Bj in the sequel. In particular

(hj ,Lj(Hj(L̃j), m̃j))
L
= (h̃j , L̃j),

h̃j := Aj(L̃j)

∫ L̃j

L̃−j

e−Ṽ
(j)(x)LBj [τB

j
(1), Aj(u)/Aj(L̃j)]du, L̃j := Aj(L̃j)LBj (τB

j
(1), 0). (3.30)

Then let ej := LBj (τB
j
(1), 0) and recall that by the first Ray Knight theorem, ej has for law an

exponential variable with parameter 1/2. Note then that L̃j = Lj , so to finish the proof of 3.27
we only have to approximate h̃j in probability. This is what is done in the proof of Lemma 4.7
of [3] : for any 1 ≤ j ≤ nt and ε > 0

P

(∣∣∣∣∣h̃j −Aj(L̃j)
∫ τ̃+j (ht/2)

τ̃−j (ht/2)
e−Ṽ

(j)(x)ej

∣∣∣∣∣ > e−(1−3ε)ht/6Aj(L̃j)

∫ τ̃+j (ht/2)

τ̃−j (ht/2)
e−Ṽ

(j)(x)ej

)
≤ C+e

−c−εht .

Recall that C+ (resp. c−) is a positive constant that may grow (resp. decrease) from line to line
along the paper. For (3.28), the proof can be found in [3] at the end of the proof of Proposition
4.4. �

Proof of Proposition 3.5
By the first part i) of Lemma 3.6 the sequence (ej ,Hj ,Lj , j ≤ nt) is i.i.d, moreover ej is inde-
pendent of (Hj ,Lj). This together with part ii) yields

P
(
∩ntj=1{|Uj − ejSjRj | ≤ εtejSjRj , |L(H(L̃j), m̃j)− ejSj | ≤ εtejSj}

)
≥ 1− e−D1ht ,
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with Sj independent of Rj . Then as (m̃j , j ≥ 1) is a subsequence of (mj , j ≥ 1), using Fact 2.1

for any j we have (Rj ; Sj)
L
= (F+

1 (ht) +G+(ht, ht/2);F−2 (ht/2) + F−3 (ht/2)). �

4. Convergence toward the Lévy process (Y1,Y2) and Continuity

4.1. Preliminaries. We begin this section by the convergence of certain repartition functions,
a key results that are essentially improvement of the second part of Lemma 5.1 in [3].

Lemma 4.1.

lim
t→+∞

sup
x∈[e−(1−2ε)φ(t),+∞[

∣∣∣xκeκφ(t)P (e1S1/t > x)− C2

∣∣∣ = 0, (4.31)

lim
t→+∞

sup
y∈[e−(1−3ε)φ(t),+∞[

∣∣∣yκeκφ(t)P (e1S1R1/t > y)− C2E [(Rκ)κ]
∣∣∣ = 0, (4.32)

with C2 > 0 a known constant [see below (4.39)].
For any α > 0, eκφ(t)P(`1/t ≥ x,H1/t ≥ y) converges uniformly when t goes to infinity on
[α,+∞[×[α,+∞[ to ν ([x,+∞[×[y,+∞[) [see Section 1.1].

Proof:
Proof of (4.31)
We first prove that xκeκφ(t)P (S1/t > x) converges uniformly in x ∈

[
e−(1−ε)φ(t),+∞

[
to a con-

stant c3, that is, we prove that

lim
t→+∞

sup
x∈[e−(1−ε)φ(t),+∞[

∣∣∣xκeκφ(t)P (S1/t > x)− c3

∣∣∣ = 0. (4.33)

For that, let y = e(1−ε)φ(t)x, we have to prove that

lim
t→+∞

sup
y∈[1,+∞[

∣∣∣yκeκεφ(t)P
(
S1/e

ht+εφ(t) > y
)
− c3

∣∣∣ = 0, (4.34)

but this is equivalent to prove that for any function f : ]0,+∞[→ [1,+∞[,

lim
t→+∞

(f(t))κeκεφ(t)P
(
S1/e

ht+εφ(t) > f(t)
)

= c3. (4.35)

First by definition (see Proposition 3.5), S1 can be writen as a sum of two independent functional,
that we denote, for simplicity, as the sum of two generic functionals

S1/t =
(
F+

1 (ht) +G+(ht, ht/2)
)
/t = e−φ(t)

(
e−htF+

1 (ht) + e−htG+(ht, ht/2)
)

(4.36)

Since we know an asymptotic for the Laplace transform of F+(ht)/e
ht and G+(ht/2, ht), the

proof of (4.35) is similar to the proof of a Tauberian theorem. First by (6.82) and (6.83) we have

∀γ > 0, ωf,t(γ) :=
(

1− E
[
e−γS1/(f(t)eht+εφ(t))

])
(γ)−1 ∼

t→+∞
c4γ

κ−1(f(t))−κe−κεφ(t), (4.37)

with c4 a positive constant. Now as ωf,t is the Laplace transform of the measure Uf,t :=

1R+(z)P
(
S1/(f(t)eht+εφ(t)) > z

)
dz, from (4.37) we have

∀γ > 0,
ωf,t(γ)

ωf,t(1)
−→
t→+∞

γκ−1.

From this we can follow the same line as in the proof of a classical Tauberian theorem (see for
example [21] volume 2, section XIII.5, page 442). So as for the proof of Theorem 1 in [21] we
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can deduce that

∀z > 0,
Uf,t([0, z])

ωf,t(1)
−→
t→+∞

z1−κ

Γ(2− κ)
.

Then as in the proof of Theorem 4 of the same reference page 446, we deduce from the monotony
of the densities of measures Uf,t that

∀z > 0,
P
(
S1/(f(t)eht+εφ(t)) > z

)
ωf,t(1)

−→
t→+∞

z−κ
1− κ

Γ(2− κ)
.

Considering this convergence with z = 1 we get exactly (4.35) for c3 = (1 − κ)/c4Γ(2 − κ), so
(4.33) follows. Let at := eεφ(t), for any x > 0

xκeκφ(t)P (e1S1/t > x, e1 < at) = 2−1

∫ at

0
(x/u)κeκφ(t)P (S1/t > x/u)uκe−u/2du,

because e1 has law E(1/2). Taking x arbitrary in [e−(1−2ε)φ(t),+∞[, we have x/u ∈ [e−(1−ε)φ(t),+∞[,
∀u ∈]0, at], so thanks to (4.33) we get

lim
t→+∞

sup
x∈[e−(1−2ε)φ(t),+∞[

∣∣∣∣xκeκφ(t)P (e1S1/t > x, e1 < at)− 2−1c3

∫ +∞

0
uκe−u/2du

∣∣∣∣ = 0. (4.38)

Now for any x > 0 and t large enough such that ∀y ≥ 1, yκeκφ(t)P (S1/t > y) < 2c3, we have∣∣∣xκeκφ(t)P (e1S1/t > x, e1 < at)− xκeκφ(t)P (e1S1/t > x)
∣∣∣

= xκeκφ(t)P (e1S1/t > x, e1 ≥ at)

= 2−1

∫ +∞

at

xκeκφ(t)P (S1/t > x/u) e−u/2du

= 2−1

∫ +∞

at

uκ(x/u)κeκφ(t)P (S1/t > x/u)1x≤ue
−u/2du

+ 2−1

∫ +∞

at

uκ(x/u)κeκφ(t)P (S1/t > x/u)1x>ue
−u/2du

≤ 2−1eκφ(t)

∫ +∞

at

uκe−u/2du+ c3

∫ +∞

at

uκe−u/2du.

For the second term in the third equality we used the fact that (x/u)κeκφ(t)P (S1/t > x/u) < 2c3

when x ≥ u. Since at = eεφ(t), the last quantities converges to 0 when t goes to infinity.
Combining this with (4.38) we get

lim
t→+∞

sup
x∈[e−(1−2ε)φ(t),+∞[

∣∣∣∣xκeκφ(t)P (e1S1/t > x)− 2−1c3

∫ +∞

0
uκe−u/2du

∣∣∣∣ = 0, (4.39)

and this is exactly (4.31) with C2 := 2−1c3

∫ +∞
0 uκe−u/2du.

Proof of (4.32)
Let µR1 the distribution of R1, for any y, a > 0 and t > 0 by independence of e1S1 and R1

yκeκφ(t)P (e1S1R1/t > y, R1 < a) =

∫ a

0
(y/u)κeκφ(t)P (e1S1/t > y/u)uκµR1(du).
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Taking a = at = eεφ(t) and y arbitrary in [e−(1−3ε)φ(t),+∞[, we have y/u ∈ [e−(1−2ε)φ(t),+∞[,∀u ∈
]0, at], so, thanks to (4.39) we get

lim
t→+∞

sup
y∈[e−(1−3ε)φ(t),+∞[

∣∣∣∣yκeκφ(t)P (e1S1R1/t > y, R1 < at)− C2

∫ +∞

0
uκµR1(du)

∣∣∣∣ = 0.

Also, as
∫ +∞

0 uκµR1(du) converges to E [(Rκ)κ], when t goes to infinity

lim
t→+∞

sup
y∈[e−(1−3ε)φ(t),+∞[

∣∣∣yκeκφ(t)P (e1S1R1/t > y, R1 < at)− C2E [(Rκ)κ]
∣∣∣ = 0.

Finally, as the family (R1)t>0 is bounded in all Lp spaces, we can proceed as before to remove
the event R1 < at and we thus get

lim
t→+∞

sup
y∈[e−(1−3ε)φ(t),+∞[

∣∣∣yκeκφ(t)P (e1S1R1/t > y)− C2E [(Rκ)κ]
∣∣∣ = 0, (4.40)

which is (4.32).

We now prove the last assertion. For any x, y, a and t > 0, we have

eκφ(t)P (e1S1/t > x, e1S1R1/t > y, R1 < a)

=

∫ a

0
eκφ(t)P (e1S1/t > x, e1S1/t > y/u)µR1(du),

=

∫ a∧(y/x)

0
eκφ(t)P (e1S1/t > y/u)µR1(du) +

∫ a

a∧(y/x)
eκφ(t)P (e1S1/t > x)µR1(du),

=
1

yκ

∫ a∧(y/x)

0
eκφ(t)(y/u)κP (e1S1/t > y/u)uκµR1(du)

+
1

xκ

∫ a

a∧(y/x)
eκφ(t)xκP (e1S1/t > x)µR1(du).

Taking a = at = eεφ(t) and x, y arbitrary in [α,+∞[ (for some α > 0), we have y/u ∈
[e−(1−2ε)φ(t),+∞[, ∀u ∈]0, at] whenever t is large enough, so, thanks to (4.39) we get that
eκφ(t)P (e1S1/t > x, e1S1R1/t > y, R1 < at) converges uniformly in (x, y) ∈ [α,+∞[×[α,+∞[
toward

x−κP(Rκ > y/x) + y−κE((Rκ)κ1R≤y/x).

Then as before we can remove the event {R1 < at}, we get the last assertion. �

4.2. Proof of Proposition 1.4.
We start with the finite dimensional convergence
Lemma 4.2. For any k ∈ N and si > 0, i ≤ k, ((Y1, Y2)tsi , i ≤ k) converge in law as t goes to
infinity to ((Y1,Y2)si , i ≤ k).

Proof:
Proof is basic here, however we give some details as we deal with a two dimensional walk which
increments depend on t itself. As Y t

1 (s) and Y t
2 (s) are sums of i.i.d sequence we only have

to prove the convergence in law for the couple (Y1, Y2)ts for any s > 0. Define (Y >b
1 , Y >b

2 )

obtained from (Y1, Y2) keeping the increments larger than b, Y >b
1 (s) := 1

t

∑bseκφ(t)c
j=1 `j1`j/t>b,

and Y >b
2 (s) := 1

t

∑bseκφ(t)c
j=1 Hj1Hj/t>b. Also let Y ≤bi := Yi − Y >b

i . We first prove that for any
s > 0,

lim
ε→0

lim
t→+∞

P(||(Y ≤ε1 , Y ≤ε2 )ts|| > ε1−κ(2−κ)) = 0, (4.41)
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where for any a ∈ R2, ||a|| := maxi≤2 |ai|, and 1− κ(2− κ) > 0 as κ < 1.

We compute the first moment of Y ≤ε1 (s) and Y ≤ε2 (s). Let η > 0 such that κ − (1 − 3η) < 0,
applying Fubini we have

eκφ(t)E
(
`1
t
1`1/t≤ε

)
= eκφ(t)E

[
e1S1

t
1e1S1/t≤ε

]
≤
∫ ε

0
eκφ(t)P (e1S1/t > x) dx

=

∫ e−(1−2η)φ(t)

0
eκφ(t)P (e1S1/t > x) dx+

∫ ε

e−(1−2η)φ(t)

eκφ(t)P (e1S1/t > x) dx

≤ e(κ−(1−2η))φ(t) +

∫ ε

e−(1−2η)φ(t)

x−κxκeκφ(t)P (e1S1/t > x) dx.

The first term converges to 0 when t goes to infinity because κ− (1− 2η) < 0 and, according to
(4.31), for t large enough, we have

xκeκφ(t)P (e1S1/t > x) ≤ 2C2, ∀x ≥ e−(1−2η)φ(t).

For such t, the second term is less than

2C2

∫ ε

0
x−κdx = 2C2

ε1−κ

1− κ
,

so we get that

∀t ≥ 1,∀ε ∈]0, 1], eκφ(t)E
(
`1
t
1`1/t≤ε

)
≤ e(κ−(1−2η))φ(t) + C+ε

1−κ. (4.42)

Using the same method and applying this time (4.31), we get that

∀t ≥ 1, ∀ε ∈]0, 1], eκφ(t)E
(
H1

t
1H1/t≤ε

)
≤ e(κ−(1−3η))φ(t) + C+ε

1−κ. (4.43)

We thus obtain

E
(
Y ≤ε1 (s)

)
≤ se(κ−(1−2η))φ(t) + C+sε

1−κ, (4.44)

E
(
Y ≤ε2 (s)

)
≤ se(κ−(1−3η))φ(t) + C+sε

1−κ, (4.45)

then a Markov inequality yields (4.41).

The next step is to prove that (Y >ε
1 , Y >ε

2 )ts can be written as the integral of a point process
which converge to the desired limit. We have

(Y >ε
1 , Y >ε

2 )ts =

(∫
x>ε

∫ s

0
xP1

t (dx, dv),

∫
x>ε

∫ s

0
xP2

t (dx, dv)

)
where the measures P1

t and P2
t are defined by P1

t :=
∑+∞

i=1 δt−1`i,e−κφ(t)i
, and the same for P2

t

replacing ` by H. Recall that P1
t and P2

t are dependent and now prove that (P1
t ,P2

t ) converge to
a Poisson point measure. For that just use Lemma 4.1 together with Proposition 3.1 in [28] after
discretization, it implies that (P1

t ,P2
t ) converge weakly to the Poisson random measure denoted

(P1,P2) with intensity measure given by ds× ν.
Then using that for any ε > 0, and T < + ∞, on [0, T ) × (ε,+ ∞) × (ε,+ ∞) dsν is finite, we
have that (Y >ε

1 , Y >ε
2 )ts converge weakly to

(Y>ε1 ,Y>ε2 )s :=

(∫
x>ε

∫ s

0
xP1(dx, dv),

∫
x>ε

∫ s

0
xP2(dx, dv)

)
.
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We are left to prove that (Y>ε1 ,Y>ε2 ) converge to (Y1,Y2) when ε ↓ 0. This is a straightforward
computation, that we detail for completeness. Let ν1([x,+∞[) :=

∫ +∞
0 ν ([x,+∞[×[y,+∞[) dy,

we have

E
(∫

x≤ε

∫ s

0
xP1(dx, dv)

)
= s

∫
x≤ε

xν1(x) = Cε2−κ,

Then a Markov inequality, proves that for any s > 0, the process
∫
x≤ε
∫ s

0 xP
1(dx, dv) converge to

zero (when ε goes to zero) in probability. The same is true for
∫
x≤ε
∫ s

0 xP
2(dx, dv), so we obtain

that in probability (Y>ε1 ,Y>ε2 )s converge to (Y1,Y2)s when ε→ 0. �

We now prove tightness of the family measures of the processes (Y1, Y2)t denoted (D(Y1, Y2)t)t.

Lemma 4.3. The family of laws (D(Y1, Y2)t)t is tight on (D([0,+∞),R2), J1).

Proof:
We only have to prove that the family law of the restriction of the process to the interval [0, T ],
((Y1, Y2)t|[0,T ])t is tight. To prove this we use the following restatement of Theorem 1.8 in [8]
using Aldous’s tightness criterion (see Condition 1, and equation 16.22 page 176 in [8]) also used
in [9] page 100. We have to check the two following statements:
1) for any ε > 0, there exists a such that for any t large enough P(sups∈[0,T ] ||(Y1, Y2)ts|| ≥ a) ≤ ε.
2) for any ε > 0, and η > 0 there exists δ, 0 < δ < T and t0 > 0 such that for t > t0,

P(ω((Y1, Y2)t, δ, T ) ≥ η) ≤ ε,
with ω((Y1, Y2)t, δ, T ) := sup0≤r≤T ω((Y1, Y2)t, δ, T, r), and ω((Y1, Y2)t, δ, T, r) is defined by
sup0∨(r−δ)≤u1<u<u2≤(r+δ)∧T {min(||(Y1, Y2)tu2 − (Y1, Y2)tu||, ||(Y1, Y2)tu − (Y1, Y2)tu1 ||)}. Also

P(v((Y1, Y2)t, 0, δ, T ) ≥ η) ≤ ε, and P(v((Y1, Y2)t, T, δ, T ) ≥ η) ≤ ε,
where v((Y1, Y2)t, u, δ, T ) := sup(u−δ)∨0≤u1≤u2≤(u+δ)∧T {||(Y1, Y2)tu1 − (Y1, Y2)tu2 ||}.

We first check 1) since the process is monotone increasing,

P( sup
s∈[0,T ]

||(Y1, Y2)ts|| ≥ a) = P(||(Y1, Y2)tT || ≥ a) ≤ P(Y1(T ) ≥ a) + P(Y2(T ) ≥ a). (4.46)

Define Y >b
1 obtained from Y1 where we remove the increments `j/t smaller than b. That is to

say Y >b
1 (s) := 1

t

∑bseκφ(t)c
j=1 `j1`j/t>b. Also let Y ≤b1 := Y1 − Y >b

1 and N>b
u :=

∑bueκφ(t)c
i=1 1`j/t>b.

Let 0 < δ1 < 1, Markov inequality yields

P(Y t
1 (T ) ≥ a) ≤ P

(
Y ≤1

1 (T ) ≥ a

2

)
+ P

(
Y >1

1 (T ) ≥ a

2

)
≤ 2

a
E
[
Y ≤1

1 (T )
]

+
1

aδ1
E
(
N>1
T

)
+ P

(
Y >1

1 (T ) ≥ a

2
, N>1

T ≤ aδ1
)
. (4.47)

On {N>1
T ≤ aδ1} there is at most aδ1 terms in the sum Y >1

1 (T ) so

P
(
Y >1

1 (T ) > a/2, N>1
T ≤ aδ1

)
≤

∑
1≤i≤aδ1

P
(
`i/t ≥ (a1−δ1/2)|`i/t ≥ 1

)
≤ aδ1P

(
`1/t ≥ (a1−δ1/2)|`1/t ≥ 1

)
≤ aδ12

C2e
−κφ(t)a−κ(1−δ1)2κ

C2e−κφ(t)
= 21+κ aδ1−κ(1−δ1), (4.48)

for all t large enough thanks to (4.31) and δ1 such that δ1 − κ(1− δ1) < 0.
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Also, as for any positive b, N>b
T follows a binomial law with parameter

(
bTeκΦ(t)c,P(`1/t > b)

)
using (4.31) again, and (4.44) we obtain for t is large enough

E(N>b
T ) ≤ 2C2Tb

−κ, E
[
Y ≤b1 (T )

]
≤ 2C2Tb

1−κ. (4.49)

Collecting (4.48), (4.49) and (4.47) we get the existence of t1 > 0 such that

lim
a→+∞

sup
t≥t1

P(Y1(T ) ≥ a) = 0. (4.50)

The same arguments holds for Y2 (using (4.32) instead of (4.31) and (4.45) instead of (4.44))
so (4.50) also holds for Y2 instead of Y1. We conclude the proof of 1) by putting (4.50) and its
analogous for Y2 in (4.46).

We now check 2) First as usual we write

{ω((Y1, Y2)t, δ, T ) ≥ η} ⊂ {ω((Y ≤b1 , Y ≤b2 )t, δ, T ) ≥ η/2} ∪ {ω((Y >b
1 , Y >b

2 )t, δ, T ) ≥ η/2}.

For Y ≤b. we have

P(ω((Y ≤b1 , Y ≤b2 )t, δ, T ) ≥ η/2) ≤ P(ω(Y ≤b1 , δ, T ) ≥ η/2) + P(ω(Y ≤b2 , δ, T ) ≥ η/2)

moreover by positivity of the increments

P
(
ω(Y ≤b1 , δ, T ) ≥ η/2

)
≤ P

(
∪k≤bT/δc{Y ≤b1 ((k + 1)δ)− Y ≤b1 (kδ) ≥ η/2}

)
≤

∑
k≤bT/δc

P
(
Y ≤b1 ((k + 1)δ)− Y ≤b1 (kδ) ≥ η/2

)
. (4.51)

For any k, Y ≤b1 ((k + 1)δ)− Y ≤b1 (kδ) is the sum of at most bδeκΦ(t)c+ 1 i.i.d. random variables
having the same law as `1/t. We get that for any integer k

P
(
Y ≤b1 ((k + 1)δ)− Y ≤b1 (kδ) ≥ η/2

)
≤ P

(
Y ≤b1 (2δ) ≥ η/2

)
≤ 8C2δb

1−κ/η,

where the first inequality holds for t large enough so that δeκΦ(t) ≥ 1 and the second from the
second expression in (4.49) (replacing T by 2δ). Combining with (4.51) we get for large t

P
(
ω(Y ≤b1 , δ, T ) ≥ η/2

)
≤ 8C2T (1 + δ)b1−κ/η, (4.52)

[note that δ will be chosen later (and will be less than 1)]. T and η are fixed so we choose b small
enough so that the right hand side of (4.51) is less than ε/4. A similar estimate can be proved
for P(ω(Y ≤b2 , δ, T ) ≥ η/2).
For Y >b

. , again we have

P(ω((Y >b
1 , Y >b

2 )t, δ, T ) ≥ η/2) ≤ P(ω(Y >b
1 , δ, T ) ≥ η/2) + P(ω(Y >b

2 , δ, T ) ≥ η/2).

Let us decrease b in order to get b < η/2 so that {ω(Y >b
1 , δ, T ) > η/2} implies that two

jumps larger than b occur in an intervall smaller than 2δ. That is {ω(Y >b
1 , δ, T ) > η/2} ⊂

∪bTe
κφ(t)c

j=1 ∪bTe
κφ(t)c

i>j,(i−j)/eκφ(t)≤2δ
{`j ∧ `i/t > b}. Applying (4.31) for t large enough

P
(
∪bTe

κφ(t)c
j=1 ∪bTe

κφ(t)c
i>j,(i−j)/eκφ(t)≤2δ

{`j ∧ `i/t > b}
)
≤ 8C2δTb

−2κ,
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which can be small choosing this time δ = δ(b) properly. Again the same argument can be
used for ω(Y >b

2 , δ, T ). To finish the proof, we have to deal with v(), as again our processes are
increasing,

P(v((Y1, Y2)t, 0, δ, T ) ≥ η) ≤ P(||(Y1, Y2)tδ|| ≥ η)

we can then proceed as for 1) decreasing δ if needed, this also applies to P(v((Y1, Y2)t, T, δ, T ) ≥
η). �

4.3. Continuity of certain functionals of (Y1,Y2), in J1 . In this section, we study the
continuity of functionals of the Lévy processes (Y1,Y2).
For our purpose we are interested in the following mappings, first the two we have already
mention in the introduction which are the basics

J : D (R+,R) −→ D (R+,R)
f 7−→ f \

I : (D (R+,R) , J1) −→ (D (R+,R) , U)
f 7−→ f−1

Then we also need the compositions of these two : let JI and J−I
JI : D

(
R+,R2

)
−→ R

f = (f1, f2) 7−→ f \1
(
f−1

2 (1)
) J−I : D

(
R+,R2

)
−→ R

f = (f1, f2) 7−→ f \1
(
f−1

2 (1)−
)

JI (respectively J−I ) produces the largest jump of f1, just after (respectively before) f2 reach 1.
Finally let F ∗ define by

F ∗ : D
(
R+,R2

)
−→ R

f = (f1, f2) 7−→ inf
{
s ∈ [0, f−1

2 (1)),∆f1(s) = f \1
(
f−1

2 (1)−
)}
,

we need this variable for the characterization of the favorite sites.

Lemma 4.4. J is continuous in the J1 topology.

Proof:
This fact is basic, but as we have not found a proof in the literature, we give some details. To
prove the continuity on D (R+,R), we only have to prove it for every compact subset of R+, (see
[35] Theorem 12.9.1). So let f ∈ D (R+,R) and T > 0 for which f is continuous, let us prove
that JT defined by

JT : D ([0, T ],R) −→ D ([0, T ],R)
g 7−→ g\

is continuous at the restriction f|[0,T ]. Let ε > 0 and g ∈ D ([0, T ],R) such that dT (f|[0,T ], g) ≤ ε
2 .

dT is the usual metric d of the J1-topology restricted to the interval [0, T ]. By definition of dT
there exists a strictly increasing continuous mapping of [0, 1] onto itself, e : [0, T ] −→ [0, T ] such
that

sup
s∈[0,T ]

|e(s)− s| ≤ ε

2
, and sup

s∈[0,T ]

∣∣g (e(s))− f|[0,T ](s)
∣∣ ≤ ε

2
.

So for every s ∈ [0, T ] we have∣∣∆g (e(s))−∆f|[0,T ](s)
∣∣ =

∣∣(g (e(s))− g (e(s)−))−
(
f|[0,T ](s)− f|[0,T ](s−)

)∣∣
≤
∣∣g (e(s))− f|[0,T ](s)

∣∣+
∣∣g (e(s)−)− f|[0,T ](s−)

∣∣
≤ 2

ε

2
= ε,

where ∆h(s) = h(s)− h(s−). This implies dT
(
JT
(
f|[0,T ]

)
, JT (g)

)
≤ ε. �

Lemma 4.5. The mapping J−I and JI are continuous for J1-topology for every couple (f1, f2) ∈
D(R+,R2) such that



RENEWAL STRUCTURE AND LOCAL TIME FOR DIFFUSIONS IN RANDOM ENVIRONMENT 23

(1) For any ε > 0, f1 has a finite number of jumps greater than ε on every compact subset
of R∗+,

(2) f2 is strictly increasing, with a limit equal to +∞,

(3) f2(0) = 0,

(4) f2 has a jump at I(f2)(1) and I(f2)(1−) < 1 < I(f2)(1).

Proof:
This fact may also be known as we are looking at randomly stopped process, but once again we
did not find what we need in the literature ([31],[35]).
Let (f1

n, f
2
n)n a sequence of D(R+,R) which converges to (f1, f2) for the J1 topology, to prove

continuity we prove that the sequence (J−I (f1
n, f

2
n))n converges to J−I (f1, f2), and the equivalent

for J1.
The first hypothesis guaranties that there exists neighborhoods of I(f2)(1) for which f1 makes no
jump greater that 1/4 times its higher previous jump, that is to say there exists δ ∈]0, I(f2)(1)[
(notice that I(f2)(1) exists tanks to (2) and is positive thanks to (3)) such that f1 makes no
jump greater than J(f1)(I(f2)(1)−δ)/4 on [I(f2)(1)−δ, I(f2)(1)[ and on ]I(f2)(1), I(f2)(1)+δ].
Note also that J(f1) is constant on [I(f2)(1)− δ, I(f2)(1)[ and on ]I(f2)(1), I(f2)(1) + δ].
Also δ can be made smaller (if needed) in such a way that I(f2)(1) + δ is a point of continuity
of (f1, f2) and (f1

n, f
2
n)n for every n ∈ N. By hypothesis d

(
(f1
n, f

2
n), (f1, f2)

)
−→n→+∞ 0 so

dn := d[0,I(f2)(1)+δ]

(
(f1
n, f

2
n)|[0,I(f2)(1)+δ], (f

1, f2)|[0,I(f2)(1)+δ]

)
−→n→+∞ 0,

where |[0, I(f2)(1) + δ] in index means restriction to [0, I(f2)(1) + δ]. Also by continuity of J
(see Lemma 4.4) we also have d

(
J(f1

n), J(f1)
)
−→n→+∞ 0 and therefore

d′n := d[0,I(f2)(1)+δ]

((
J(f1

n)
)
|[0,I(f2)(1)+δ]

,
(
J(f1)

)
|[0,I(f2)(1)+δ]

)
−→n→+∞ 0.

Let h− (respectively h+) the largest jump of f1 just before (resp. just after) I(f2)(1). By
definition of δ we have

h− = J(f1)
(
I(f2)(1)− δ

)
, h+ = J(f1)

(
I(f2)(1) + δ

)
.

We have two cases, either J(f1) is continuous at I(f2)(1) or it makes a jump.

Case J(f1) makes a jump, in this case the size of the jump is h+ − h− > 0.

Let α = 8−1 min
(
h−, δ, 1− f2

(
I(f2)(1)−

)
, f2

(
I(f2)(1)

)
− 1
)
, and n0 such that for any n ≥ n0,

dn < α and d′n < α. T= I(f2)(1) + δ, there exist two homeomorphisms en, e′n : [0, T ] −→ [0, T ]
such that :

• sups∈[0,T ] |en(s)− s| ≤ dn,
• sups∈[0,T ]

∣∣∣∣(f1
n (en(s)) , f2

n (en(s)))|[0,I(f2)(1)+δ] − (f1(s), f2(s))|[0,I(f2)(1)+δ]

∣∣∣∣
∞ ≤ dn.

• sups∈[0,T ] |e′n(s)− s| ≤ d′n,
• sups∈[0,T ]

∣∣∣(J(f1
n)
)
|[0,I(f2)(1)+δ]

(e′n(s))−
(
J(f1)

)
|[0,I(f2)(1)+δ]

(s)
∣∣∣ ≤ d′n.

The second inequality implies that for any n ≥ n0,

f2
n

(
en
(
I(f2)(1)−

))
< 1 < f2

n

(
en
(
I(f2)(1)

))
,

so as we also have f2
n

(
I(f2

n)(1)−
)
< 1 < f2

n

(
I(f2

n)(1)
)
we get

I(f2
n)(1) = en

(
I(f2)(1)

)
. (4.53)



RENEWAL STRUCTURE AND LOCAL TIME FOR DIFFUSIONS IN RANDOM ENVIRONMENT 24

The fourth point implies that for any n ≥ n0,

J(f1
n)

(
e′n

(
I(f2)(1)− 1

2
δ

))
≥ J(f1)

(
I(f2)(1)− 1

2
δ

)
− α = h− − α > 1

2
h−. (4.54)

The second point and the argument of the previous proof imply that for n ≥ n0, each jump of
f1
n on [en

(
I(f2)(1)− δ

)
, en

(
I(f2)(1)

)
[ is 2α-close to a jump of f1 on [I(f2)(1) − δ, I(f2)(1)[,

but such jumps are less than h−/4 because of the definition of δ. Thus, f1
n makes no jump larger

than h−/2 on [en
(
I(f2)(1)− δ

)
, en

(
I(f2)(1)

)
[. Moreover, the increases of e′n and the first and

third points imply that

en
(
I(f2)(1)− δ

)
≤ e′n

(
I(f2)(1)− δ/2

)
≤ en

(
I(f2)(1)

)
,

so, combining with (4.54) we get that J(f1
n) is constant on [e′n

(
I(f2)(1)− δ/2

)
, en

(
I(f2)(1)

)
).

Now by definition of J−I , with (4.53) and then collecting what have just done above yields

∀n ≥ n0, J
−
I

(
(f1
n, f

2
n)
)

= J(f1
n)
(
I(f2

n)(1)−
)

= J(f1
n)
(
en
(
I(f2)(1)

)−)
= J(f1

n)
(
e′n
(
I(f2)(1)− δ/2

))
. (4.55)

From definition of J−I and the constantness of J(f1) on [I(f2)(1)− δ, I(f2)(1)[ we also have

J−I (f1, f2) := J(f1)
(
I(f2)(1)−

)
= J(f1)

(
I(f2)(1)− δ/2

)
. (4.56)

Combining (4.55), (4.56) and the fourth point we obtain that J−I
(
(f1
n, f

2
n)
)
converges to J−I

(
(f1, f2)

)
as n goes to infinity.

For JI , we prove in a similar way as above that J(f1
n) is constant on [en

(
I(f2)(1)

)
,

e′n
(
I(f2)(1) + δ/2

)
] so, as in (4.55) we have for n large enough

JI
(
(f1
n, f

2
n)
)

= J(f1
n)
(
e′n
(
I(f2)(1) + δ/2

))
,

which, combined with the analogous of (4.56)

JI(f
1, f2) = J(f1)

(
I(f2)(1) + δ/2

)
allows us to conclude, using the fourth point, that JI

(
(f1
n, f

2
n)
)
converges to JI

(
(f1, f2)

)
as n

goes to infinity. Therefore, both J−I and JI are continue at (f1, f2). �

Lemma 4.6. For any (f1, f2) in D(R+,R2) that satisfy the hypothesis of lemma 4.5 and such
that the sizes of the jumps of f1 are all distinct, F ∗ is continuous at (f1, f2) in the J1 topology.

Proof:
The proof follows mainly the steps of Lemma 4.5, we keep the same notations. The jump which
takes place at the instant F ∗(f1, f2) has value h−. With the additional hypothesis that the values
of the jumps for f1 are all different we have unicity for the value h−. Let us define h′, the second
highest jump f1 before instant I(f2)(1). With the additional condition that α < 1

8(h− − h′) we
have with the same arguments than in the proof of the continuity of J that for any n ≥ n0, f1

n

effectuates at en
(
F ∗(f1, f2)

)
a jump larger than h− − 2α, and larger than all the other jumps

of f1
n before en(I(f2)(1)−) = I(f2

n)(1) which are smaller than h′+ 2α. So for n ≥ n0, the largest
jump of f1 before I(f2

n)(1) is obtained for en
(
F ∗(f1, f2)

)
, that is to say for any n ≥ n0,

F ∗
(
(f1
n, f

2
n)
)

= en
(
F ∗(f1, f2)

)
,

this implies F ∗
(
(f1
n, f

2
n)
)
−→n→∞ F ∗(f1, f2).

�
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5. Supremum of the Local time - and other functionals

5.1. Supremum of the local time (proof of Theorem 1.3).
We start with the proof of the following proposition which makes a link between the supremum
of the local time and the process (Y1, Y2)t.

Proposition 5.1. For any ε > 0 and large t,

P−1 − v(ε, t) ≤ P
(

sup
x∈R
L(t, x)/t ≤ α

)
≤ P+

1 + v(ε, t)

with

P±1 := P

[
(1− H̄N εt−1)

¯̀N εt − ¯̀N εt−1

(H̄N εt − H̄N εt−1)
≤ α±t , max

1≤j≤N εt−1

`j
t
≤ α±t

]
,

with H̄k := Y2(ke−κφ(t)) = 1
t

∑k
i=1Hi, ¯̀

k := Y1(ke−κφ(t)) = 1
t

∑k
i=1 `i, N ε

t := inf{m ≥ 1, H̄m >

1 − ε}, α±t := α(1 ± (log log t)−1/2), and v a positive function such that limt→+∞ v(ε, t) ≤
const× εκ∧(1−κ).

The proof of this Proposition needs the three following Lemmata, the first one deals with the
local time at the ht-minima for which the process has enough time to escape from it. The second
deals with the local time at the last ht-minima in the remaining time before the instant t. Finally
the last one is a technical point.

Lemma 5.2. For any large t > 0, 2 ≤ k ≤ nt, any 0 < x ≤ 1 and γ > 0 possibly depending on
t, define the repartition function

Fγ(x) := P

(
max

1≤j≤k−1
L(H(L̃j), m̃j) ≤ γt,

k−1∑
i=1

Ui ≤ x

)
,

then

F−γ (x)− e−D1ht ≤ Fγ(x) ≤ F+
γ (x) + e−D1ht ,

where F±γ (x) := P
(

max1≤j≤k−1 `j ≤ γ±t t,
∑k−1

i=1 Hi ≤ x
±
t t
)
with γ±t := γ(1 ± 2εt), x±t := x(1 ±

2εt), εt and D1 are given in Proposition 3.5.

Lemma 5.3. For any t > 0, define for every γ > 0 and 0 < x < 1 possibly depending on t,

fγ(x) := E
[
PWκ
m̃1

(LX′(t(1− x), m̃1) ≤ γt,H ′(L̃1) > t(1− x), H ′(L̃1) < H ′(L̃−1 ))
]
,

there exist c2 > 0 such that

f−γ (x)− o(n−1
t ) ≤ fγ(x) ≤ f+

γ (x) + o(n−1
t ) (5.57)

with f±γ (x) := P
(

1
R1
≤ γ

1−x(1± ε′t),H1 > t(1− x)(1∓ ε′t)
)

and ε′t = e−c2ht . For any t > 0,
define also

f̃γ(x) := E

(
PWκ
m̃1

(
sup
y∈D1

LX′(t(1− x), y) ≤ γt,H ′(L̃1) > t(1− x), H ′(L̃1) < H ′(L̃−1 )

))
,

with D1 defined in (3.24), then f̃γ(x) satisfies also (5.57). X ′ is an independent copy of X
starting at m̃1, definition of H ′ for X ′ is the same as definition of H for X.
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Lemma 5.4. For any 0 < a < 1, we have for any t > 0∑
k≤nt

P
[
H̄k > 1− a/2, 1− 2a < H̄k−1 ≤ 1− a

]
≤ s(a, t), (5.58)

with s(a, t) such that limt→+∞ s(a, t) = const× aκ. For any ε > 0 and t > 0

P (εt ≤ H(mNt) ≤ (1− ε)t) ≥ 1− s̃(ε, t). (5.59)

with s̃(ε, t) such that limt→+∞ s̃(ε, t) = const× ε(1−κ)∧κ.

We postpone the proof of these Lemmata after the proof of the Proposition.

Proof of Proposition 5.1 : Recall that Nt is the largest index such that sups≤tXs ≥ mNt . The
main idea is to use the fact that the supremum of the local time until the instant t is achieved
in the neighborhood of the ht-valleys.

Starting with the upper bound using (3.12), (3.13), (3.14), (5.59) and Lemma 2.2 we have
for t large enough

P
(

sup
x∈R
L(t, x) ≤ αt

)
≤ EPWκ

[(
max

1≤j≤Nt
L(t,mj) ≤ αt

)]
≤ (5.60)

E

[
PWκ

(
max

1≤j≤Nt−1
L(H(Lj),mj) ≤ αt,L(t,mNt) ≤ αt,Q,B1(nt),B2(nt),Vt

)]
+ s̄(ε, t).

with Q := {εt ≤ H(mNt) ≤ (1 − ε)t, Nt ≤ nt} and s̄ satisfying limt→+∞ s̄(ε, t) ≤ C+ε
(1−κ)∧κ.

Define, for every 0 < y < 1 measures νWκ
1 and νWκ

2 as:

νWκ
1 (y) = νWκ

1 ([0, y]) :=PWκ

(
max

1≤j≤k−1
L(H(L̃j), m̃j) ≤ αt,H(m̃k)−

k−1∑
i=1

Ui < ṽt, H(m̃k) ≤ yt

)
νWκ

2 (y) = νWκ
2 ([0, y]) :=PWκ

m̃k

(
LX′(t(1− y), m̃k) ≤ αt,H ′(m̃k+1) > t(1− y), H ′(m̃k+1) < H ′(L̃−k ),

H ′(m̃k+1)−H ′(L̃k) ≤ ṽt
)
,

with X ′ the diffusion starting from m̃k independent of X (conditionally on Wκ), and H ′ has the
same definition than H (see (1.1)) but for X ′. Also all or ν above and in the sequel depend on k
but we do not make appear this dependence for notational simplicity. Partitioning on the values
of Nt, and H(m̃k), we obtain by the strong markov property (under PWκ), that probability below
(5.60), is smaller than∑

k≤nt

∫ 1−ε

ε
E
(
νWκ

2 (x)dνWκ
1 (x)

)
=
∑
k≤nt

E

[∫ 1−ε

ε
νWκ

2 (x)dνWκ
1 (x)

]
. (5.61)

The next step is to prove that the previous expectation can be approximated by a product of
expectations. First notice that both y → νWκ

1 (y) and y → νWκ
2 (y) are positive increasing. So

integrating by parts∫ 1−ε

ε
νWκ

2 (x)dνWκ
1 (x) =

[
νWκ

2 (x)νWκ
1 (x)

]1−ε

ε
−
∫ 1−ε

ε
νWκ

1 (x)dνWκ
2 (x)

≤
[
νWκ

2 (x)νWκ
1 (x)

]1−ε

ε
−
∫ 1−ε

ε
ν̃Wκ

1 (x)dνWκ
2 (x)

=
[
νWκ

2 (x)(νWκ
1 (x)− ν̃Wκ

1 (x))
]1−ε

ε
+ I1 (5.62)
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with ν̃Wκ
1 (x) := PWκ

(
Ck, H(m̃k)−

∑k−1
i=1 Ui < ṽt,

∑k−1
i=1 Ui + ṽt ≤ x

)
,

Ck := {max1≤j≤k−1 L(H(L̃j), m̃j) ≤ αt} and

I1 :=

∫ 1−ε

ε
νWκ

2 (x)dν̃1(x) ≤
∫ 1−ε

ε
νWκ

2 (x)dνWκ
3 (x) =: I ′1,

νWκ
3 (x) := PWκ

(
Ck,

k−1∑
i=1

Ui + ṽt ≤ xt

)
.

First we deal with what is going to be a negligible part, that is to say the first term in (5.62).
As νWκ

1 (x) ≤ PWκ

(
Ck, H(m̃k)−

∑k−1
i=1 Ui < ṽt,

∑k−1
i=1 Ui ≤ x

)
,

|νWκ
1 (x)− ν̃Wκ

1 (x)| ≤ PWκ

(
xt− ṽt <

k−1∑
i=1

Ui ≤ xt

)
=: h(x).

so [νWκ
2 (x)(νWκ

1 (x) − ν̃Wκ
1 (x))]1−εε ≤ νWκ

2 (1 − ε)h(1 − ε) + νWκ
2 (ε)h(ε).

∑k−1
i=1 Ui is measurable

with respect to σ(Xs, 0 ≤ s ≤ H(L̃k−1);Wκ(x), x ≤ L̃k−1), and the event in the definition of
νWκ

2 belongs to σ(X ′s, H
′(L̃−k ) ≤ s ≤ H ′(L̃k);Wκ(x)−Wκ(m̃k), L̃

−
k ≤ x ≤ L̃k), and recall X ′ an

independent copy of X starting at m̃k.
So independence of X and X ′, and independence of the two portions of the environment involved
(Lemma 2.2) imply independence between νWκ

2 and h, so

E[νWκ
2 (x)(νWκ

1 (x)− ν̃Wκ
1 (x))]1−εε = E

[
[ν̃Wκ

2 (x)(νWκ
1 (x)− ν̃Wκ

1 (x))]1−εε

]
≤ E[ν̃Wκ

2 (1− ε)]E[h(1− ε)] + E[ν̃Wκ
2 (ε)]E[h(ε)]. (5.63)

with ν̃Wκ
2 (x) := PWκ

m̃1
[LX′(t(1 − x), m̃1) ≤ αt,H ′(m̃2) > t(1 − x), H ′(m̃2) < H ′(L̃−1 ), H ′(m̃2) −

H ′(L̃1) ≤ ṽt]. As E(ν̃Wκ
2 (x)) ≤ P[U1 > t(1−x)− ṽt] and for every small ε > 0 and t large enough

h(x) ≤ PWκ

(
(x− ε)t <

∑k−1
i=1 Ui ≤ xt

)
we can apply Proposition 3.5, we get

E[ν̃Wκ
2 (1− ε)]E[h(1− ε)]

≤ P

(
(x− ε)/(1 + εt) <

k−1∑
i=1

Hi ≤ x/(1− εt)

)
P(H1 > (t(1− x)− ṽt)/(1 + εt)) + e−D1ht

Now with Lemma 4.1 and basic computations (see Feller [21] pages 470-472, or first part of
Lemma 5.1 in [3]), we prove that∑

k≤nt

E[ν̃Wκ
2 (1− ε)]E[h(1− ε)] ≤ C+ · u(t, ε)

with u a positive function such that limt→+∞ u(t, ε) = ε1−κ. A similar argument also works for
the second term in (5.63), which yields∑

k≤nt

E

[[
νWκ

2 (x)(νWκ
1 (x)− ν̃Wκ

1 (x))
]1−ε

ε

]
≤ 2C+ · u(t, ε). (5.64)

We now deal with I ′1, by independence between X and X ′, and the independent parts of the
potential Wκ involved in νWκ

2 (x) and νWκ
3 (x),

E(I ′1) =

∫ 1−ε

ε
ν2(x)dν3(x), (5.65)

with ν2(x) := E(ν̃Wκ
2 (x)), and ν3(x) := E(νWκ

3 (x)).
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Again as y → ν2(y) is positive increasing and ν3 is a repartition function, integrating by parts
together with the upper bound in Lemma 5.2 with Fα(x− ṽt/t) = ν3(x) gives∫ 1−ε

ε
ν2(x)dν3(x) ≤

∫ 1−ε

ε
ν2(x)dF−α (x) +

[
(ν3(x)− F−α (x))ν2(x)

]1−ε
ε

+ e−D1ht . (5.66)

We can prove in a similar way we have obtained (5.64) that:∑
k≤nt

[
(ν3(x)− F−α (x))ν2(x)

]1−ε
ε
≤ C+ · u(t, ε),

with as usual a possibly enlarge C+. So the important term in (5.66) comes from the integral,
notice also that we do not make appear the little correction −ṽt/t in this main contribution in
order to simplify notations. We see, indeed, that due to the fact that ε ≤ x ≤ 1− ε, with ε > 0
and limt→+∞ ṽt/t = 0 that, this kind of correction has actually no importance. We now have to
work on ν2(x)

ν2(x) ≤ E(PWκ
m̃1

[LX′(t(1− x), m̃1) ≤ αt,H ′(L̃1) > t(1− x)− ṽt, H ′(L̃1) < H ′(L̃−1 )])

Then, as F−α (x) is positive and increasing in x, using Lemma 5.3, we obtain∫ 1−ε

ε
ν2(x)dF−α (x) ≤

∫ 1−ε

ε
f+
α (x)dF−α (x) + o(n−1

t ). (5.67)

Again for the same reason as above and to simplify the expression, we do not make appear the
dependence on the small ṽt/t correction. Now, as f+

α (x) can be written

f+
α (x) = P

(
(1− x)

`k
Hk
≤ α(1 + εt),Hk > t(1− x)(1− ε′t)

)
,

by independence of the variables {(`j ,Hj), j ≤ nt}∫ 1−ε

ε
dF−α (x)f+

α (x)

≤ P
[
(1− H̄k−1)

¯̀
k − ¯̀

k−1

H̄k − H̄k−1
≤ α(1 + ε̃t(k)), H̄k ≥ 1− δ′t, max

1≤j≤k−1

`j
t
≤ α−t , H̄k−1 ≤ 1− ε+ δ′t

]
.

with δ′t = 2ṽt/t, and ε̃t(k) = δ′t

(
α+ `k

H k

)
, and we have integrated back the correction ṽt/t.

The idea now is to make appear the event N 2ε
t = k in the above probability (recall the definition

of N. given in Propositon 5.1) and sum over k.
We first prove that the sum over k ≤ nt, of the above probability is small if we intersect its event
with the event N 2ε

t 6= k. In other word let us prove that∑
1

:=
∑
k≤nt

P
[
H̄k ≥ 1− δ′t, H̄k−1 ≤ 1− ε+ δ′t,N 2ε

t 6= k
]

is small. As {N 2ε
t 6= k} = {H̄k < 1−2ε}∪{H̄k−1 ≥ 1−2ε}, and that for t large enough {H̄k ≥ 1−

δ′t}∩{H̄k < 1−2ε} = φ, we have that
∑

1 ≤
∑

k≤nt P
[
H̄k ≥ 1− δ′t, 1− 2ε ≤ H̄k−1 ≤ 1− ε+ δ′t

]
,

and therefore for t large enough
∑

1 ≤
∑

k≤nt P
[
H̄k ≥ 1− ε/2, 1− 2ε ≤ H̄k−1 ≤ 1− ε

]
≤ s(ε, t)

by (5.58). Finally collecting all we know,∑
k≤nt

E(I ′1) ≤

P

[
(1− H̄N 2ε

t −1)
¯̀
N 2ε
t
− ¯̀
N 2ε
t −1

H̄N 2ε
t
− H̄N 2ε

t −1

≤ α(1 + ε̃t(N 2ε
t )), max

1≤j≤N 2ε
t −1

`j
t
≤ α−t

]
+ s(ε, t). (5.68)
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To finish we have to deal with ε̃t(N 2ε
t ), a basic computation partioning on the values of on N 2ε

t ,
shows that P(ε̃t(N 2ε

t )) ≥
√
δ
′
t) ≤ C+P

(
R1 ≤

√
δ
′
t

)
= o(1) as R1 ≥ 0. Collecting this last fact,

(5.68), (5.64), (5.61) and (5.60) finishes the proof of the upper bound.

The lower bound
The proof here follows the same line than the upper bound. The main difference comes from the
fact that we can no longer use the obvious inequality supx∈R L(t, x) ≥ sup1≤j≤Nt L(t,mj). So for
this part of the proof we stress on what is different here and refer to the previous computations
when very few changes occur.
Assume for the moment that P ({supx∈R L(t, x) ≥ 2w̃t} =: E2) ≥ 1−o(1), with w̃t := teκ(1+3δ)−1,
and recall that δ is chosen small enough in such a way that κ(1 + 3δ) < 1 (see Lemma 3.2). This
fact is a direct consequence of the upper-bound of P(supx∈R L(t, x) ≤ αt) [see the end of this
section for the proof]. Recall (3.24), define for any l ≥ 1

E3(l) := E1
3 (l) ∩ E2

3 (l), with

E1
3 (l) :=

l−1⋂
j=1

{
sup
x∈Dj

[L(H(L̃j), x)− L(H(m̃j), x)] ≤ tα̃t

}
,

E2
3 (l) :=

{
sup
x∈Dl

[L(t, x)− L(H(m̃l), x)] ≤ tα̃t

}
,

with α̃t := (αt− 2w̃t)/t. Recall the definitions of the events B. in Sections 3.1 and 3.2, we have
that {supx∈R L(t, x) ≤ αt} ∩

{
Vt ∩ E2 ∩4

i=1 Bi(nt), Nt ≤ nt
}
contains

E3(Nt)∩
{
Vt ∩ E2 ∩4

i=1 Bi(nt), Nt ≤ nt
}
. Notice that by Lemmata 2.2, 3.1, 3.2, 3.4 and the above

assumption P(Vt ∩ E2 ∩4
i=1 Bi(nt), Nt ≤ nt) ≥ 1 − o(1). We now deal with P(E3(Nt) ∩ B1(Nt) ∩

B2(nt)∩Vt, Nt ≤ nt), using Lemma 2.2, the fact that H(L̃k) ≤ H(m̃k+1) and the strong Markov
property with respect to PWκ we obtain

P(E3(Nt) ∩ B1(Nt) ∩ B2(nt) ∩ Vt,Q)

≥
nt∑
k=1

∫ 1−ε

ε
E
(
νWκ

4 (y)dPWκ
(
E1

3 (k),B1(k),B2(k − 1), H(m̃k)/t ≤ y
))
− o(1)

with

νWκ
4 (y) := PWκ

m̃k

(
sup
x∈Dk

LX′(t(1− y), x) ≤ tα̃t, H ′(L̃k) > t(1− y), H ′(L̃k) < H ′(L̃−k )

)
,

Now by similar computations than for the upper bound in particular what yields (5.64) and
(5.65) we have

P(E3(Nt) ∩ B1(Nt) ∩ B2(nt) ∩ Vt,Q)

≥
nt∑
k=1

∫ 1−ε

ε
E
(
νWκ

4 (y)dνWκ
5 (y)

)
− o(1) =

nt∑
k=1

∫ 1−ε

ε
ν4(y)dν5(y)− o(1).

with νWκ
5 (y) := PWκ

(
E1

3 (k),B1(k),B2(k − 1),
∑k−1

i=1 Ui/t ≤ y
)
, ν4 := E(νWκ

4 ), ν5 := E(νWκ
5 ).

The next step, is to remove B1(k) in the above expression, for that we only have to prove that

nt∑
k=1

∫ 1−ε

ε
E

(
νWκ

4 (y)dPWκ

(
E1

3 (k), B̄1(k),B2(k − 1),

k−1∑
i=1

Ui/t ≤ y

))
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is negligible, one can check that this quantity is smaller than
nt∑
k=1

∫ 1−ε

ε
E
[
PWκ
m̃k

(H(L̃k) < H(L̃−k ), H(L̃k) > t(1− y))
]
dP

(
B̄1(k),B2(k − 1),

k−1∑
i=1

Ui/t ≤ y

)

≤
nt∑
k=1

P

(
k−1∑
i=1

Ui/t ≤ 1,
k∑
i=1

Ui/t > 1, B̄1(k)

)
≤ P

(
B̄1(nt)

)
≤ C2vt = o(1),

where the last inequality comes from (3.12). Therefore collecting the above computations yields

P
(

sup
x∈R
L(t, x) ≤ α

)
≥

nt∑
k=1

∫ 1−ε

ε
ν4(y)dν̃5(y)− o(1)

with ν̃5(y) := e−κφ(t)
∑

k≤nt P
(
E1

3 (k),B2(k − 1),
∑k−1

i=1 Ui/t ≤ y
)
.

We start with an estimation of the repartition function ν̃5(y). Recall that like in the proof of
Lemma 3.6, by the strong Markov property, the occupation time formula (1.5) and (1.6) the
sequence (Uj , {L(H(L̃j), x)), x ∈ Dj}, j ≤ nt) under B2(k − 1) is equal in law to a sequence
(Hj(L̃j), {Lj(Hj(L̃j), x), x ∈ Dj}, j ≤ nt), with this time

Hj(L̃j) := Aj(L̃j)

∫ L̃j

L̃−j

e−Ṽ
(j)(x)LBj [τB

j
(1), Aj(u)/Aj(L̃j)]du,

Lj(Hj(L̃j), x) := Aj(L̃j)e
−Ṽ (j)(x)LBj [τB

j
(1), Aj(x)/Aj(L̃j)], A

j(u) =

∫ u

m̃j

eṼ
(j)(x)dx.

Using the fact that the sequence (m̃j , j) is a subsequence of (mj , j), Fact 2.1 and then (6.87) for
any j,

P (inf{s > m̃j , Ṽ
(j)(s) > rt} > m̃j + rt) ≤ e−c−rt , and

P (sup{s < m̃j , Ṽ
(j)(s) > rt} < m̃j − rt) ≤ e−c−rt . (5.69)

with c− > 0. Therefore for any j, P (Dj ⊂ [τ̃−j (rt), τ̃j(rt)]) ≥ 1 − 2e−c−rt . Then on {Dj ⊂
[τ̃−j (rt), τ̃j(rt)]} for any x ∈ Dj , Lj(Hj(L̃j), x) ≤ Aj(L̃j)LBj [τB

j
(1), Aj(x)/Aj(L̃j)]. Also on

{Dj ⊂ [τ̃−j (rt), τ̃j(rt)]}, for any x ∈ Dj ,

Aj(τ̃−j (rt)) ≤ Aj(x) ≤ Aj(τ̃j(rt)). (5.70)

With Fact 2.1 and Lemma 6.3, we obtain with a probability larger than 1− e−c−rt

−e−ht/4 ≤ −ert(1+1/2)e−(1−1/2)ht ≤
Aj(τ̃−j (rt))

Aj(L̃j)
≤ Aj(τ̃j(rt))

Aj(L̃j)
≤ ert(1+1/2)e−(1−1/2)ht ≤ e−ht/4.

(5.71)

Therefore taking δ = e−ht/4 and ε = δ1/3 in (6.93) we obtain with a probability larger than
1− e−c−rt

sup
x∈Dj

LBj (τB
j
(1), Aj(x)/Aj(L̃j)) ≤ Aj(L̃j)LBj (τB

j
(1), 0)(1 + e−ht/12). (5.72)

Collecting the different estimates we then obtain,

ν̃5(y) ≥ P

(
max

1≤j≤k−1
Lj(Hj(L̃j), m̃j) ≤ tᾱt,

k−1∑
i=1

Hj(L̃j)/t ≤ x

)
− C+e

−c−rt ,
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with ᾱt := α̃t(1 + e−ht/12)−1. We can then inverse the equality in law we have used above, and
then obtain

ν̃5(y) ≥ Fᾱt(y)− C+e
−c−rt ,

with Fᾱt defined in Lemma 5.2. Then we can follow the same lines than for the upper bound
(especially computations after (5.64)), and obtain via Lemma 5.2:∫ 1−ε

ε
ν4(y)dν̃5(y) ≥

∫ 1−ε

ε
ν4(y)dF+

ᾱt(y)− o(n−1
t ).

Remark also that (5.69), (5.70), (5.71) and 5.72 implies the concentration of the local time at
the ht-minima : with probability larger than 1− C+e

−c−rt∣∣∣∣∣ sup
y∈Dj

L(H(L̃j), y)− L(H(L̃j), m̃j)

∣∣∣∣∣ ≤ e−ht/12L(H(L̃j), m̃j).

We now work on ν4(y), by the second part of Lemma 2.2 it is equal to

E

(
PWκ
m̃1

(
sup
y∈D1

LX′(t(1− x), y) ≤ tα̃t, H ′(L̃1) > t(1− x), H ′(L̃1) < H ′(L̃−1 )

))
=: ν̃4(y),

and by Lemma 5.3, ν̃4(y) ≥ f−α̃t(y)− o(n−1
t ). Therefore∫ 1−ε

ε
ν4(y)dν̃5(y) ≥

∫ 1−ε

ε
f−α̃t(y)dF+

ᾱt(y)− o(n−1
t ).

From now the computations are very closed from that of the upper bound (see (5.67) and below)
and we do not give more details. �

Proof of the Lemmata

Proof of Lemma 5.2: This is a direct consequence of Lemmata 2.2, 3.1 and Proposition 3.5.
�

Proof of Lemma 5.3: To obtain the result we use a similar method than in [4]. That is to
say we study the inverse of the local time at m̃1, and use our knowledge about H(L̃1). Also
for our purpose only the upper bound of fα and the lower bound of f̃α are needed, so we only
present the proof for them. However few modifications of the proof we present below also lead
to respectively the other lower and upper bounds.

• For fγ , let σ(u, m̃1) := inf{s > 0,L(s, m̃1) > u}, just notice that

E
[
PWκ
m̃1

(L(t(1− x), m̃1) ≤ γt,H(L̃1) > t(1− x), H(L̃1) < H(L̃−1 ))
]

= E
[
PWκ
m̃1

(σ(γt, m̃1) ≥ t(1− x), H(L̃1) > t(1− x), H(L̃1) < H(L̃−1 ))
]
. (5.73)

On {H(L̃1) > t(1 − x), H(L̃1) < H(L̃−1 )}, X remains between L̃−1 and L̃1 until the instant
t(1− x). On this event considering (1.5) and (1.6) and the scaling invariance of the underlying
Brownien motion B′, the inverse of the local time and the hitting time can be written for X
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starting at m̃1 as

(σ(γt, m̃1), H(L̃1))
LWκ=

(
γt

∫ L̃1

L̃−1

e−Ṽ
(1)(x)LB′(σB′(1, 0), ã(x))dx =: I,

A1(L̃1)

∫ L̃1

L̃−1

e−Ṽ
(1)(x)LB′(τB′(1), ã′(x))dx =: h̃1

)
,

with ã(x) := (γt)−1A1(x) = (γt)−1
∫ x
m̃1
eV

(1)(y)dy, ã′(x) := A1(x)/A1(L̃1), as usual B′ is denoted
B in the sequel. Also σU (r, y) := inf{s > 0, LU (s, y) > r} for r > 0, y ∈ R is the inverse of the
local time of the process U . We have already talk about h̃1 in 3.30, in particular Proposition 3.5
gives

P
({
|H(L̃1)−H(m̃1)− e1S1R1| ≤ εte1S1R1

}
=: G1

)
= 1− e−D1ht ,with εt := e−d1ht , (5.74)

so we only deal with I. Let us define L̂−1 := sup{s < m̃1, Ṽ
(1)(s) > ht/2} and L̂1 := inf{s >

m̃1, Ṽ
(1)(s) > ht/2}. (γt)−1I can be splited into two terms (γt)−1I := I1 + I2 with

I1 :=

∫ L̂1

L̂−1

e−Ṽ
(1)(x)LB(σB(1, 0), ã(x))dx.

We now prove that the main contribution in (γt)−1I is given by I1 and obtain its approximation
in probability. First using Fact 2.1, (6.89) and (6.90) we have for any L̂ ∈ {L̂−1 , L̂1} and ε > 0,

P (|A1(L̂)| ≤ eht(1+ε)/2) ≥ 1− C+e
−κεht/2.

Therefore by monotony of ã(.) (depending on wether its argument is larger or smaller than m̃1)
P (∀x ∈ [L̂1, L̂

−
1 ], |ã(x)| ≤ e−(log t)(1−3ε)/2) ≥ 1− C+e

−κεht/2. Also, using (6.97) we have

P

(
sup

0≤y≤e−(log t)(1−3ε)/2

|LB(σB(1, 0), y)− 1| ≥ ε̂t

)
≤ e−eε(log t)/20 . (5.75)

with ε̂t := e−(log t)(1−ε). So we obtain

P
(
|I1 − R1| ≤ e−(log t)(1−ε)R1

)
≥ 1− C+e

−κεht/2,

with R1 :=
∫ L̂1

L̂−1
e−V

(1)(x)dx. Then we prove that I2 is negligible compared to the integral in the

previous equation. First thanks to (6.98), we have P (supx∈[L̃−1 ,L̃1] LB(σB(1, 0), ã(x)) > eε log t) ≤
2e−ε log t. So with probability larger than 1− 2e−ε log t we have

I2 ≤ eε log t

(∫ L̂−1

L̃−1

e−V
(1)(x)dx+

∫ L̃1

L̂1

e−V
(1)(x)dx

)
.

We now want to prove that both integral in the upper bound of I2 is smaller than e−(1−2ε) log t/2R1,
and obtain a lower bound for R1. Both of these estimations can be found in [3] : in the proof
of step 2 of Lemma 4.7 (estimation of what is called J2), we find that with a probability larger
than 1− e−c−εht ∫ L̃1

L̂1

e−V
(1)(x)dx ≤ C+h

2
t e
−(1−ε)ht/2

and the same is true for the first integral. For R1, by Fact 2.1 it has the same law as R1 (which is
the same R1 than in 5.74), which law is given by the sum of two independent copies of F−(ht/2).
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So using (6.91), with a probability larger than 1− e−c−ε2h2t /2

R1
L
= R1 ≥ e−εht .

We deduce from the last two inequalities that with a probability larger than 1− e−c−εht ,

I2 ≤ R1e
−(1−5ε)ht/2.

Finally collecting what we have done for the inverse of the local time σ(., .)

E
[
PWκ
m̃1

(
|σ(γt, m̃1)− γtR1| ≤ 2e−(1−5ε)ht/2(γt)R1, H(L̃1) > t(1− x), H(L̃1) < H(L̃−1 )

)]
≥ 1− C+e

−εc−ht . (5.76)

Also by (3.13) E(PWκ
m̃1

(H(L−1 ) < H(L1))) ≤ C3nte
−δκht . So collecting (5.73), (5.74) and the

above inequality, for any 0 < x < 1 and t large enough

fγ(x) ≤ P
(
R1 ≥

1− x
γ

(1− 2ε̃t), e1S1R1 > t(1− x)(1− 2εt)

)
+ o(n−1

t )

with ε̃t := 2e−(1−5ε)ht/2.

• For f̃γ , here again we work on the event {H(L̃1) > t(1 − x), H(L̃1) < H(L̃−1 )} and also use
the equality in law like for fγ : for any z ∈ D1,

L(σ(yt, m̃1), z)
LWκ= (yt)e−Ṽ

(1)(z)LB(σB(1, 0), ã(z)) (5.77)

with ã(x) = (yt)−1
∫ z
m̃1
eṼ

(1)(y)dy. Remember also that thanks to Fact 2.1 and (5.69), we can

obtain an upper bound of
∫ z
m̃1
eṼ

(1)(y)dy for z ∈ D1 by estimating
∫ z

0 e
Q(s)ds for z ∈ [0, τR(rt)].

Also as by (6.90) P (
∫ τR(rt)

0 eQ(s)ds ≥ eεht) ≤ e−c−εht , with the same probability ã(z) ≤ (yt)−1eεht

and with the same method we have obtained (5.75),

E

(
PWκ
m̃1

(
sup
z∈D1

|LB(σB(1, 0), ã(z))− 1| ≤ ε̂t
))
≥ 1− 2e−c−εht .

(5.77) together with the above estimate imply

E

(
PWκ
m̃1

({
sup
z∈D1

∣∣∣L(σ(yt, m̃1), z)− yte−Ṽ (1)(z)
∣∣∣ ≤ 2yte−Ṽ

(1)(z)ε̂t

}))
≥ 1− 2e−c−εht . (5.78)

Let us take y = (1−x)/(R1(1− ε̃t)) then using (5.76) (with γ = y) implies that with a probability
larger than 1 − C+e

−εc−ht , t(1 − x) ≤ σ(yt, m̃1). Then as the local time is increasing in time,
with the same probability (eventually increasing C+), by (5.78), for any z ∈ D1, L(t(1−x), z) ≤
L(σ(yt, m̃1), z) ≤ yte−V (1)(z)(1 + ε̂t) ≤ yt(1 + ε̂t). Collecting all this gives

E

(
PWκ
m̃1

({
supz∈D1

L(t(1− x), z)

t
≤ (1− x)

R1

1 + ε̂t
1− ε̃t

}
=: G2

))
≥ 1− o(n−1

t ). (5.79)

Collecting (5.74), (5.79) and (3.13) we obtain,

f̃γ(x) ≥ E
(
PWκ
m̃1

(
sup
z∈D1

L(t(1− x), z) ≤ tγ,H(L̃1) > t(1− x), H(L̃1) < H(L̃−1 ),G1,G2

))
≥ E

(
PWκ
m̃1

(
(1− x)

R1

1 + ε̂t
1− ε̃t

≤ γ, e1S1R1 > t
1− x
1− εt

, H(L̃1) < H(L̃−1 ),G1,G2

))
≥ P

(
(1− x)

R1

1 + ε̂t
1− ε̃t

≤ γ, e1S1R1 > t
1− x
1− εt

)
− o(n−1

t ).
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This finishes the proof. �

Proof of Lemma 5.4:

For (5.58), independence between H̄k−1 and H̄k − H̄k−1 yields∑
k≤nt

P
[
H̄k > 1− a/2, 1− 2a < H̄k−1 ≤ 1− a

]
=

∫ 1−a

1−2a
dµt(x)eκφ(t)P

[
H̄k − H̄k−1 > 1− x− a/2

]
(5.80)

where measure µt is defined as
∫ x

0 dµt(y) = e−κφ(t)
∑

k≤nt P
[
H̄k−1 ≤ x

]
, and we know that µt

converge vaguely to the measure µ which has a density with respect to the Lebesgue measure
equal to (Γ(1 − κ)Cκ)−1xκ−11x>0 (see Lemma 5.1 in [3]). Also we know from Lemma 4.1
that eκφ(t)P [(Hk −Hk−1)/t > x] converge uniformely on every compact subset of (0,+∞) to
Cκx

−κ/Γ(1− κ), therefore

lim
t→+∞

∑
k≤nt

P
[
H̄k > 1− a/2, 1− 2a < H̄k−1 ≤ 1− a

]
=

1

Γ(κ)Γ(1− κ)

∫ 1−a

1−2a
xκ−1(1− x− a/2)−κdx

≤ const× a1−κ.

Also (5.59) is a direct consequence of Corrolary 1.5, eq. (1.2) in [3]. �

Proof of Theorem 1.3
The proof of this theorem is a direct consequence of Propositions 5.1, 1.4 and Lemmata 4.4 and
4.5. Notice that the proof of the upper bound is independent of the proof of the lower bound, but
we use the upper bound for the proof of the lower bound, in particular from the upper bound we
have that : limt→+∞ P(L∗(t) ≤ 2w̃t/t) ≤ P(Y\1(Y−1

2 (1)−) ≤ ε) for any ε > 0 as limt→+∞ w̃t/t = 0.
From that as Y\1(Y−1

2 (1)−) is positive we obtain that limt→+∞ P(L∗(t) ≤ 2w̃t) = 0, which proves
the assertion at the beginning of the proof of the lower bound in Proposition 5.1.

5.2. Favorite sites (proof of Theorem 1.5).
The first two point of Theorem 1.5 can be obtained similarly as Theorem 1.3, they are in fact
easier to prove due to the presence of stopping times.
To obtain the result for the favorite sites, we first argue that we essentialy need to obtain the
asymptotic behavior of N∗t /Nt, where N∗t := min{j ≥ 1,L(mj , t) = maxk≤Nt L∗(mk, t)}. Indeed,
define for any ε > 0

K1 := {mNt(1− ε) ≤ Xt ≤ mNt(1 + ε)} , K2 :=
{
mN∗t

(1− ε) ≤ F ∗t ≤ mN∗t
(1 + ε)

}
then we have by the localization result Theorem 1.2 limt→+∞ P(K1) = 1, also we can prove
that limt→+∞ P(K2) = 1 by using the same arguments than in the proof of the lower bound of
Proposition 5.1. So

P
[
F ∗t
Xt
≤ x

]
= P

[
F ∗t
Xt
≤ x,K1,K2

]
+ v(ε, t)

≤ P
[
mN∗t

mNt

≤ x1 + ε

1− ε

]
+ v(ε, t). (5.81)

where v(ε, t) ≥ 0, satisfies limε→0 limt→+∞ v(ε, t) = 0. We now use two fact, the first one is
that N∗t and Nt diverge when t goes to infinity : in particular P(Nt ≥ e(1−ε)κφ(t)) = 1 − o(1)
as it is proved in ([3], Proposition 1.6), and a similar analysis also works for N∗t giving also
P(N∗t ≥ e(1−ε)κφ(t)) = 1− o(1).
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For the second argument, following the work of Faggionato [19], we know that (mi −mi−1, i ≥
2) are i.i.d. random variables with a known Laplace transform (given by (2.19) in [19]), this
allows to compute the first and fourth moments of ∆m1 := m2 − m1 and therefore obtain
after an elementary but tedious computation that for large t, E(∆m1) ∼ C7e

κht (C7 > 0) and
E((∆m1 − E(∆m1))4) ∼ C8e

4κht (C8 > 0), which yields for t large

E
[
(mk/k − E(∆m1))4

]
∼ C8e

4κht/k2.

These facts allow us to write by a Markov inequality that

P [|mNt − E(∆m1)Nt | > εE(∆m1)Nt]

≤
∑

j≥e(1−ε)κφ(t)
P [|mj − E(∆m1)j | > εE(∆m1)j] + o(1)

≤
∑

j≥e(1−ε)κφ(t)

C8(C7)−4

ε4j2
+ o(1) ≤ C+ε

−4e−(1−ε)κφ(t) + o(1),

this yields that {|mNt − E(∆m1)Nt | ≤ εE(∆m1)Nt} as well as (with a similar computation)
{
∣∣mN∗t

− E(∆m1)N∗t
∣∣ ≤ εE(∆m1)N∗t } are realized with a probability close to one.

Now including these events in the probability in (5.81), eventually enlarging v(ε, t) we get

P
[
F ∗t
Xt
≤ x

]
≤ P

[
N∗t
Nt
≤ x(1 + ε)2

(1− ε)2

]
+ v(ε, t).

Notice that the random variables involved now (N∗t and Nt) only depends of what happens in
the bottom of the ht-valleys, and we have to deal with

P
[
N∗t
Nt
≤ y
]

= P [N∗t = Nt]1y=1 + P
[
N∗t
Nt
≤ y,N∗t < Nt

]
1y<1.

With very closed computations than in Section 5.1 together with Lemma 4.6, we can prove that

lim
t→+∞

P [N∗t = Nt] = P [I1 < I2] , and

lim
t→+∞

P

[
N∗t e

−κφ(t)

Nte−κφ(t)
≤ y,N∗t < Nt

]
= P

[
F ∗(Y1,Y2)

Y−1
2 (1)

≤ y, I1 ≥ I2

]
,

where F ∗ is defined at the beginning of Section 4.3. To finish the proof we finally have to prove
the following Lemma

Lemma 5.5. The random variable F ∗(Y1,Y2)

Y−1
2 (1)

follows a uniform law U[0,1] independent of the
couple (I1, I2).

Proof. For any s > 0, let G1(s) := inf{u ≤ s, Y1(u) = supv≤s Y
]
1(v)}. The fact that for every

s > 0, G1(s−)/s follows a uniform law U[0,1] is basic, as well as the fact that G1(s−) is independent
of Y]1(s−), Y2(s−), Y1(s−), Y2(s)− Y2(s−), and Y1(s)− Y1(s−). To obtain the Lemma we only
have to prove that this remains true when replacing s by Y−1

2 . For that we can consider for
example the dyadic approximations of Y−1

2 (1) : (tn := max
{
k ∈ N, k2n < Y

−1
2 (1)

}
, n). Then

partitioning on values of tn, using the independence we previously talked about and letting n
goes to infinity we obtain the result.

�



RENEWAL STRUCTURE AND LOCAL TIME FOR DIFFUSIONS IN RANDOM ENVIRONMENT 36

6. Appendix

We start this section with some known formulas for the processes we encounter in our study. The
following Lemma is about Laplace transform of the exponential functional defined in (1.3), the
proof can be found in ([3], Lemma 4.2). Recall that C+ (respectively c−) is a positive constant
that is as large (resp. small) as needed.

Lemma 6.1. There exists C9 > 0, M > 0 and η1 ∈ (0, 1) such that ∀y > M,∀γ ∈ (0, η1],∣∣∣E (e−γF+(y)/ey
)
− [1− 2γ/(κ+ 1)]

∣∣∣ ≤ C9 max(e−κy, γ3/2), (6.82)∣∣∣E (e−γG+(y/2,y)/ey
)
− [1− Γ(1− κ)(2γ)κ/Γ(1 + κ)]

∣∣∣ ≤ C9 max(γκe−κy/2, γ). (6.83)

Moreover, there exists C10 > 0, such that for all y > 0, E (F+(y)/ey) ≤ C10.

Recall that Q is the (−κ/2)-drifted Brownian motion W−κ/2 Doob-conditioned to stay positive
(see above (1.3)), we have

Lemma 6.2. Let 0 < γ < α < ω. For all h large enough, we have

Pαh
(
τQ(γh) < τQ(ωh)

)
≤ 2e−κ(α−γ)h, (6.84)

P
(
τQ(ωh)− τQ(αh) ≤ 1

)
≤ C+e

−c−[(ω−α)h]2 , (6.85)

P (τQ(h) > 8h/κ) ≤ C+e
−κh/(2

√
2), (6.86)

P (τQ(h) ≤ h) ≤ C+e
−c−h, (6.87)

P
(
τQ(γh) ≤ 1

)
≤ C+e

−c−[γh]2 , (6.88)

Pαh denotes the law of Q starting from αh.

Proof:
The first 3 points comes from Lemma 2.6 in [3]. We give a proof for (6.87), the proof of (6.88) is
very similar. By formula (2.3) in [19] taking µ = κ/2 and α = 1−κ, we have E(e−ατ

Q(h)) ∼h→+ ∞

consteh(κ/2−
√

2α+κ2/4). Then we apply a Markov inequality for P
(
e−ατ

Q(h) > e−αh
)
. �

We also need this second Lemma focusing only on some exponential functionals.

Lemma 6.3. Recall the definition of F±, and G+ in (1.3). For all 0 < ζ ≤ 1 and 0 < ε < 1/2,
for t large enough,

P
[
eζht(1−ε) ≤ F+(ζht) ≤ eζht(1+ε)

]
≥ 1− 4e−κεζht/2, (6.89)

P

[
F+(ζh) ≥ e(1−α)h

]
≥ 1− 3 exp[−καh/2], 0 < α < 1, (6.90)

P (F−(h) ≥ e−εh) ≥ 1− e−c−ε2h2 , (6.91)

P (G+(αh, h) ≤ b(h)eh) ≥ 1− C+(b(h))−κ 0 < α < 1, b >0 . (6.92)

Proof: By Markov inequality and Lemma 6.1 P
[
F+(ζht) > eζht(1+ε)

]
≤ c1e

−εζht . For the lower
bound, taking γ = ζ(1− ε/2), α = ζ(1− ε) and ω = ζ in (6.84) we get with a probability larger
than 1− C+e

−εκht ,

F+(ζht) ≥ eζht(1−ε)[τQ(ζht)− τQ(ζht(1− ε/2))].



RENEWAL STRUCTURE AND LOCAL TIME FOR DIFFUSIONS IN RANDOM ENVIRONMENT 37

Finally using (6.85) we get the result. Proof of (6.90) is very similar. For (6.91), first F−(h) ≥
e−εhτ(εht), and using (6.88), with a probability larger than 1 − e−c−ε2h2 , τ(εht) ≥ 1. For the
last estimation, we notice that in law G+(αh, h) ≤

∫ +∞
0 e−Wκ(x)dx = A∞, by [16] r.v. 2/A∞ is

a gamma variable of parameter (κ, 1), and so has a density equal to e−xxκ−11R+(x)/Γ(κ) which
yields the estimate. �

The following Lemma is exactly Lemma 4.3 in [3] which proof can be found in that paper.

Lemma 6.4. Let B a standard two-sided Brownian motion, for every 0 < ε < 1, 0 < δ < 1 and
x > 0,

P
(

sup
u∈[−δ,δ]

|LB(τB(1), u)− LB(τB(1), 0)| > εLB(τB(1), 0)

)
≤ C+

δ1/6

ε2/5
, (6.93)

P
(

sup
u∈[0,1]

LB(τB(1), u) ≥ x
)
≤ 4e−x/2, (6.94)

P
(

sup
u≤0
LB(τB(1), u) ≥ x

)
≤ 1/x. (6.95)

The next Lemma deals with fluctuations for 2-dimension Bessel Processes :

Lemma 6.5. Let (Q2(u), u ≥ 0) be a Bessel process of dimension 2, starting from 0, and two
functions a(.) and k(.) from (0,+∞) to (0,+∞), having limit +∞ on +∞. We have for large t,

P
(
∀u ∈ (0, k(t)], Q2

2(u) ≤ 2e
[
a(t) + 4 log log[ek(t)/u]

]
u
)
≥ 1− C+ exp[−a(t)/2].

Proof: We consider for t > 0 and i ∈ N,

A1,i :=

{
sup

[k(t)/ei+1,k(t)/ei]

Q2
2 ≤ 2

k(t)

ei
[a(t) + 4 log(i+ 1)]

}
, A2 :=

∞⋂
i=0

A1,i.

We recall that there exist two standard independent Brownian motions (B1(u), u ≥ 0) and
(B2(u), u ≥ 0) such that (Q2

2(u), u ≥ 0) is equal in law to (B2
1(u)+B2

2(u), u ≥ 0). So for i ∈ N,

P
(
A1,i

)
≤ 2P

(
sup[k(t)/ei+1,k(t)/ei]B

2
1 > k(t)e−i[a(t) + 4 log(i+ 1)]

)
≤ 4P

(
sup[0,k(t)/ei]B1 >

√
k(t)e−i[a(t) + 4 log(i+ 1)]

)
= 4P

(
|B1(1)| >

√
a(t) + 4 log(i+ 1)

)
≤ 8 exp[−a(t)/2− 2 log(i+ 1)]

for large t so that a(t) ≥ 1, by scaling, and since B1
L
= −B1, sup[0,1]B1

L
= |B1(1)| and P (B1(1) ≥

x) ≤ e−x2/2 for x ≥ 1. Consequently for large t,

P
(
A2

)
≤
∞∑
i=0

P
(
A1,i

)
≤ 8 exp[−a(t)/2]

∞∑
i=0

1

(i+ 1)2
= C+ exp[−a(t)/2]. (6.96)

Now, let 0 < u ≤ k(t). There exists i ∈ N such that k(t)/ei+1 < u ≤ k(t)/ei. We have,
ei ≤ k(t)/u, so ei+1 ≤ ek(t)/u and then log(i+ 1) ≤ log log[ek(t)/u]. Consequently on A2,

Q2
2(u) ≤ 2

(
k(t)/ei

)
[a(t) + 4 log(i+ 1)] ≤ 2eu

[
a(t) + 4 log log[ek(t)/u]

]
.

This, combined with (6.96), proves the lemma. �

We also need some estimations on the local time of B at a given coordinate y ∈ R within
the inverse of the local time of B at 0. Recall σB(r, y) = inf{s > 0, LB(s, y) > r} for r >
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0, y ∈ R. By the second Ray-Knight Theorem the processes (LB(σ(r, 0), y), y ∈ R+) and
(LB(σ(r, 0),−y), y ∈ R+) are two independent square of 0-dimensional Bessel process starting
at r. We have the following Lemma which proof can be found in [15] Lemma 2.3 page 2307.

Lemma 6.6. We denote by Q0 a square of 0-dimensional Bessel process starting at 1. Let
M > 0, u > 0 and v > 0 then

P

(
sup

0≤x≤u
|Q0(t)− 1| ≥ v

)
≤ 4

√
(1 + u)v

u
exp

(
−u2/(8(1 + u)v)

)
, (6.97)

P

(
sup
x≥0

Q0(u) ≥M
)

= 1/M. (6.98)
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