
HAL Id: hal-01152910
https://hal.science/hal-01152910

Submitted on 18 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High performance Peer-to-Peer distributed computing
with application to obstacle problem

The Tung Nguyen, Didier El Baz, Pierre Spitéri, Guillaume Jourjon, Ming
Chau

To cite this version:
The Tung Nguyen, Didier El Baz, Pierre Spitéri, Guillaume Jourjon, Ming Chau. High performance
Peer-to-Peer distributed computing with application to obstacle problem. 24th IEEE International
Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW 2010), IEEE,
Apr 2010, Atlanta, United States. 8p., �10.1109/IPDPSW.2010.5470930�. �hal-01152910�

https://hal.science/hal-01152910
https://hal.archives-ouvertes.fr

High Performance Peer-to-Peer Distributed
Computing with Application to Obstacle Problem#

The Tung Nguyen 1,2,6, Didier El Baz 1,2,6, Pierre Spitéri 3,7, Guillaume Jourjon 4,8, Ming Chau 5,9

1 CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France.
2 Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse France.

3 ENSEEIHT-IRIT, 2 rue Charles Camichel, 31071 Toulouse, France
4 NICTA, Australian Technology Park, Eveleigh, NSW, Australia

5 Advanced Solutions Accelerator, 199 rue de l'Oppidum, 34170 Castelnau le Lez, France
6 {elbaz, ttnguyen}@laas.fr, 7 Pierre.Spiteri@enseeiht.fr,

8 guillaume.jourjon@nicta.com.au, 9 mchau@advancedsolutionsaccelerator.com

Abstract—This paper deals with high performance Peer-to-Peer
computing applications. We concentrate on the solution of large
scale numerical simulation problems via distributed iterative
methods. We present the current version of an environment that
allows direct communication between peers. This environment is
based on a self-adaptive communication protocol. The protocol
configures itself automatically and dynamically in function of
application requirements like scheme of computation and
elements of context like topology by choosing the most
appropriate communication mode between peers. A first series of
computational experiments is presented and analyzed for the
obstacle problem.

Keywords— peer to peer computing, high performance
computing, distributed computing, task parallel model, self-adaptive
communication protocol, numerical simulation, obstacle problem.

I. INTRODUCTION
Peer-to-Peer (P2P) applications have known great

developments these years. These applications were originally
designed for file sharing, e.g. Gnutella [1] or FreeNet [2] and
are now considered to a larger scope from video streaming to
system update and distributed data base. Furthermore, recent
advances in microprocessors architecture and networks permit
one to consider new applications like High Performance
Computing (HPC). Therefore, we can identify a real stake at
developing new protocols and environments for HPC since this
can lead to economic and attractive solutions. Nevertheless,
task parallel model and distributed iterative methods for large
scale numerical simulation or optimization on P2P networks
gives raise to numerous challenges like communication
management, scalability, heterogeneity and peer volatility on
the overlay network (see [9]). Some issues can be addressed via
distributed asynchronous iterative algorithms (see [8], [13] and
[14]); but in order to improve efficiency, the underlying
transport protocols must be suited to the profile of the
application. We note that transport protocols are not well suited
to this new type of application. Indeed, existing transport
protocols like TCP and UDP were originally designed to
provide ordered and reliable transmission to the application and
are no longer adapted to both real-time and distributed
computing applications. In particular, P2P applications require
a message based transport protocol whereas TCP only offers a
stream-based communication. Recently, new transport

protocols have been standardized such as SCTP and DCCP.
Nevertheless, these protocols still do not offer a complete
modularity needed to reach an optimum resolution pace in the
context of HPC and P2P.

In [3] and [10], we have proposed the Peer To Peer Self
Adaptive communication Protocol P2PSAP which is suited to
high performance distributed computing. The P2PSAP protocol
is based on the Cactus framework [4] and uses micro-protocols.
P2PSAP chooses dynamically the most appropriate
communication mode between any peers according to decisions
made at application level like schemes of computation, e.g.
synchronous or asynchronous schemes and elements of context
like topology. This approach is different from MPICH
Madeleine [20] in allowing the modification of internal
transport protocol mechanism in addition to switch between
networks.

Recently, middleware like BOINC [21] or OurGrid [22]
have been developed in order to exploit the CPU cycles of
computers connected to the network. Those systems are
generally dedicated to applications where tasks are independent
and direct communication between machines is not needed.

In this paper, we present the current version of P2PDC an
environment for P2P HPC based on P2PSAP which allows
direct communication between peers and facilitates
programming. We display and analyze computational results
obtained for the obstacle problem on the NICTA testbed. We
show that the adaptation of P2PSAP allows an efficient
distributed solution of the problem.

This article is structured as follows: Section II deals with
P2PSAP. In Section III, we present the current version of
P2PDC. The programming model is also detailed in Section III.
The Section IV deals with the solution of the obstacle problem.
Computational results are displayed and analyzed in Section V.
Conclusion and future work is presented in Section VI.

II. SELF-ADAPTIVE COMMUNICATION PROTOCOL
In this Section, we present P2PSAP; this protocol is an

extension of CTP [5], a Configurable Transport Protocol
designed and implemented using the Cactus framework [4].
The Cactus framework makes use of micro-protocols to allow
users to construct highly-configurable protocols for distributed
system. A micro-protocol implements merely a functionality of
a given protocol (e.g. congestion control and reliability). A
protocol results from the composition of a given set of micro-

#The present work has been funded by ANR-07-CIS7-011 grant

protocols. This approach permits one to reuse the code,
facilitate the design of new protocols and gives the possibility
to configure the protocol dynamically. Cactus is an event-based
framework. Each micro-protocol is structured as a collection of
event handlers, which are procedure-like segments of code and
are bound to events. When an event occurs, all handlers bound
to that event are executed. Cactus has two grains level.
Individual protocols, the so-called composite protocols, are
constructed from micro-protocols. Composite protocols are
then layered on top of each other to create a protocol stack.
Protocols developed using Cactus framework can reconfigure
by substituting micro-protocols or composite protocols. For
further details about Cactus, reference is made to [4].

In order to improve protocol performance and facilitate
reconfiguration, we have introduced some modifications to the
Cactus framework. Firstly, Cactus doesn’t allow concurrent
handler execution; this means that a handler must wait for
current executed handler completion before being executed.
But nowadays, almost all PCs have more than one core and
concurrent handler execution is necessary in order to improve
performance. So, we have modified Cactus to allow concurrent
handler execution. Each thread has its own resources and its
handler execution is independent of others. Secondly, we have
eliminated unnecessary message copies between layers. In the
Cactus framework, when a message is passed to upper or lower
layers, Cactus runtime creates a new message that is sent to
upper or lower layers. Hence, a significant number of CPU
cycles and memories are consumed in multiple-layers systems.
In our protocol, message copies occur between Socket API
layer and Data channel, and within the Data channel. In order
to eliminate message copies, we have modified the pack and
unpack functions so that only a pointer to message is passed
between layers. Therefore, no message copy is made within the
stack.Finally, Cactus provides operations for unbinding
handlers but it has no explicit operation for removing a micro-
protocol. In order to facilitate protocol reconfiguration, we
have added to Cactus API an operation for micro-protocol
removing. In addition to the micro-protocol initiating function,
each micro-protocol must have a remove function, which

unbinds all its handlers and releases its own resources. This
function will be executed when the micro-protocol is removed.

Figure 1 shows the architecture of P2PSAP; the protocol
has a Socket interface and two channels: a control channel and
a data channel. We present now those components.

A. Socket API
A main lack of Cactus CTP is that it has no application

programming interface; application has to use an interface as
though it was just another composite protocol. In order to
facilitate programming, we have placed a socket-like API on
the top of our protocol. Application can open and close
connection, send and receive data. Furthermore, application
will be able to get session state and change session behavior or
architecture through socket options, which were not available
in Cactus. Session management commands like listen, open,
close, setsockoption and getsockoption are directed to Control
channel; while data exchange commands, i.e. send and receive
commands are directed to Data channel.

B. Data channel
The Cactus built data channel transfers data packets

between peers. The data channel has two levels: the physical
layer and the transport layer; each layer corresponds to a
Cactus composite protocol. We encompass the physical layer to
support communications on different networks, i.e. Ethernet,
InfiniBand and Myrinet. Each communication type is carried
out via a composite protocol. The data channel can be triggered
between the different types of networks; one composite
protocol is then substituted to another. The transport layer is
constituted by a composite protocol made of several micro-
protocols, which is an extension of CTP. We have added to the
existing micro-protocols a remove function corresponding to
the modifications we have introduced to the Cactus framework.
In addition, we have designed some new micro-protocols that
enable CTP to be used for sending and receiving messages in
distributed computing applications as we shall see in the
sequel.

Micro-protocols synchronization: CTP supports only
asynchronous communication. Distributed applications may
nevertheless use plural communication modes. Hence, we have
implemented two micro-protocols corresponding to two
communication modes: synchronous and asynchronous. These
micro-protocols introduce new events, UserSend and
UserReceive, that will be raised when send and receive socket
commands will be called by an application. In response to
messages sent from application, these micro-protocols may
return the control to application immediately after message sent
(asynchronous send) or wait for an acknowledgement
indicating that message was received by receiver side
application (synchronous send). Likely, in response to receive
call from application, they may return the control to application
immediately with or without message (asynchronous receive),
or wait until message arrives (synchronous receive).

Micro-protocol buffer management: two buffers must be
managed: a sending buffer and a receiving buffer. The sending
buffer stores messages to be sent or that need to be
acknowledged. The receiving buffer stores messages sent by
other peers that are waiting to be delivered. This micro-
protocol implements handlers for the UserSend and MsgFrom-
Net events to catch messages from application and network.

Figure 1. P2PSAP Protocol architecture

Micro-protocols congestion control: CTP has several
micro-protocols implementing SCP congestion control and
TCP-Tahoe congestion control. We have designed and used
new micro-protocols implementing the TCP New-Reno
congestion control [6] and the H-TCP congestion control for
high speed-latency network [7].

At this level, data channel reconfiguration is carried out by
substituting or removing and adding micro-protocols. The
behavior of the data channel is triggered by the control channel.

C. Control channel
The Control channel manages session opening and closure.

It captures context information and (re)configures the data
channel at opening or operation time. It is also responsible for
coordination between peers during reconfiguration process.
Note that we use the TCP/IP protocol to exchange control
messages since those messages must not be lost. We describe
now the main components of the control channel.

1) Context monitor: the context monitor collects context
data and their changes. Protocol adaptation is based on context
acquisition, data aggregation and data interpretation. Context
data can be requirements imposed by the user at the
application level, i.e. synchronous or asynchronous schemes of
computation. Context data can also be related to peers location
and machine loads. Context data are collected at specific times,
periodically or by means of triggers. Data collected by the
context monitor can be referenced by the controller.

2) Controller: the controller is the most important
component of the control channel; it manages session opening
and end through TCP connection opening and closure; it also
combines and analyzes context information provided by the
context monitor so as to choose the configuration (at session
opening) or to take reconfiguration decision (during session
operation) for data channel. The choice of the most
appropriate configuration is determined by a set of rules that
are described by a specification language such as OWL, ECA,
etc. These rules specify new configuration and actions needed
to realize it. The (re)configuration command along with
necessary information is sent to component Reconfiguration
and to other communication end point.

3) Reconfiguration: reconfiguration actions are made by
the reconfiguration component via the dedicated Cactus
functions. Reconfiguration is mainly made at the transport
layer by substituting or removing and adding micro-protocols
that support communication mode.

4) Inter-peer coordination: the coordination component is
responsible of context information exchange and coordination
process related to peers reconfiguration so as to ensure proper
working of the protocol.

D. Self-adaptation mechanism
Similar machines connected via a local network with small

latency, high bandwidth and reliable data transfer can be
gathered in a cluster.

During solution, the transport protocol is configured
according to the following context data: schemes of
computation (i.e. synchronous, asynchronous or hybrid
iterative schemes) and topology parameters like type of

connection (i.e. intra or inter cluster). Decision rules are
summarized in Table 1. In the sequel, we explain those rules.

Sometimes, communication mode must fit a computational

scheme requirement (e.g. a special requirement related to the
convergence of the implemented numerical method) as in the
case where synchronous computational schemes are imposed.
Then, synchronous communications are imposed in both intra-
cluster and inter-cluster data exchanges. In this case, micro-
protocols used for the data channel will be the Synchronous
micro-protocol with some reliability and order micro-protocols.
To explore the high-speed long distance network, the data
channel can use H-TCP congestion control micro-protocol for
inter-cluster communication instead of TCP New-Reno
congestion control micro-protocol which works well only in
low latency network.

Likely, in the case where asynchronous schemes of
computation are required by user, asynchronous
communication must be preferably implemented in both intra-
cluster and inter-cluster data exchanges. We note that
asynchronous schemes of computation are fault tolerant in
some sense since they allow messages losses. However,
messages losses may lead to some extra relaxations. For this
reason, in intra-cluster communication with low latency, it may
be better to add some reliability micro protocols to the data
channel along with the Asynchronous micro-protocol. While in
inter-cluster communication with high latency and message
losses recovery time may be comparable with updating time,
thus those messages can become obsolete. Hence, reliability
micro protocols are not needed in this case.

There are also some situations where a given problem can
be solved by using any combination of computational schemes.
In this latter case, the user can leave the system to freely
choose communication mode according to elements of context
like inter-cluster or extra cluster connection. As a consequence,
the self adaptive communication protocol will choose the most
appropriate communication mode according to topology
parameters. This corresponds to the so-called Hybrid scheme of
computation. In this case, if computational loads are well
balanced, then synchronous communication between peers are
appropriate. On the other hand, synchronization may be an
obstacle to efficiency and robustness in inter-cluster data
exchanges situations where there may be some heterogeneity,
i.e. processors, OS, bandwidth, and communications may be
unreliable and have high latency. Thus, asynchronous
communication seems more appropriate in this latter case.

TABLE I. COMMUNICATION ADAPTATION RULES

 Scheme

Connection

Synchronous Asynchronous Hybrid

 Intra-cluster Synchronous
 Reliable Com.

 Asynchronous
 Reliable Com.

 Synchronous
 Reliable Com.

 Inter-cluster Synchronous
 Reliable Com.

 Asynchronous
 Unreliable Com.

 Asynchronous
 Unreliable Com.

III. ENVIRONMENT P2PDC
In this Section, we display the global architecture of

P2PDC and present the current version with simplified and
centralized functions.

A. Environment global architecture
Figure 2 illustrates the architecture of our environment. We

describe now its main components.
1) User daemon is the interaction interface between the

application and the environment. It allows users to submit
their tasks and retrieve final results.

2) Topology manager organizes connected peers into
clusters and maintains links between clusters and peers.

3) Task manager is responsible for sub-tasks distribution
and results collection.

4) Task execution executes sub-tasks and exchanges
intermediate results.

5) Load balancing estimates peer workload and migrates a
part of work from overloaded peer to non-loaded peer.

6) Fault tolerance ensures the integrity of the calculation
in case of peer or link failure.

7) Communication provides support for data exchange
between peers using protocol P2PSAP.

B. Programming model
We have proposed a programming model that allows all

programmers to develop their own application easily.
Communication operations: The set of communication

operations is reduced. There are only a send and a receive
operations (P2P_Send and P2P_Receive). The idea is to
facilitate programming of large scale P2P applications and
hide complexity of communication management as much as
possible. Contrarily to MPI communication library where
communication mode is fixed by the semantics of
communication operations, the communication mode of a
given communication operation which is called repetitively
can vary with P2PDC according to the context; e.g. the same
P2P_Send from peer A to peer B, which is implemented
repetitively, can be first synchronous and then become
asynchronous. As a consequence, the programmer does not fix
directly the communication mode; he rather selects the type of
scheme of computation he wants to be implemented, e.g.

synchronous or asynchronous iterative scheme or let the
protocol free by choosing a hybrid scheme. When the system
is set free, the choice of communication mode will depend
only on elements of context like topology change and thus be
dynamic.

Application programming model: Figure 3 shows the steps
that a parallel application must follow in order to be deployed.
We want the environment to carry out those activities
automatically. Hence we propose a programming model based
on this diagram. Only activities with solid line boundary are
taken into account by the programmers. Activities with broken
line boundary are taken into account by the environment and
are transparent to programmers. Thus, in order to develop an
application, programmers have to write code for only three
functions corresponding to the following three activities:
Problem_Definition(), Calculate() and Results_Aggregation().
In the Problem_Definition() function, programmers define the
problem in indicating the number of sub-tasks and sub-task
data. The computational scheme and number of peers
necessary can also be set in this function but they can be
overridden at start time in command line. In the Calculate()
function, programmers write sub-tasks code; they can use
P2P_Send() and P2P_receive() to send or receive updates at
each relaxation. Programmers define how sub-tasks results are
aggregated and the type of output, i.e. a console or a file, in
the Results_Aggregation() function.

We note that with this programming model all difficult
tasks like load balancing and fault tolerance are managed by
the environment; this reduces the work of programmers.
Moreover, it allows P2PDC to implement some automatic
functionality that are not implemented with MPI e.g.
automatic load balancing in function of peer characteristics
and load at start and run time.

Figure 2. Environment architecture

Figure 3. Activity diagram of a distributed application

(5)

(6)

(7)

(1)

(2)

(4)

(3)

C. Implementation
The current implementation of P2PDC is presented in the

sequel.
1) User daemon

The User daemon component constitutes for the moment
the interface between user and environment. We outline here
some principal commands:

- run: run an application. Parameters are application
name and application owner parameters that will be
passed to Problem_Definition() function.

- stat: return actual state of node.
- exit: quit the environment.
2) Topology manager

The topology manager component is currently centralized.
We use a server in order to store information about all nodes
in the network. When a node joins the network, it sends to the
server a message. The server adds the new node to peer list
and sends to the node an acknowledgement message. Peers
must send ping messages periodically to server to inform it
that they are alive. If the server does not receive ping message
from a peer after 3 ping periods, the server considers that this
peer is disconnected and removes it from the peer list.

The topology manager is also responsible of peer
collections. When Task manager requests peers to execute a
new application, it sends a request to the server with number
of peers needed; the server checks its peer list and returns free
peers to the task manager of the request peer.

3) Task manager
Task manager is the main component that calls functions of

the application. When an user starts an application using the
run command, this component finds the corresponding
application via application name and calls the
Problem_Definition() function. It requests peers from
Topology manager on the basis of number of peers needed by
application and sends sub-tasks with their data to collected
peers. When all peers have sent the results, Task manager calls
the Results_Aggregation() function.

4) Task execution
When a peer receives a sub-task, it finds the corresponding

application via application name and calls the Calculate()
function.

Load balancing and Fault tolerance components have not
yet been developed.

IV. APPLICATION TO OBSTACLE PROBLEM
The application we consider, i.e. the obstacle problem,

belongs to a large class of numerical simulation problems (see
[8] and [12]). The obstacle problem occurs in many domains
like mechanics and financial mathematics, e.g. options pricing.

A. Fixed point problem and projected Richardson method
The discretization of the obstacle problem leads to the

following large scale fixed point problem whose solution via
distributed iterative algorithms (i.e. successive approximation
methods) presents many interests.

� 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑢𝑢∗ ∈ 𝑉𝑉 𝑠𝑠𝑢𝑢𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡
𝑢𝑢∗ = 𝐹𝐹(𝑢𝑢∗),

�

where 𝑉𝑉 is an Hilbert space and the mapping 𝐹𝐹: 𝑣𝑣 ↦ 𝐹𝐹(𝑣𝑣) is a
fixed point mapping from 𝑉𝑉 into 𝑉𝑉. Let 𝛼𝛼 be a positive integer,
for all 𝑣𝑣 ∈ 𝑉𝑉, we consider the following block-decomposition
of 𝑣𝑣 and the associated block-decomposition of the mapping 𝐹𝐹
for distributed implementation purpose:

𝑣𝑣 = (𝑣𝑣1, … , 𝑣𝑣𝛼𝛼),
𝐹𝐹(𝑣𝑣) = �𝐹𝐹1(𝑣𝑣), … ,𝐹𝐹𝛼𝛼(𝑣𝑣)�.

We have 𝑉𝑉 = ∏ 𝑉𝑉𝐹𝐹𝛼𝛼
𝐹𝐹=1 , where 𝑉𝑉𝐹𝐹 are Hilbert spaces; we

denote by 〈. , . 〉𝐹𝐹 the scalar product on 𝑉𝑉𝐹𝐹 and |. |𝐹𝐹 the associated
norm, 𝐹𝐹 ∈ {1, … ,𝛼𝛼}; for all 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉, we denote by 〈𝑢𝑢, 𝑣𝑣〉 =
∑ 〈𝑢𝑢𝐹𝐹 , 𝑣𝑣𝐹𝐹〉𝐹𝐹 ,𝛼𝛼
𝐹𝐹=1 the scalar product on 𝑉𝑉 and ‖. ‖ the associated

norm on 𝑉𝑉 . In the sequel, we shall denote by 𝐴𝐴 a linear
continuous operator from 𝑉𝑉 onto 𝑉𝑉, associated such that
𝐴𝐴. 𝑣𝑣 = (𝐴𝐴1. 𝑣𝑣, … ,𝐴𝐴𝛼𝛼 . 𝑣𝑣) and which satisfies:

∀𝐹𝐹 ∈ {1, … ,𝛼𝛼},∀𝑣𝑣 ∈ 𝑉𝑉, 〈𝐴𝐴𝐹𝐹 . 𝑣𝑣, 𝑣𝑣𝐹𝐹〉𝐹𝐹 ≥ ∑ 𝐹𝐹𝐹𝐹 ,𝑗𝑗 |𝑣𝑣𝐹𝐹|𝐹𝐹 �𝑣𝑣𝑗𝑗 �𝑗𝑗
𝛼𝛼
𝑗𝑗=1 ,

where

 𝑁𝑁 = (𝐹𝐹𝐹𝐹 ,𝑗𝑗)1≤𝐹𝐹 ,𝑗𝑗≤𝛼𝛼 𝐹𝐹𝑠𝑠 𝑎𝑎𝐹𝐹 𝑀𝑀 −𝑚𝑚𝑎𝑎𝑡𝑡𝑚𝑚𝐹𝐹𝑚𝑚 𝑜𝑜𝑜𝑜 𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠 𝛼𝛼 × 𝛼𝛼.

Similarly, we denote by 𝐾𝐾𝐹𝐹 , a closed convex set such that
𝐾𝐾𝐹𝐹 ⊂ 𝑉𝑉𝐹𝐹 , ∀𝐹𝐹 ∈ {1, … ,𝛼𝛼}, we denote by 𝐾𝐾, the closed convex set
such that 𝐾𝐾 = ∏ 𝐾𝐾𝐹𝐹𝛼𝛼

𝐹𝐹=1 and 𝑏𝑏, a vector of 𝑉𝑉 that can be written
as: 𝑏𝑏 = (𝑏𝑏1, … , 𝑏𝑏𝛼𝛼). For all 𝑣𝑣 ∈ 𝑉𝑉, let 𝑃𝑃𝐾𝐾(𝑣𝑣) be the projection
of 𝑣𝑣 on 𝐾𝐾 such that 𝑃𝑃𝐾𝐾(𝑣𝑣) = �𝑃𝑃𝐾𝐾1 (𝑣𝑣1), … ,𝑃𝑃𝐾𝐾𝛼𝛼 (𝑣𝑣𝛼𝛼)�, where
𝑃𝑃𝐾𝐾𝐹𝐹 denotes the mapping that projects elements of 𝑉𝑉𝐹𝐹 onto
𝐾𝐾𝐹𝐹 ,∀𝐹𝐹 ∈ {1, … ,𝛼𝛼}. For any 𝛿𝛿 ∈ 𝑅𝑅, 𝛿𝛿 > 0, we define the fixed
point mapping 𝐹𝐹𝛿𝛿 as follows (see[8]).

∀𝑣𝑣 ∈ 𝑉𝑉,𝐹𝐹𝛿𝛿(𝑣𝑣) = 𝑃𝑃𝐾𝐾(𝑣𝑣 − 𝛿𝛿(𝐴𝐴. 𝑣𝑣 − 𝑏𝑏)),

The mapping 𝐹𝐹𝛿𝛿 can also be written as follows.
𝐹𝐹𝛿𝛿(𝑣𝑣) = �𝐹𝐹1,𝛿𝛿(𝑣𝑣), … ,𝐹𝐹𝛼𝛼 ,𝛿𝛿(𝑣𝑣)� 𝑤𝑤𝐹𝐹𝑡𝑡ℎ

𝐹𝐹𝐹𝐹 ,𝛿𝛿(𝑣𝑣) = 𝑃𝑃𝐾𝐾𝐹𝐹�𝑣𝑣𝐹𝐹 − 𝛿𝛿(𝐴𝐴𝐹𝐹 . 𝑣𝑣 − 𝑏𝑏𝐹𝐹)�,∀𝑣𝑣 ∈ 𝑉𝑉,∀𝐹𝐹 ∈ {1, … ,𝛼𝛼}.

B. Parallel projected Richardson method
We consider the distributed solution of fixed point problem

(1) via projected Richardson method combined with several
schemes of computation, i.e. a Jacobi like synchronous scheme:
𝑢𝑢𝑝𝑝+1 = 𝐹𝐹δ(𝑢𝑢𝑝𝑝),∀𝑝𝑝 ∈ 𝑁𝑁 or asynchronous schemes of
computation that can be defined as follows (see [8]).

�
𝑢𝑢𝐹𝐹
𝑝𝑝+1 = 𝐹𝐹𝐹𝐹 ,𝛿𝛿 �𝑢𝑢1

𝜌𝜌1(𝑝𝑝), … ,𝑢𝑢𝑗𝑗
𝜌𝜌𝑗𝑗 (𝑝𝑝)

, … ,𝑢𝑢𝛼𝛼
𝜌𝜌𝛼𝛼 (𝑝𝑝)� 𝐹𝐹𝑜𝑜 𝐹𝐹 ∈ 𝑠𝑠(𝑝𝑝),

𝑢𝑢𝐹𝐹
𝑝𝑝+1 = 𝑢𝑢𝐹𝐹

𝑝𝑝 𝐹𝐹𝑜𝑜 𝐹𝐹 ∉ 𝑠𝑠(𝑝𝑝),
�

where

� 𝑠𝑠
(𝑝𝑝) ⊂ {1, … ,𝛼𝛼}, 𝑠𝑠(𝑝𝑝) ≠ ∅,∀𝑝𝑝 ∈ 𝑁𝑁,

{𝑝𝑝𝑝𝑝𝑁𝑁|𝐹𝐹 ∈ 𝑠𝑠(𝑝𝑝)}, 𝐹𝐹𝑠𝑠 𝐹𝐹𝐹𝐹𝑜𝑜𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡𝑠𝑠, ∀𝐹𝐹 ∈ {1, … ,𝛼𝛼},
�

and

�
𝜌𝜌𝑗𝑗 (𝑝𝑝) ∈ 𝑁𝑁, 0 ≤ 𝜌𝜌𝑗𝑗 (𝑝𝑝) ≤ 𝑝𝑝,∀𝑗𝑗 ∈ {1, … ,𝛼𝛼},∀𝑝𝑝 ∈ 𝑁𝑁,
𝑙𝑙𝐹𝐹𝑚𝑚𝑝𝑝→∞𝜌𝜌𝑗𝑗 (𝑝𝑝) = +∞,∀𝑗𝑗 ∈ {1, … ,𝛼𝛼}.

�

The above asynchronous iterative scheme can model
computations that are carried out in parallel without order nor
synchronization. In particular, it permits one to consider
distributed computations whereby peers go at their own pace

according to their intrinsic characteristics and computational
load (see [8]). Finally, we note that the use of delayed
components in (5) and (7) permits one to model
nondeterministic behaviour and does not imply innefficiency of
the considered distributed scheme of computation. The
convergence of asynchronous projected Richardson method has
been established in [8] (see also [15] to [17]).

The choice of scheme of computation, i.e. synchronous,
asynchronous or any combination of both schemes will have
important consequences on the efficiency of distributed
solution as we shall see in the next Section. We have shown the
interest of asynchronous iterations for high performance
computing in various contexts including optimization and
boundary value problems, e.g. see [8], [13], [14] and [18].

V. COMPUTATIONAL EXPERIMENTS
We present now and analyze a set of computational

experiments for the obstacle problem.

A. NICTA testbed
Computational experiments have been carried out on the

NICTA testbed [11]. This testbed is constituted of 38 machines
having the same configuration, i.e. processor speed 1GHz,
memory 1GB based on Voyage Linux distribution. Those
machines are connected via 100MBits Ethernet network.

NICTA testbed uses OMF (cOntrol and Management
Framework) to facilitate the control and management of the
testbed [19]. Furthermore, we use OML (Orbit Measurement
Library) to orchestrate the measurement during the experiment.
OMF provides a set of tools to describe and instrument an
experiment, execute it and collect its results; OMF provides
also a set of services to efficiently manage and operate the
testbed resources (e.g. resetting nodes, retrieving their status
information, installing new OS image). In order to perform our
experimentations, we have written plural descriptions files,
using OMF's Experiment Description Language (OEDL),
corresponding to different scenarios. Each description file
contains: configuration of the network topology, i.e. peer’s IP
address assignment so that they are in the desired cluster;
network parameters, i.e. communication latency and path to
application with appropriate parameters.

B. Implementation
In our experiments, the computation scheme (synchronous,

asynchronous or combination of both schemes) is chosen at the
beginning of the resolution whereas the communication mode
is decided at runtime by the adaptive transport protocol.

For simplicity of presentation and without loss of
generality, we have displayed in Figure 4 the basic
computational procedure at node 𝑘𝑘 with 𝑘𝑘 ≠ 1, 𝑘𝑘 ≠ 𝛼𝛼.
The 𝑘𝑘-th node updates the sub-blocks of components of the
iterate vector denoted by 𝑈𝑈𝑜𝑜(𝑘𝑘),𝑈𝑈𝑜𝑜(𝑘𝑘)+1, … ,𝑈𝑈𝑙𝑙(𝑘𝑘), where 𝑈𝑈𝑜𝑜(𝑘𝑘)
stands for the first sub-block of the 𝑘𝑘-th node and 𝑈𝑈𝑙𝑙(𝑘𝑘) stands
for the last sub-block of the 𝑘𝑘 -th node. We note that the
transmission of 𝑈𝑈𝑜𝑜(𝑘𝑘) to node 𝑘𝑘 − 1 is delayed so as to reduce
the waiting time in the synchronous case.

C. Problems and results
We have considered several 3-Dimensional obstacle

problems. Let 𝐹𝐹3 denote the number of discretization points,

the iterate vector is decomposed into 𝐹𝐹 sub-blocks of 𝐹𝐹2 points.
The sub-blocks are assigned to 𝛼𝛼 nodes with 𝛼𝛼 ≤ 𝐹𝐹. The sub-
blocks are computed sequentially at each node..

In this paper, we present a set of computational experiments
obtained with 𝐹𝐹 = 96 and 𝐹𝐹 = 144. Experiments have been
carried out on 1, 2, 4, 8, 16 and 24 machines.

In the distributed context, i.e. for several machines, we have
considered the case where machines either belong to a single
cluster or are divided into 2 clusters connected via Internet. We
used the Netem tool to simulate the Internet context; the
latency between 2 clusters is set to 100ms. We have carried out
experiments with different schemes of computation, i.e.
synchronous, asynchronous and hybrid.

Figures 5 and 6, respectively, show the time, number of
relaxations, speedup and efficiency of the different parallel
schemes of computation in the case where 𝐹𝐹 = 96 and
𝐹𝐹 = 144, respectively. For the application and topologies
considered, we note that asynchronous schemes of computation
have performed better than the synchronous ones.

 The efficiency of asynchronous schemes of computation
decreases slowly with the number of processors; while the
efficiency of synchronous schemes of computation deteriorates
greatly when the number of processors increases (this is
particularly true in the case of 2 clusters); this is mainly due to
synchronization overhead and waiting time.

The speedup of synchronous schemes of computation is
very small for 24 nodes. This can be explained as follow: when
24 nodes are used, each node calculates only a small number of
sub-blocks; since exchanged messages and sub-blocks have the
same size, communication overhead and waiting time then
reach a significant proportion.

When we compare the computational results with 1 and 2
clusters, we can see that there is not much difference with
regard to the asynchronous schemes; while in the synchronous
cases, 1 cluster results are better than 2 clusters results. This is
due to the fact that communication latency between 2 clusters
(100ms) increases the waiting time due to synchronization; this
means that synchronous communication is sensible to latency
increase and not appropriate for the communication between
clusters.

Figure 4. Basic computational procedure at node 𝑘𝑘.

Figure 5. Computational results in the case of problem size 96x96x96

Figure 6. Computational results in the case of problem size 144x144x144

When the problem size increases from 𝐹𝐹 = 96 to 𝐹𝐹 = 144,
the efficiency of distributed methods increases since
granularity increases.

The number of relaxations performed by synchronous
schemes remains constant although the sub-block processing
order is changed by the distribution of computation.

In the case of asynchronous schemes of computation, some
nodes may iterate faster than others; this is particularly true
when nodes have fewer neighbors than others, like nodes 1 and
𝛼𝛼 that have only one neighbor. Then, the average number of
relaxations increases with the numbers of machines, as
depicted in Figure 5 and 6.

The efficiency of hybrid schemes of computation is situated
in between efficiencies of synchronous and asynchronous
schemes.

It follows from the computational experiments that the
choice of communication mode has important consequences on
the efficiency of the distributed methods. The ability for the
protocol P2PSAP to choose the best communication mode in
function of network topology and context appears as a crucial
property. We note also that the choice of communication mode
has important consequences on the reliability of the distributed
method and everlastingness of the high performance computing
application. With regards to these topics, we note that
asynchronous communications are more appropriate in the case
of communications between clusters.

VI. CONCLUSION
In this paper, we have presented P2PSAP, a self adaptive

communication protocol. We have also detailed the current
version of P2PDC, an environment for high performance peer
to peer distributed computing that allows direct communication
between peers. We have displayed and analyzed computational
results on the NICTA platform with up to 24 machines for
numerical simulation problem, i.e. the obstacle problem.

The computational results show that P2PSAP permits one
to obtain good efficiency, in particular, when using
asynchronous communications or a combination of
synchronous and asynchronous communications.

In the future, we plan to study a specification language for
controller decision rules description. We shall also develop
decentralized functions of P2PDC. This type of environment
will permit one to use all the specificities offered by the P2P
concept to high performance computing. Self organization of
peers for efficiency purpose or for ensuring everlastingness of
applications in hazardous situations or in the presence of faults
will also be studied. Finally, we plan to consider other
applications e.g. process engineering application with many
more machines. The different applications considered will
permit us to validate experimentally our protocol and
decentralized environment in different high performance
computing contexts.

REFERENCES
[1] Gnutella Protocol Development. http://rfc-gnutella.sourceforge.net.
[2] The FreeNet Network Projet. http://freenet.sourceforge.net.
[3] D. El Baz, T. T. Nguyen et al, “CIP - Calcul intensif pair à pair”, Poster,

session, Ter@tec2009, Gif-sur-Yvette, France, June 30 - July 1, 2009.
[4] Matti A. Hiltunen, “The Cactus Approach to Building Configurable

Middleware Services”, in DSMGC2000, Nuremberg, Germany, 2000.

[5] G.T Wong, M.A Hiltunen, R.D Schlichting, “A configurable and
extensible transport protocol,” in Proceedings of IEEE INFOCOM ’01,
Anchorage, Alaska (2001), pp. 319–328.

[6] S. Floyd, T. Henderson, “The New-Reno Modification to TCP’s Fast
Recovery Algorithm,” RFC 2582, Apr 1999.

[7] D. Leith and R. Shorten, “H-TCP protocol for high-speed long distance
networks,” in PFLDnet, Feb. 2004.

[8] P. Spitéri, M. Chau, “Parallel asynchronous Richardson method for the
solution of obstacle problem” in Proceedings of the 16th Annual
International Symposium on High Performance Computing Systems
and Applications, 2002, pp. 133-138.

[9] D. El Baz, G. Jourjon, “Some solutions for Peer to Peer Global
Computing,” in 13th Euromicro conference on Parallel, Distributed
and Network-Base Processing, 2005, pp. 49-58.

[10] D. El Baz, T.T. Nguyen, “A self-adaptive communication protocol with
application to high performance peer to peer distributed computing”, in
The 18th Euromicro International Conference on Parallel, Distributed
and Network-Based Computing, 2010, Pisa.

[11] NICTA testbed. http://www.nicta.com.au.
[12] J.L. Lions, “Quelques méthodes de résolution des problèmes aux

limites non linéaires”, Dunod 1969.
[13] D. El Baz, “M-functions and parallel asynchronous algorithms”, SIAM

Journal on Numerical Analysis, Vol. 27, N° 1, pp. 136-140, 1990.
[14] D.P. Bertsekas, D. El Baz, “Distributed asynchronous relaxation

methods for convex network flow problems”, SIAM Journal on Control
and Optimization, Vol. 25, N° 1, pp. 74-85, 1987.

[15] J. Miellou, P. Spiteri, “Two criteria for the convergence of
asynchronous iterations”, in Computers and computing, P. Chenin et al.
ed., Wiley Masson, Paris, pp. 91-95, 1985.

[16] L. Giraud, P. Spiteri, “Résolution parallèle de problems aux limites non
linéaires”, M2AN, vol. 25, pp. 597-606, 1991.

[17] J. Miellou, P. Spiteri, “Un critère de convergence pour des methodes
generales de point fixe”, M2AN, vol. 19, pp. 645-669, 1985.

[18] D. El Baz, “Nonlinear systems of equations and parallel asynchronous
iterative algorithms”, in Advance in Parallel Computing,vol. 9,
Parallel Computing Trends and Applications, North-Holland, pp. 89-
96, 1994.

[19] T. Rakotoarivelo, M. Ott, I. Seskar, and G. Jourjon, “OMF: a control
and management framework for networking testbeds,” in SOSP
Workshop on Real Overlays and Distributed Systems (ROADS ’09).

[20] O. Aumage, G. Mercier, "MPICH/Madeleine: a True Multi-Protocol
MPI for High Performance Networks," 15th International Parallel and
Distributed Processing Symposium (IPDPS'01), 2001.

[21] David P. Anderson, “BOINC: A System for Public-Resource
Computing and Storage,” 5th IEEE/ACM International Workshop on
Grid Computing. November 8, 2004, Pittsburgh, USA.

[22] N. Andrade, W. Cirne, F. Brasileiro, P. Roisenberg, “OurGrid: An
approach to easily assemble grids with equitable resource sharing”, in
Proceedings of the 9th Workshop on Job Scheduling Strategies for
Parallel Processing, pp. 61-86, June 2003.

http://rfc-gnutella.sourceforge.net/�
http://freenet.sourceforge.net/�

	0BReferences

