N

N

Asynchronous gradient algorithms for a class of convex
separable network flow problems
Didier El Baz

» To cite this version:

Didier El Baz. Asynchronous gradient algorithms for a class of convex separable network flow prob-
lems. Computational Optimization and Applications, 1996, 5, pp. 187-205. hal-01152931

HAL Id: hal-01152931
https://hal.science/hal-01152931v1
Submitted on 18 May 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01152931v1
https://hal.archives-ouvertes.fr

ASYNCHRONOUS GRADIENT ALGORITHMS

FOR A CLASS OF CONVEX SEPARABLE

NETWORK FLOW PROBLEMS

Didier El Baz

LAAS du CNRS
7, avenue du Colonel Roche

31077 Toulouse Cedex France

ABSTRACT

We consider the single commodity strictly convex network flow problem. The dual of this problem
is unconstrained, differentiable, and well suited for solution via distributed or parallel iterative methods.
We present and prove convergence of gradient and asynchronous gradient algorithms for solving the dual

problem. Computational results are given and analysed.

Key words. network flow problems, distributed algorithms, parallel computation, asynchronous iterative

methods, gradient methods.

1. INTRODUCTION

Agynchronous iterative methods whereby iterations are carried out in parallel by several processors in
arbitrary order and without any synchronization have been devised for parallel and distributed computing
systems. The restrictions imposed on asynchronous iterative methods are very weak: no component of the
iterate vector is abandoned forever and more and more recent values of the components have to be used
as the computation progresses. Asynchronous iterative methods have been implemented very early in
distributed systems. We note for example the routing algorithm originally implemented in the Arpanet
in 1969 (see [3]). There is now a great deal of computational experience available with asynchronous
iterative algorithms on parallel computers (see [1], [2], [5]- [7], [13], [15], [18], and [32]). The advantages
of asynchronous iterative algorithms are implementation simplicity, computation flexibility, and potential
tolerance to problem data changes. Since there is no synchronization overhead, one may also hope that
asynchronous iterations will converge faster. Therefore it is desirable to know the conditions which ensure
the convergence of asynchronous iterative algorithms. There are many results in the literature relevant to
the convergence of parallel or distributed asynchronous iterative methods. For linear systems of equations
Fz = z, the necessary and sufficient condition for the convergence of asynchronous relaxation algorithms
is: the matrix F' is a so-called H-matrix (see [14]). For other convergence results, reference is made
to [16] and [23]. For nonlinear systems of equations, convergence results for asynchronous relaxation
algorithms have been given when F is off-diagonally antitone and diagonally isotone (see [17] and [19]),
an M-function (see [17], [20], and [26]), or H-accretive (see [27]). The reader is also referred to [28].
For nonlinear fixed point problems, the convergence of asynchronous relaxation methods was established
for P-contraction mappings (see [2], [4], [9], and [24]), contraction mappings (see [21]), and isotone
and continuous fixed point mappings (see [3], [4], [8], [9], [25], and [26]), see also [22]. Asynchronous
gradient algorithms for unconstrained optimization are guaranteed to converge if the Hessian matrix of
the cost function satisfies a diagonal dominance condition (see [4] and [9, Section 6.3]). More generally
all these results can be considered as examples of application of the Asynchronous Convergence Theorem

of Bertsekas and Tsitsiklis (see [9, p.431], see also [4, p.114]). This theorem is also a powerful aid in

showing convergence of asynchronous iterative algorithms, as we shall see in Section 3.

This paper deals with the single commodity strictly convex network flow problem. We concentrate on
the dual of this problem which is unconstrained, differentiable, and well suited for solution via distributed
or parallel iterative methods. In [8], we have shown that the structure of the dual problem allows the
successful application of asynchronous relaxation methods. In this paper we present and prove conver-
gence of gradient and asynchronous gradient methods for solving the dual problem. The convergence
results are all new. In particular, the convergence result for asynchronous gradient methods is really
different from the convergence result of Bertsekas for unconstrained optimization, which is based upon
the diagonal dominance of the Hessian matrix of the cost function (see [4] and [9, Section 6.3 and 7.5]).
Computational results are also presented and analysed in this paper. Synchronous and asynchronous

gradient and relaxation algorithms were carried out on a distributed memory multiprocessor.

Section 2 deals with the convex network flow problem. In Section 3 we prove convergence of gra-
dient and asynchronous gradient methods. We present and analyse computational results in Section 4.

Conclusions are given in Section 5.

2. THE CLASS OF CONVEX SEPARABLE NETWORK FLOW PROBLEMS

Let G = (N, A) be a directed graph. N is referred to as the set of nodes, A C N x N is referred
to as the set of arcs, and the cardinal number of N is denoted by n. Let ¢;; : R — (—00,4+00] be the
cost function associated with each arc (4,j) € A. ¢;; is a function of the flow of the arc (i,7) which is
denoted by f;;. Let d be the single destination node for network traffic, b; > 0 the traffic input at node
i € N—{d}, and bg = — 3 ;cn_ggy bi the traffic output at d. The problem is to minimize total cost

subject to a conservation of flow constraint at each node

min Z cii (fis), (1)

(i,j)eA

subject to

> fii— Y, fmi=Db,VieN.

(i,j)€A (m,i)EA

We assume that problem (1) has a feasible solution. We also make the following standing assumptions

on C;j;:
(a) ¢;j is strictly convex, and lower semicontinuous;

(b) the conjugate convex function of ¢;;, defined by

cij(ti) = supftij. fij — cij(fij)}y (2)

ij

is real valued, i.e. -00 < cj;(ti;) < +oo for all real ;;;
(¢) 0 = arg ming,,ci;(fij);

d) there exists a constant 3 > 0, such that for all (i,7) € A and all (§,7n),(¢',n') € [';; with £ < &, we
j

have :

n—n>=.(£=-¢),

S

where Ty; = {(§,1) € R*/c; (€) < n < ¢y, (€)} is the characteristic curve associated with ¢;; (see [31,

p. 320]).

Assumption (b) implies that lim)y, |4 €ij(fij) = +00. Therefore the objective function of problem
(1) has bounded level sets (see [30, Section 8]). It follows that there exists an optimal solution for problem
(1) which must be unique in view of the strict convexity assumed in (a). By the strict convexity of c;;,
c;; is also continuously differentiable and its gradient denoted by chj(tij) is the unique f;; attaining the
supremum in (2) (see [30, pp. 218, 253]). Assumptions (c) and (d) will be discussed in the sequel. We

note that assumptions (a), (b), (¢), and (d) are naturally satisfied in many practical situations:

cij(fiz) = aij | fi|+bij-f7, with ag; > 0 and by; > 0; ¢35 (fi) = aig-max{f, 5}, with ai; > 0; ¢i5(fij) = (

T +bij)~fij7 if 0 < fij < @5, and Cij(fij) = 400, if fij < 0or aj; < fij7 with Qi > 0 and bij > 0.

aij—fi;

Problem (1) is of great practical interest and has been studied for a long time. A dual problem for

(1) is given by
min a(p), (3)

subject to no constraints on the vector p = {p;/i € N},

where ¢ is the dual functional given by

ap) = Y cjpi—p) =Y bips (4)

(i) €A iEN

We refer to p as a price vector and its components as prices. The ith price, p;, is a Lagrange multiplier
associated with the ith conservation of flow constraint. The duality between problems (1) and (3) is
explored in great detail in [31]. The necessary and sufficient condition for optimality of a pair (f,p)
is given in [30]. A feasible flow vector f = {fi;/(i,7) € A} is optimal for (1) and a price vector

p={p;/i € N} is optimal for (3) if and only if for all arcs (i,7) € A
p; — p; is a subgradient of ¢;; at f;;.

An equivalent condition is

fij = Vei;(pi —p;), V(i j) € A.

Any one of these equivalent relations is referred to as the complementary slackness condition (see [30,

pp- 337-338] and [8]).

Existence of an optimal solution of the dual problem can be guaranteed under the following addi-
tional regular feasibility assumption (see [31, p. 360 and p. 329]): there exists a feasible flow vector,
f=A{fij/(i,j) € A}, such that c}; (fi;) < 400 and c;, (fi;) > —oo, for all (i,j) € A, where cj;_,
respectively c;j 1, denotes the left, respectively the right, derivative of c;;. We note that the regular fea-
sibility assumption is not overly restrictive. On the other hand the optimal solution of the dual problem
is never unique since adding the same constant to all coordinates of a price vector p leaves the dual cost
unaffected. We can remove this degree of freedom by constraining the price of one node. We constrain

the price of the destination node, py, to be zero. This choice will have important consequences in the

following. We consider the reduced dual optimal solution set P* defined by:

P* = {p'/a(p’) = min q(p),pg = 0}. (5)
Clearly P* is nonempty.
From (4), it follows that
ap:| Z Ve (i = pj) = Z V,i(pm — pi) — bi. (6)
YlP (ig)eA (m,i)eA

From (2) and assumption (c), it follows that

Vet (0) = 0. (7)

)

From (6) and (7), it follows that 88—1? = —b; <0 for all i € N — {d}, where p denotes the vector of R"
i1y £

with all components zero.

We recall that P* is the nonempty set of vectors p € R™ such that p; = 0 and for all arcs (i, j) € A,

pi — pj is a subgradient of c;; at f};, where f* = {f/(i,j) € A} is the unique primal optimal solution.

THEOREM 2.1. Let assumptions of Section 2 hold. The intersection, denoted by I, of P* with the

nonnegative orthant is nonempty.
Proof. We define first the sets A* and N* by
A ={(i,5) € A/f}; # 0}, and N* = {i € N — {d}/3(i, j) € A* or I(m,1) € A*}.

Suppose that there exists a vector p € P* such that the set N, = {i € N*/p; < 0} is nonempty, and
consider the node of N, with the smallest price value, this node will be denoted by ¢ for simplicity. From
the complementary slackness condition we have Vcy;(p; — p;) = 0if (i,5) € A*, and Vg, .(pm —pi) =0
if (m,i) ¢ A*. From assumptions (a) and (c), and the definitions of prices p; and pg, it follows that
Veii(pi —pj) <0if (i,5) € A, and Veg, (pm — pi) > 0 if (m,) € A*. It follows from (6) that aa—zi) <0,

which contradicts the fact that p € P*. Hence, if p € P*, then

p; > 0,Vi e N*. (8)

From assumption (c), it follows that 0 is a subgradient of ¢;; at 0. Hence, from (8) and the complementary
slackness condition, it follows clearly that there exists at least one vector p € P* such that p; > 0 for all

nodes i € N — N*.
Hence, the intersection, denoted by I, of P* with the nonnegative orthant is nonempty.
Q.E.D.

Since I is nonempty and P* is the set of vectors p € R™ such that p; — p; is a subgradient of ¢;; at f};
for all (z,5) € A, it follows that I is a nonempty polyhedral convex set which has a minimal element,

denoted by p*,ie. forallpe I, and all i € N, p; < p;.

Throughout the paper the component-wise partial ordering on R™ will be also written as p* < p.

We define the set P by P = {p € R"/p < p < p*}, where p is the vector of R" with all components

zero. Clearly P is closed and bounded.
In the following, the number of arcs incident to node i is denoted by a;.

THEOREM 2.2. Under the hypotheses of Section 2, there exists a constant o = . max;cn a; such

that for all p,p"” € R"™, with p” < p, we have

Vaq(p) = Va@") < a.(p —p"). 9)

Proof. We recall that I';; is the characteristic curve associated with ¢;;. It can be shown that ¢j; has Fi_jl
as its marginal cost curve: Fl-_jl = {(n,€) € R*/¢ = Vcj;(n)} (see [31, p. 331]). Hence, from assumption
(d), it follows clearly that there exists a constant 8 > 0, such that for all (i,5) € A and all p,p’ € R"

with p; < p; and pj = p;, we have

Ver (pi — pj) — Ve ;= p)) < B-(pi — p)).-

Thus, for all i € N and all p,p’ € R™ with p} < p; and p;- = p; for j # i, we have

dq
Opi

p Opi

= Z (Vei;(pi — pj) — Ve (0 — pj) — Z (Vi (pm — pi) — Voo — ph))

P (i,j)€A (m,i)EA

< B.a;.(pi — pj).

It follows that there exists a constant o = §.max;cn a; such that for all ¢ € N and all p,p’ € R", with

p; < pi and p; = p; for j # i, we have

dq
Op;

Opi

< a.(p; — p})-

’

p P

k

By the convexity of ¢, Vc?. is nondecreasing (i.e. whatever t;;,t:. € R, t.. < t;; implies Vi (t,.) <
y ij i g J J VA

ij ij
Vei;(tiy)). It follows from (6) that for all i € N, and for all p',p" € R", with p” < p’ and p] = pj, we

3

have

dq
Opi

dq

— <0.
' Opi

P p'

Thus, there exists a constant a = . max;cy a; such that for all ¢ € N and for all p,p’,p"” € R", with

p" <p', p! =p; <pi and p; = p; for j # i, we have

7

dq
Op;

Op;

< a.(p; —pi) = a.(p; — py).
pl

g

_ < 9
Op;

~ Op;i

P p'’ P

Q.ED.

3. GRADIENT AND ASYNCHRONOUS GRADIENT ALGORITHMS

We consider the solution of the dual problem via gradient algorithms. Reference is made to [8] -
[13] and [29] for various iterative methods applied to equality- and interval-constrained problems. The

gradient iteration is defined by

plk+1) = plk) — é.Vq'(p(k))Jﬂ —0.1. .. (10)

where @ = . max;en a; and V¢'(p(k)) is a vector of R"™ with ith component equal to 88—5, " for all
ok

i #d,or 0 fori=d.

We define the gradient mapping F' : R® — R" by

F(p)=p——=Vdq(p). (11)

From Theorem 2.2, it follows clearly that F is isotone on R™ (i.e. whatever p,p’ € R™, p' < p implies
F(p') < F(p)). Since for all (i,j) € A, cj; is real valued and continuously differentiable, it follows from

(6) that for all i € N, g—; is continuous on R". Hence, V¢’ and F' are also continuous on R™.

THEOREM 3.1. Let assumptions of Section 2 hold. The gradient iteration {p(k)} defined by (10) and
starting from p(0) = p (where p is the vector of R™ with all components zero, p < p*, and V¢'(p) < p)

converges monotonically to p*.

Proof. We proceed by induction. Consider p(0) = p, it follows from theorem 2.2 that

V' (p*) = V' (p(0)) < a.(p” = p(0)),

since V¢'(p(0)) < p and V¢'(p*) = p, we have

it follows from theorem 2.2 that
V' (p(1)) = V' (p(0)) < a.(p(1) = p(0)),

thus

Now suppose that for some k& > 1

p(0) < p(k —1) < p(k) < p* and V' (p(k)) <

™

it follows from theorem 2.2 that

V' (p*) = Vd'(p(k) < a.(p” — p(k)),

since V¢'(p(k)) < p and V¢'(p*) = p, we have

p(0) < p(k) < p(k +1) = p(k) — = Vg (p(k)) < ",
it follows from theorem 2.2 that
Vq' (p(k +1)) = V' (p(k)) < a.(p(k +1) — p(k)),

thus

V4 (p(k + 1)) < a(pll + 1) — p(k) + ~ V' (p(R)) = p

Since P = {p € R"/p < p < p*} is closed and bounded, the monotone increasing sequence {p(k)} is
convergent. Thus, there exists p € P such that limg o p(k) = p and by the continuity of the gradient
mapping F, p = F(p). It follows from the convexity of the dual problem that a vector p € R™ is a fixed
point of the gradient mapping F' if and only if p is a solution of the dual problem. Hence, we have p = p*,

since p* is the minimal nonnegative element of P*.
Q.E.D.

The gradient algorithm lends itself very well to distributed or parallel implementation. In particular

11

each price p; can be associated with a different processor.

We consider now totally asynchronous iterative algorithms (see [9, Section 6.1]). In brief, an asyn-
chronous iterative algorithm relative to the solution of the fixed point problem p = F(p) (where F is a

mapping from R™ onto itself) is a sequence {p(k)} of vectors of R™ defined as follows.

We assume that there is a set of times T' = {0,1,2,...} at which one or more components p; of p are

updated by some processor. Let T be the set of times at which p; is updated, we have foreachi =1,...,n :

pi(k+1) = Fy(p1 (i (K)), ..., pn (T2 (K))), VK € T, (12)

pi(k+1) = pi(k),Vk & T,

where Fj is the ith component of the mapping F, and for each i = 1,...,n :

the set T7 is infinite,

0<7i(k)<k,j=1,...,n, Yk €T

7 =

if {k;} is a sequence of elements of T that tends to infinity, then lim; T} (kt) = +oo for every j.

For further details about asynchronous iterative algorithms the reader is referred to [2], [4], and [9,

Chapter 6].

THEOREM 3.2. Let assumptions of Section 2 hold. Asynchronous gradient algorithms defined by
(12) (where F is the gradient mapping defined by (11)) and starting from an estimate p(0) € P = {p €

R"™/p < p < p*} converge to p*.

Proof. 1In order to keep the proof of convergence concise, we show that the sufficient conditions of

convergence of the Asynchronous Convergence Theorem of Bertsekas and Tsitsiklis (see [9, p. 431]) are

12

satisfied.

Consider the sequence of nonempty sets { P(k)} defined by

P(k)={pe R"/p(k) <p<p'},k=0,1,..,

where the sequence {p(k)} is the gradient iteration defined by (10) and which starts from p. We note that

P(k+1)C P(k)C Pk=0,1,....

Clearly the sequence {P(k)} satisfies the Box Condition: for every k, there exist sets P;(k) = {p; €

R/p,(k) <p; <p;j},i=1,..,n, such that P(k) is the Cartesian product P(k) = P (k) x ... x P, (k).

By the isotonicity of the gradient mapping F' on R™ and the proof of Theorem 3.1, the sequence {P(k)}
satisfies also the Synchronous Convergence Condition: F(p) € P(k + 1), Yk and p € P(k) and {p(k)}

converges to p* if {p(k)} is a sequence such that p(k) € P(k) for every k.

Hence, the convergence result follows from the Asynchronous Convergence Theorem of Bertsekas and
Tsitsiklis (see [9, p. 431]). Bertsekas and Tsitsiklis have shown that if the Synchronous Convergence and
Box Conditions are satisfied and the starting point belongs to P(0), then for each & > 0 there is a time
after which all solution estimates given by the asynchronous algorithm are in P(k) and all estimates used

in (12) come from P(k).

Q.ED.

The convergence results of this paper can be extended without difficulties to scaled gradient algorithms

and asynchronous scaled gradient algorithms relative to the scaled gradient mapping F' with components

F! given by F}(p) = pi, if i = d, and F}(p) = pi — =. 99 |\ if i # d, where o) = f.a;, since F' is also

isotone on R™ (see proof of theorem 2.2)

We note also that if for all (i,5) € A, there exists a constant 3;; such that the subgradients of Ve
at t;; are less or equal to f3;;, Vt;; € R, then the convergence results of this paper can also be extended

to scaled gradient algorithms and asynchronous scaled gradient algorithms relative to the scaled gradient

mapping F" with components F!’ given by F/'(p) = p;, if ¢ = d, and F]'(p) = p; — al{,. a‘{ ,if i # d,

where af = Z(m‘)eA Bij + Z(m,i)eA Bmi-

4. COMPUTATIONAL EXPERIENCE

We present now computational experiments on a distributed memory multiprocessor Tnode 16-32.
The machine consists of a network of 16 to 32 processors T800, the so-called transputers, with some local
memory. A transputer T800 is a chip that integrates a processor, a floating point unit, fast memory
and four bidirectional communication links. The processor, floating point unit, and memory make the
chip suitable as a building machine for computers. The communication links allow more transputers to
be connected into one multiprocessor configuration. Communication is made via direct memory access.

Various network topologies can be programmed via an Inmos C004 crossbar: pipeline, ring, grid, cube...

Gradient and relaxation algorithms (denoted by G and R, respectively) were implemented on one
processor, asynchronous and synchronous gradient and relaxation algorithms were implemented on 2, 4,
8, and 16 processors (they are denoted by AGx, SGx, ARx, and SRx, respectively, where x is the number

of processors).

4.1. Problems considered

In this Section, we exhibit some classes of problems for which asynchronous gradient algorithms
present good performances or which are on the contrary pathological cases. We concentrate first on
problems for which nonlinear flow equations cannot be solved accurately and fast as a function of the end
node prices. We will see in the sequel that asynchronous gradient algorithms present an interest in this
case specially for problems with low node degrees. We conclude this subsection with a pathological case:

quadratic transportation problems. In this preliminary computational experience we have considered only

14

grid-like network flow problems. Although this network topology is somewhat simple and restrictive, it

is nevertheless worthy of a performance study of parallel asynchronous gradient algorithms.
We have solved problems with the following three cost functions:
1) cij(fij) = 5 5 if — 5 < fij < 5, ¢ij(fiy) = fii+ 150 i fiy < — 5,00 5 < fij;
In that case we have:
. . . 1.
Vg (pi—pj) = pi—pj, if =% <pi—p; < 5, and Vi (pi—pj) = sign(pi —p;)-(5- 1pi —psl)3 if pi—p; > 3
orp; —p; < —3.
This cost function satisfies assumptions (a), (b), (c), and (d).
2) cij(fij) = (t=5; +0.5).fij, if 0 < fi; < 1, and ¢i5(fij) = +o00, if fij <0or 1 < fiy;

In that case:

W=

chj(pi —pj)=1- (——)

Pry—— N lfpl —DPj Z 157 and chj(pi —pj) =0 lfpl —Pj S 1.5.

This type of cost function often found in communication problems satisfies also assumptions (a), (b), (c),
and (d).

3) cij(fij) = ffj, we have in this case V¢ (pi — pj) = %(pZ - D),

this quadratic cost function satisfies assumptions (a), (b), (c), and (d).

For all problems, there is only one nonzero traffic input, say b1; by = 4 for problems with the first
cost function, by = 1 for problems with the second and third cost functions. All problems have low node
degrees (max;en a; = 4).

For all problems and methods, the starting point is p; = 0, for all i € N. For the gradient methods

we choose a stepsize:

a = f.max;ey a; =4 (8 =1 is chosen according to (d)), in the case of network flow problems with the

first cost function;
a =2 (8 = 0.5 chosen according to (d)), in the case of problems with the second and third cost functions.

The number of nodes and arcs varies from 18 to 144 and 27 to 237, respectively, for nonquadratic

problems and from 24 to 1280 and 37 to 2476, respectively, for quadratic problems.

15

For nonquadratic problems line searches of the relaxation methods are stopped when % < 0.001,¥z €
N —{d}. Computations of the gradient and relaxation methods are stopped when 8% < e =0.1. We have
shown in [20, proposition 4.2] that the sum of the absolute values of the partial derivatives of the dual
functional over all nodes but the destination are less than e if the termination test is satisfied. Thus this
termination criterion can be used to detect global termination of sequential and parallel iterative algo-
rithms. This remark is also true if we consider asynchronous implementation. Moreover this termination
test presents the advantage to give a measure of the feasibility of the final solution since there is a direct
connection between the partial derivatives of the dual functional and the conservation of flow constraints.

The computational experiments have shown that the absolute values of the partial derivatives of the dual

functional are in general very small compared with e.

4.2. Tmplementation of parallel algorithms

For all algorithms and problems we try to balance the number of nodes associated with the different
processors except for algorithms AG16, SG16, AR16, and SR16, in the case of problems with size 120,
where 9 nodes are associated to even processors and 6 nodes are associated to odd processors. This case

permits in particular to study the performances of parallel gradient algorithms for uneven load balancing.

We use a pipeline network of processors with bidirectional links. Figure 1 shows in particular the
processes running on the different processors in the case of asynchronous implementation. This network
topology seems naturally well suited to grid-like network flow problems when few processors are available.

Task scheduling is made according to static mode.

4.2.1. Asynchronous implementation

The implementation was carried out in OCCAM, the transputer language based upon the communi-
cating sequential processes notation. Occam provides only synchronous communication facilities. Thus
for asynchronous implementation of iterative methods, we have proposed to implement two concurrent

processes in parallel on each processor: a low level priority process, the so-called computation process,

16

performs updatings and sends the updates to adjacent processors, a high level priority process, the so-
called buffer process, stores data sent by adjacent processors and transmits the data to the computation
process according to the requests sent by the computation process (see figure 1). The use of a buffer
process permits to implement asynchronous communication and more generally to obtain asynchronous
schemes of computation. The process computation iterates on the basis of the most recent data available
in the buffer, in the beginning of each new updating. The process buffer which has very fast elementary
processes has a higher level of priority than the process computation which consumes more time. Hence,
the transmission of data from the computation process of a processor to the buffer process of its neighbor
is not delayed. The buffer process is idle while it is waiting for messages. All the cpu time is then allo-
cated to the process computation, because the scheduler of the transputer T800 is designed so that idle
processes do not consume cpu time. A detailed description of asynchronous implementation of relaxation

and gradient algorithms on a multitransputer system can be found in [18].

4.2.2. Synchronous implementation

In the case of synchronous iterative algorithms computation and data exchange are made sequentially.
Processors communicate the updates after each computation step. Communication occurs only with
adjacent processors in the pipeline. The data exchange process consists of the parallel input and output
of updates. Processors are synchronized by message exchange, since communication is synchronized and

not bufferised in Occam.

4.3. Computational results

Figures 2, 3, and 4 show the solution times in seconds for relaxation and gradient methods in function

of the number of nodes in the network.
4.3.1. Nonquadratic problems

For nonquadratic problems price relaxation must be made by an iterative process which may consume
nonnegligeable time. Figures 2 and 3 point out that G was generally faster than R. Moving in the good

direction using a gradient step was more suitable than approximating with a good accuracy the prices

17

that minimize the dual functional.

The speedups of the different parallel iterative methods are shown in tables 1 to 8. The nonlinear
dual functional cannot be minimized analytically with respect to each price. Thus parallel relaxation
algorithms lead to nondeterministic load unbalancing, since line search is made by an iterative proce-
dure. Tables 3 and 7 show that an asynchronous implementation has speeded up efficiently the relaxation
method. Tables 3, 4, 7, and 8 point out that synchronous relaxation methods were slower than asyn-
chronous relaxation methods. In particular the synchronization penalties were great. We note that idle

time due to synchronization may be great in this case since we have nondeterministic load unbalancing.

There is deterministic load balancing in the particular case of parallel gradient algorithms since we
compute essentially a gradient at each updating and we have considered very regular network topologies:
i.e. grid-like networks that can be partitioned and assigned equitably to the different processors. Tables
1 and 5 point out that an asynchronous implementation has speeded up very efficiently the gradient
method. Asynchronous gradient algorithms were generally faster than synchronous gradient algorithms
(in particular when more than two processors are used). The good performances of synchronous gradient
algorithms shown on tables 2 and 6 are due in particular to the fact that we have considered essentially
very regular network topologies i.e. grid-like networks, accordingly, idle time due to synchronization is
very small. In the case of nonregular network topologies, idle time due to synchronization should be
greater. From tables 1, 2, 5, and 6, we note that asynchronous implementation of the gradient method
presents an interest particularly for unbalanced problems i.e. problem with 120 nodes and 16 processors.
For the same ratio size of the problem over number of processors, the efficiency e, of asynchronous
gradient, algorithms has decreased slowly with the number of processors. For example we have obtained
for problems with a cost function very similar to the first one: e = 0.94 for AG2 and problem of size 18,
e = 0.93 for AG4 and problem of size 36, e = 0.93 for AG8 and problem of size 72. The efficiency of
synchronous gradient algorithms has decreased faster with the number of processors: e = 0.95 for SG2
and problem of size 18, e = 0.87 for SG4 and problem of size 36, e = 0.83 for SG8 and problem of size

72.

18

We note also that AG2, AG4, and AGS8 were faster than AR2, AR4, and ARS.

4.3.2. Quadratic transportation problems

Figure 4 shows that gradient algorithms are slower than relaxation algorithms for quadratic trans-
portation problems. This is mainly due to the fact that price relaxation can be made analytically in this

case, thus this process is not time consuming.

The value of the dual functional, solution time, number of iterations, and accuracy of the termination
test are shown in table 9 for the relaxation algorithm applied to a quadratic transportation problem with
36 nodes and 57 arcs; we note that an additional digit is obtained in practice for the dual functional if an
additional digit on the partial derivative at the destination node is required. The behaviour of gradient

algorithms is very similar.

Table 10 shows the speedups of parallel relaxation an gradient algorithms for a quadratic transporta-
tion problem with 1280 nodes and 2476 arcs. We note that the speedups of parallel relaxation and
gradient algorithms were very close. We recall that computational loads are very well balanced. However
we point out that the speedups of asynchronous algorithms were generally better than the speedups of
synchronous algorithms. In the case of nonregular network topologies, idle time due to synchronization
should be greater. Thus the performances of parallel synchronous algorithms should be worse. Reference

is made to [7], [10], and [32] for detailed computational experiments.

Obviously other pathological cases are reached for gradient algorithms when the degree of nodes

becomes very large.

Algorithm | AG2 | AG4 | AG8 | AG16
Size
48 1.92 | 3.75 | 7.17 -
72 1.97 | 3.88 | 7.52 -
96 1.98 | 392 | 7.65 | 14.61
120 1.99 | 3.95 | 7.75 | 14.60

Table 1 : speedups of AG2, AG4, AGS8, and AG16 for problems with the first cost function

19

Algorithm | SG2 | SG4 | SG8 | SG16
Size
48 1.92 | 3.65 | 6.67 -
72 197 | 3.80 | 7.14 -
96 1.98 | 3.85 | 7.33 | 1341
120 1.98 | 3.90 | 7.49 | 12.11

Table 2 : speedups of SG2, SG4, SG8, and SG16 for problems with the first cost function

Algorithm | AR2 | AR4 | ARS | ARG
Size
48 1.70 | 3.13 | 6.70 -
72 1.72 | 3.18 | 6.24 -
96 1.73 | 3.24 | 6.24 | 12.84
120 1.74 | 3.27 | 6.30 | 12.93

Table 3 : speedups of AR2, AR4, ARS8, and AR16 for problems with the first cost function

Algorithm | SR2 | SR4 | SR8 | SR16
Size
48 1.51 | 2.14 | 2.71 -
72 1.55 | 2.38 | 3.33 -
96 1.56 | 2.54 | 3.81 | 5.09
120 1.57 | 2.65 | 4.17 | 6.42

Table 4 : speedups of SR2, SR4, SR8, and SR16 for problems with the first cost function

Algorithm | AG2 | AG4 | AG8 | AGI16
Size
48 1.84 | 3.47 | 6.50 -
72 1.87 | 3.54 | 6.73 -
96 1.88 | 3.55 | 6.81 | 12.78
120 1.88 | 3.54 | 6.78 | 12.50
144 1.87 | 3.53 | 6.79 | 12.90

Table 5 : speedups of AG2, AG4, AGS8, and AG16 for problems with the second cost function

Algorithm | SG2 | SG4 | SG8 | SG16
Size
48 1.83 | 3.35 | 6.49 -
72 1.84 | 3.39 | 6.37 -
96 1.84 | 3.37 | 6.22 | 11.78
120 1.83 | 3.32 | 6.09 | 9.87
144 1.83 | 3.22 | 5.89 | 11.02

Table 6 : speedups of SG2, SG4, SG8, and SG16 for problems with the second cost function

20

Algorithm | AR2 | AR4 | AR8 | AR16
Size
48 1.65 | 2.92 | 4.86 -
72 1.67 | 3.04 | 5.38 -
96 1.67 | 3.09 | 5.68 | 9.40
120 1.66 | 3.10 | 5.67 | 9.55
144 1.64 | 3.09 | 5.85 | 10.30

Table 7 : speedups of AR2, AR4, ARS8, and AR16 for problems with the second cost function

Algorithm | SR2 | SR4 | SR8 | SR16
Size
48 1.47 | 2.53 | 3.89 -
72 1.46 | 2.57 | 4.44 -
96 145 | 2.54 | 4.61 | 7.50
120 1.44 | 2.51 | 4.57 | 7.26
144 144 | 249 | 457 | 821

Table 8 : speedups of SR2, SR4, SR8, and SR16 for problems with the second cost function

accuracy of the termination test | dual functional | iterations | time
0.1 11.04873 252 0.224

0.01 11.36527 486 0.430

0.001 11.39390 719 0.634

0.0001 11.39676 953 0.840

0.00001 11.39704 1187 1.046

0.000001 11.39707 1420 1.251

Table 9 : Accuracy of the relaxation algorithm for a quadratic problem

Algorithm | AG SG AR SR
number of processors
2 1.86 | 1.88 | 1.96 | 1.96
4 3.68 | 3.64 | 3.88 | 3.72
8 720 | 7.04 | 7.36 | 6.88
16 13.76 | 13.12 | 13.12 | 12.00

Table 10 : speedups of parallel algorithms for problem with 1280 nodes

5. CONCLUSIONS

In this paper we have proposed solving the dual of a strictly convex single commodity network flow

problem by an original asynchronous gradient method. We have given a set of sufficient conditions

21

for the convergence of gradient and asynchronous gradient algorithms. The convergence mechanism is
original. Our result is different from the convergence result of Bertsekas for unconstrained optimization,

which is based upon the diagonal dominance of the Hessian matrix of the cost function.

We have also presented and analysed computational results for parallel relaxation and gradient algo-
rithms. The computational experience was carried out using a distributed memory multiprocessor. We
have exhibited some good or pathological cases for asynchronous gradient algorithms. The experience has
shown in particular that relaxation method is faster than gradient method for quadratic problems. On
the contrary gradient methods can be interesting for nonquadratic problems with low-degree nodes. In
that case nonlinear flow equations may not be solved particularly fast, moreover the gradient parameter
is not small, thus using a gradient step may be more suitable than approximating with a good accuracy
the prices that minimize the dual functional. The experience has shown that a distributed asynchronous
implementation speeds up efficiently gradient and relaxation algorithms. The experience has also pointed

out that the speedups are generally better for asynchronous algorithms than for synchronous algorithms.

Acknowledgments: The author wish to thank the reviewers for their helpful remarks.

References

[1] R. H. Barlow and D. J. Evans, ”Synchronous and asynchronous iterative parallel algorithms for linear

systems”, Comput. J., 25 (1982), 56-60.

[2] G. M. Baudet, ” Asynchronous iterative methods for multiprocessors”, J. Assoc. Comput. Mach., 2

(1978), 226-244.

[3] D. P. Bertsekas, "Distributed dynamic programming”, IEEE Trans. Auto. Contr., AC-27 (1982),

610-616.

[4] D. P. Bertsekas, ” Distributed asynchronous computation of fixed points”, Mathematical Programming,

27 (1983), 107-120.

22

[5] D. P. Bertsekas and D. A. Castanon, ”Parallel asynchronous primal-dual methods for the minimum
cost flow problem”, report LIDS-P-1998, Department of Electrical Engineering and Computer Science,

M.I.T., Cambridge, MA, (1990).

[6] D. P. Bertsekas and D. A. Castafion, ”Parallel synchronous and asynchronous implementation of the

auction algorithm”, Parallel Computing, 17 (1991), 707-732.

[7] D. P. Bertsekas and D. A. Castafion, J. Eckstein, and S. Zenios, ”Parallel computing in network
optimization”, report LIDS-P-2236, Department of Electrical Engineering and Computer Science, M.I.T.,

Cambridge, MA, 1994, to appear in Handbook on Operation Research and Management Science.

[8] D. P. Bertsekas and D. El Baz, "Distributed asynchronous relaxation methods for convex network

flow problems”, SIAM J. on Control and Optimization, 25 (1987), 74-85.

[9] D. P. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation, Numerical Methods, (Prentice

Hall, Englewood Cliffs, N.J., 1989).

[10] D. P. Bertsekas, P. Hossein, and P. Tseng, "Relaxation methods for network flow problems with

convex arc costs”, SIAM Journal on Control and Optimization, v. 25, 1987, 1219-1243.

[11] Y. Censor and A. Lent, ” An iterative row-action method for interval convex programming”, Journal

of Optimization Theory and Applications, 34 (1981), 321-353.

[12] Y. Censor and J. Segman, ”On block-iterative entropy maximization”, Journal of Information and

Optimization Sciences, 8 (1987), 275-291.

[13] E. Chajakis and S.A. Zenios, ”Synchronous and asynchronous implementations of relaxation algo-

rithms for nonlinear network optimization”, Parallel Computing, 17 (1991) 873-894.
[14] D. Chazan and W. Miranker, ” Chaotic relaxation”, Linear Algebra Appl., 2 (1969), 199-222.

[15] R. De Leone et O. L. Mangasarian, ” Asynchronous parallel successive overrelaxation for the sym-

metric linear complementarity problem”, Mathematical Programming, B 42 (1988), 347-361.
[16] J. D. P. Donnely, ”Periodic chaotic relaxation”, Linear Algebra Appl. 4 (1971), 117-128.

[17] D. El Baz, ”M-functions and parallel asynchronous algorithms”, STAM Journal on Numerical Anal-

23

ysis, 27 (1990), 136-140.

[18] D. El Baz, ” Asynchronous implementation of relaxation and gradient algorithms for convex network

flow problems”, Parallel Computing, 19 (1993), pp. 1019-1028.

[19] D. El Baz, ”"Nonlinear systems of equations and parallel asynchronous iterative algorithms”, in
Advances in Parallel Computing 9, Parallel Computing : Trends and Applications, (North Holland, Am-

sterdam, 1994), G.R. Joubert et al. editors, 89-96.

[20] D. El Baz, P. Spiteri, and J. C. Miellou, ”Distributed asynchronous iterative methods with order

intervals for a class of nonlinear network flow problems”, LAAS report 94244, June 1994.

[21] M. N. El Tarazi, ”Some convergence results for asynchronous algorithms”, Numerisch Mathematik,

39 (1982), 325-340.

[22] S. Li and T. Basar, ” Asymptotic agreement and convergence of asynchronous stochastic algorithms”,

IEEE Trans. Auto. Contr., AC-32 (1987), 612-618.

[23] B. Lubachevsky and D. Mitra, ” A chaotic asynchronous algorithm for computing the fixed point of

nonnegative matrix of unit spectral radius”, J. Assoc. Comput. Mach., 33 (1986), 130-150.
[24] J. C. Miellou, ” Algorithmes de relaxation chaotique a retards”, R.A.LLR.O., R_ 1 (1975), 55-82.

[25] J. C. Miellou, ”Itérations chaotiques & retards, étude de la convergence dans le cas d’espaces par-

tiellement ordonnés”, C.R.A.S. Paris, 280 (1975), 233-236.

[26] J. C. Miellou, ” Asynchronous iterations and order intervals”, in Parallel Algorithms and Architectures,

(M. Cosnard ed., North Holland, 1986). pp. 85-96.

[27] J. C. Miellou, P. Spiteri, ” Two criteria for the convergence of asynchronous iterations”, in Computers

and Computing (P. Chenin, C. di Crescenzo, and F. Robert eds), Wiley- Masson, Paris (1985), pp. 91-95.

[28] D. Mitra, ” Asynchronous relaxations for the numerical solution of differential equations by parallel

processors”, SIAM J. Sci. Stat. Comput., 8 (1987), 43-58.

[29] S. Nielsen and S. A. Zenios, ”Massively parallel algorithms for singly constrained convex programs”,

ORSA Journal on Computing, 4 (1992).

24

[30] R. T. Rockafellar, Convex Analysis, (Princeton University Press, Princeton New Jersey, 1970).

[31] R.T. Rockafellar, Network Flows and Monotropic Optimization, (John Wiley & Sons, New York,
1984).

[32] S.A. Zenios and R.A. Lasken, ”Nonlinear network optimization on a massively parallel Connection

Machine ”, Annals of Operation Research, 14 (1988) 147-166.

25

8000

7000

6000

5000

time
D
o
S
o
T

3000

2000

1000

O | | | | | | |
40 50 60 70 80 90 100 110 120

number of nodes

figure 2: times of R (solid) and G (dashed) for problems with the first cost function

26

1800

1600

1400

1200

1000

time

800

600 |-

400

200

| | |
40 60 80 100 120 140 160
number of nodes

figure 3: times of R (solid) and G (dashed) for problems with the second cost function

27

1800

1600 ,

1400 /

1200 / b

1000 / b

time
~

800 4 b

600 b

400

200}

| | | |
0 200 400 600 800 1000 1200 1400

number of nodes

figure 4: times of R (solid) and G (dashed) for problems with the third cost function

28

