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Abstract. Trends and seasonality analysis from 1980 onward

and longitudinal distribution, from headwaters to estuary, of

chlorophyll a, nitrate and phosphate were investigated in the

eutrophic Loire River. The continuous decline of phosphate

concentrations which has been recorded since 1991 both in

the main river and in the tributaries has led to the conclusion

that it was responsible for the significant reduction in phyto-

planktonic biomass across the whole river system, although

Corbicula spp. clams invaded the river during the same pe-

riod and probably played a significant role in the phytoplank-

ton decline. While eutrophication remained lower in the main

tributaries than in the Loire itself, they were found to con-

tribute up to ≈ 35 % to the total nutrient load of the main

river. The seasonality analysis revealed significant seasonal

variations for the different eutrophication metrics and calls

into question the classical monthly survey recommended by

national or international authorities. Reducing P inputs im-

pacted these seasonal variations: the decline of seasonal am-

plitudes of chlorophyll a reduced the seasonal amplitude of

orthophosphate and of daily variations of dissolved oxygen

and pH but did not significantly affect the seasonal ampli-

tude of nitrate. Thus, the influence of phytoplankton on sea-

sonal variations of nitrate was minor throughout the period

of study.

1 Introduction

For several decades, eutrophication has been a major issue

affecting most surface waters (Smith et al., 1999; Hilton et

al., 2006; Smith and Schindler, 2009; Grizzetti et al., 2012;

Romero et al., 2012). The regulation of nutrient inputs in

waters through the elimination of N and P during wastew-

ater treatment, better agricultural practices and restriction of

the use of phosphorus products (EEC, 1991a and b) led to a

decrease in phosphate and/or nitrate content which has been

recorded in several European rivers presenting temperate and

continental regimes since the mid-1990s, including the Elbe

(Lehmann and Rode, 2001), the Seine (Billen et al., 2007),

the Thames (Howden et al., 2010), the Danube (Istvánovics

and Honti, 2012), the Rhine (Hartmann et al., 2007) as well

as some Mediterranean (Ludwig et al., 2009) and Scandina-

vian rivers (Grimvall et al., 2014).

Surface water quality is also affected by variations in

hydro-climatic conditions (Durance and Ormerod, 2010)

and nutrient availability is not the only limiting factor of

phytoplanktonic growth in rivers: successful phytoplankton

species in rivers are selected based on their ability to sur-

vive high-frequency irradiance fluctuations and the impor-

tant determinants are turbidity (or its impact upon underwa-

ter light) and water residence time (Istvánovics and Honti,

2012; Krogstad and Lovstad, 1989; Reynolds and Descy,

1996; Reynolds et al., 1994). In Europe, both climatic mod-

els and observations have shown a general rise in air and wa-

ter temperature since the 1970s (Moatar and Gailhard, 2006;

Whitehead et al., 2009; Bustillo et al., 2013), and models

predict lower water discharge and rising temperatures during

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Figure 1. Loire River basin. Dark circles: sites of regulatory surveys. White circles: Nuclear Power Plants sampling sites. A to E: regulatory

survey stations at tributaries outlets. G, V, N: three major dams, respectively Grangent, Villerest and Naussac. The estuarine influence begins

downstream of station 21.

summer, potentially intensifying the risk of eutrophication

(Arheimer et al., 2005; Barlocher et al., 2008; Lecerf et al.,

2007; Whitehead et al., 2009) as shallow rivers are particu-

larly susceptible (Istvánovics et al., 2014). Additionally, phy-

toplanktonic biomass remains at a high level in many water

bodies, evidencing that the leaching of long-stored nutrient

in soils is still significant: if nutrient mobility should increase

with global warming because of the acceleration of organic

matter mineralization and of higher soil leaching (Bouraoui

et al., 2002; Arheimer et al., 2005), the river system response

time to a nitrogen input reduction will be limited by the time

required for nitrate to be released from soil to receiving wa-

ters (Jackson et al., 2008; Bouraoui and Grizzetti, 2011).

Therefore, we should expect that changes in current agricul-

tural practices may improve water quality only after several

decades (Behrendt et al., 2002; Howden et al., 2010).

The first regulatory studies of the largest French river eu-

trophication, i.e., in the Loire River, were made in the 1980s

in the Middle and Lower segments (Crouzet, 1983; Meybeck

et al., 1988; Lair and Reyes-Marchant, 1997; Etcheber et al.,

2007). The Middle reaches (Fig. 1) were recognized as being

the most eutrophic sector (Lair and Reyes-Marchant, 1997)

resulting from high P levels (Floury et al., 2012), low river

velocity and shallow waters; its multiple channels morphol-

ogy with numerous vegetated islands slow down flow veloc-

ity (Latapie et al., 2014). In recent years, Loire eutrophica-

tion indicators and their trends recorded several variations:

(i) decline of chlorophyll a in the Middle segment beginning

in the late 1990s (Floury et al., 2012), (ii) decline of phospho-

rus in the Middle Loire as well (Gosse et al., 1990; Moatar

and Meybeck, 2005; Oudin et al., 2009), (iii) development of

Corbicula fluminea as an invasive species beginning in the

1990s (Brancotte and Vincent, 2002) and (iv) dominance of

small centric diatoms and green algae in phytoplankton pop-

ulation, for most of the year in the Middle and Lower river

sectors (Abonyi et al., 2012, 2014; Descy et al., 2011).

Most previous studies focused on the Middle Loire, which

represents only 25 % of the total drainage basin and excluded

the main tributaries and their possible influences on the main

river course. Additionally, most studies on river eutrophi-

cation stayed at the interannual variation scale and did not

investigate how long-term trends might affect the river bio-

geochemistry at the seasonal or the daily scale, the cycles of

which are particularly amplified in eutrophic rivers (Moatar

et al., 2001). This paper examines longitudinal distributions

and long-term trends of chlorophyll a and nutrients over 3

decades (1980–2012) and for the whole Loire basin. Thus,

it includes the study of the main tributaries variations and

their potential influences on the Loire main stem. It also fo-

cuses on how the noticeable long-term changes affected the

biogeochemical functioning of the river at the seasonal scale.

This paper explores the seasonal variations of chlorophyll a

and nutrients from 1980 onwards and examines both seasonal

and daily fluctuations of dissolved oxygen and pH from 1990

onwards.
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2 Study area and data compilation

2.1 Geographical and physical characteristics

The Loire River basin (110 000 km2) covers 20 % of the

French territory. Its hydrological regime is pluvial with some

snowmelt influences because of high headwater elevation

(6 % of the basin area is over 800 m above sea level). The

main stem can be divided into three parts (Fig. 1, Table 1):

(i) the Upper Loire (18 % of basin area; stations 1 to 9) ex-

tending from the headwaters to the confluence with the Allier

River; (ii) the Middle Loire (24 %; stations 10 to 18) from the

Loire–Allier confluence to the Loire–Cher confluence which

receives only minor inputs from small tributaries; (iii) the

Lower Loire (65 %; stations 19 to 21), which receives major

tributaries (Cher, Indre, Vienne and Maine rivers) doubling

the river basin area and the average river water discharge.

As summer low flows can reach critically low levels in

the Middle reaches where four nuclear power plants are lo-

cated (Fig. 1), two dams were constructed on the Allier and

Upper Loire (Naussac 1981 and Villerest, 1984) to maintain

low flows over a minimum of 60 m3 s−1. Grangent dam was

constructed in 1957 for electricity production. The median

annual discharge over the last 30 years is 850 m3 s−1 at the

basin outlet (station 21) and the median during the driest pe-

riod from July to September is only 250 m3 s−1, correspond-

ing to only 2 L s−1 km−2. The driest years were 1990, 1991,

2003 and 2011 with a daily discharge average at station 21

reaching sometimes 100 m3 s−1.

The headwater catchment is a mountainous area and the

Loire itself runs through narrow gorges and valleys (Latapie,

2011). After the confluence with the Allier, the geomorphol-

ogy of the Middle Loire favors phytoplankton development;

its multiple channels with numerous vegetated islands slow

down flow velocity and the valleys become wider (Latapie

et al., 2014). As a consequence, average water depth can be

low in the summer (≈ 1 m), contributing to the warming and

brightening of the water column.

The temperature is always at least 2 ◦C lower in the Upper

part than in the Lower reaches (annual medians are around

15 ◦C in the Upper Loire during April–October versus 19 ◦C

in the Middle and Lower segments) and is affected by global

warming. Indeed, Moatar and Gailhard (2006) showed that

mean water temperature has increased by 2.4 to 3 ◦C in

spring and summer since 1975 due to rising air tempera-

ture (Gosse et al., 2008) without a significant impact on

phytoplanktonic development (Floury et al., 2012). Approx-

imately 60 % of this general rise in water temperature dur-

ing the warm period was explained by rising air temperature

and 40 % by a decrease in the May/June river discharge be-

ginning in 1977 (Moatar and Gailhard, 2006; Floury et al.,

2012). The water returning to the Loire from the nuclear

power plants only raises the temperature by a few tenths of

a degree thanks to an atmospheric cooling system (Vicaud,

2008) and does not influence the thermal regime of the river

studied here.

Urban pressure is significant with 8 million people liv-

ing in the Loire Basin (2008 population census by the

French National Institute of Statistics and Economic Stud-

ies, INSEE), mainly concentrated near the main river

course. It corresponds to an overall population density of

73 inhabitant km−2. The density is greater in the Upper Loire

(144 inhabitant km−2, Table 1) due to the city of Saint Eti-

enne (180 000 inhabitants). The Middle and Lower catch-

ments contain some major riparian cities (Fig. 1) with a sta-

ble population density around 76 inhabitant km−2.

Agricultural pressure is defined here with two indicators:

the percentage of the basin occupied by arable land and the

agricultural pressure indicator (API) represented as the prod-

uct of pasture+ forest over pasture+ forest+ arable land.

According to the Corine Land Cover database (2006), the

headwater areas are mostly forested or pasture (Table 1).

Arable land increases from headwaters going downstream to

reach 30 % of the total basin area at station 21. Land use dis-

tribution in the major tributaries differs widely (Table 2): the

Allier (catchment at station A) is mostly composed of pas-

ture; the Cher at station B has similar amounts of pasture and

arable land, most of the rest being forested; half of the In-

dre basin at station C is arable land, but this tributary drains

only 3 % of the total basin; the Vienne and the Maine con-

tribute very significantly to the total area of arable land in the

Loire basin. Urban pressure is also significant in the Maine

catchment due to the cities of Le Mans and Angers (Fig. 1).

2.2 River monitoring data sets

Water quality databases from regulatory surveys (Loire–

Brittany River Basin Agency, AELB) used here (chloro-

phyll a, pheopigments, nitrate (NO−3 ), nitrite (NO−2 ),

Kjeldahl nitrogen (NKj), orthophosphate (PO3−
4 ) and to-

tal phosphorus (Ptot)) are available online (http://osur.

eau-loire-bretagne.fr/exportosur/Accueil). Sixty-nine moni-

toring stations were setup along an 895 km stretch. Stations

sampled at least monthly between 1980 and 2012 (twice

monthly or weekly for some variables) were selected for

analysis in this paper (17 stations, Fig. 1). To take into ac-

count the influence of major tributaries, five sampling sites

at each of the major tributary outlets were also included (sta-

tions A to E).

The water quality of the Loire River has also been assessed

in several other surveys, generally with high sampling fre-

quency, but these data have seldom been used and/or com-

pared in previous studies. They included

1. water quality surveys upstream and downstream of nu-

clear power plants carried out since the early 1980s

by the French Electricity Company (EDF; Moatar and

Gailhard, 2006; Moatar et al., 2013); see stations 12,

14, 16 and 19 in Fig. 1. These data sets were used to im-
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Table 1. Loire main stem stations characteristics. Kilometer marker (KM): distance from headwaters; Drained area; Q: average an-

nual discharge; population density in 2008; arable land as percentage of the drained catchment; API: agricultural pressure indica-

tor= (pasture+ forest)/(pasture+ forest+ arable land) expressed in percentage. See Sect. 1.2. for source information.

Upper Loire Middle Loire Lower

Station 1 2 3 4 5 6 7 8 9 10 11 13 15 17 18 20 21

KM (km) 44 92 200 224 273 292 344 417 451 465 500 564 633 712 772 822 895

Drained area 0.5 1 4 5 7 8 13 15 18 33 34 36 37 41 43 82 109

(103 km2)

Q (m3 s−1) 6 10 – 47 67 – 89 – 180 300 320 327 – 360 366 680 850

Population density 13 50 144 143 122 128 101 91 80 75 74 74 73 80 83 – 73

(inhab. km−2)

Arable land (%) 0.6 3 1 3 4 4 3 4 6 9 11 13 13 15 17 24 30

API (%) 99 97 99 96 96 96 96 96 93 90 89 87 86 84 82 75 69

Table 2. Major tributaries station characteristics.

Station A B C D E

Drained area (103 km2) 14 13 33 21 22

Average discharge (m3 s−1) 143 81 37 – 135

Population density (inhab. km−2) 67 52 76 55 82

Arable land (%) 13 36 52 25 49

API (%) 87 63 46 74 50

prove the spatial analysis. These surveys included tem-

perature, dissolved oxygen and pH recorded hourly at

station 19 enabling us to analyze possible changes in

day/night variations (variables hereafter1O2 and1 pH

corresponding to the daily range of O2 and pH).

2. the Orléans city experimental survey carried out by the

Loire Basin Authority at station 15 from 1981 to 1985,

measuring nutrients and chlorophyll a every 3 days

(Crouzet, 1983; Moatar and Meybeck, 2005).

River flow data sets on a daily basis were taken from

the national “Banque Hydro” database (http://www.hydro.

eaufrance.fr/). The local population census (INSEE, 2008)

and the Corine Land Cover (2006) were also used to estimate

the general characteristics at different water quality stations

(Tables 1 and 2).

3 Methods

3.1 Data pre-processing

To validate the AELB data sets and eliminate remaining out-

liers, log–log relationships between concentration and dis-

charge were analyzed and compared with previous research

studies carried out during targeted periods (Grosbois et al.,

2001; Moatar and Meybeck, 2005). The separation of living

phytoplankton biomass (characterized by chlorophyll a) and

algal detritus (characterized by pheopigments) depends on

the protocol used and since this protocol may have changed

over the last 30 years, we worked with the sum of chloro-

phyll a and pheopigments, which increased the robustness of

the data and corresponded better to phytoplanktonic biomass

as an active biomass and organic detritus (Dessery et al.,

1984; Meybeck et al., 1988). Thus, for clarity further in

the text, “Chl a” corresponds to the sum chlorophyll a+

pheopigments.

PO3−
4 time series included periods reaching the limit of

quantification. When evidenced, such data were not taken

into account to avoid misinterpretation of such constant val-

ues. The data sets also included periods with missing values.

In all cases, no infilling were realized. Sampling frequencies

were mostly monthly (only 10 % of data sets were sampled

on average every 2 weeks or more often), but in order to ho-

mogenize the time series, the following analysis was con-

ducted on monthly medians.

To assess longitudinal distribution of nutrients and phyto-

planktonic biomass, each year was divided into two seasons:

“summer”, here considered as the phytoplankton growth pe-

riod from April to October, when more than 90 % of the phy-

toplankton bloom is observed (Leitão and Lepretre, 1998)

and “winter”, here November to March when Chl a concen-

trations are usually under 20 µg L−1 (average winter Chl a in

the Middle Loire ≈ 20 µg L−1 for the considered period).

Uncertainties of estimates of concentration averages were

assessed using Monte Carlo random draws (Moatar and Mey-

beck, 2005) on experimental high-frequency data at Orléans

city (station 15). Uncertainties on seasonal means varied be-

tween 10 % (NO−3 ) and 30 % (PO3−
4 ) in summer and between

6 % (NO−3 ) and 10 % (PO3−
4 ) in winter.

When both river discharge and nutrient concentration data

sets were available during the period considered, average an-

nual fluxes were calculated to assess the contribution of each

major tributary to the Loire. This calculation was possible

during 1980–1986 and 1994–2006 for the Allier input, 1985–

1990 and 1999–2009 for the Cher, 2006–2011 for the Vienne

and 1981–2012 for the Maine.

Biogeosciences, 12, 2549–2563, 2015 www.biogeosciences.net/12/2549/2015/
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In order to assess potential changes in the nitrogen-to-

phosphorus molar ratio (N : P further in the text) and make

the link with possible nutrient limitation of phytoplankton,

this ratio was calculated using Ntot (sum of NO−3 , NO−2 and

NKj) and Ptot.

3.2 Building up spatiotemporal diagrams

Time series were represented with a 2-D spatial x axis and

seasonal y axis. This allowed the observation of both lon-

gitudinal and seasonal distributions during a certain period,

between the river headwaters and the estuary, and from Jan-

uary to December. When required and possible, missing data

were interpolated both spatially and temporally to present a

smoother diagram. Three periods were defined and separated

the last 3 decades in three sub-periods on the basis of Chl a

concentrations: 1980–1989, 1990–2001 and 2002–2012.

3.3 Time series decomposition

Long-term trends and seasonal variations analysis were car-

ried out using the dynamic harmonic regression (DHR) tech-

nique, extensively described in Taylor et al. (2007; a brief

outline of it is also explained in Halliday et al., 2012 and

2013). It decomposes an observed time series into its com-

ponent parts:

f (t)= T (t)+ S(t)+C(t)+ Irr(t), (1)

where f is the observed time series, T is the identified trend,

S the seasonal component and Irr the “irregular” component

defined as white noise, representing the residuals.

The trend was defined using an integrated random walk

model. It is a special case of the generalized random walk

(GRW) model and has been shown to be useful for extract-

ing smoothed trends (Pedregal and Trapero, 2007). This pro-

vided the identified trend and the slope of the trend.

The seasonal components were defined as follows:

S(t)=

N/2∑
i

[
ai,t cos(ωi t)+ bi,t sin(ωi t)

]
ωi =

2π · i

N
i = 1,2, . . .,

[
N

2

]
(2)

where ωi values are the fundamental and harmonic frequen-

cies associated with the periodicity in the observed time se-

ries chosen by reference to the spectral properties. For in-

stance, the period 12 corresponds to a monthly sampling in

an annual cycle.

The phase and amplitude parameters were modeled as

GRW processes and estimated recursively using the Kalman

filter and the fixed interval smoother. These parameters were

defined as non-stationary stochastic variables to allow varia-

tion with time, i.e., allow non-stationary seasonality and rep-

resent better the dynamic of the observed parameters.

Significance of the seasonality was based on the squared

correlation coefficient between the calculated seasonal com-

ponent and detrended data. Similarly, the significance of the

trend was determined based on the squared correlation coef-

ficient between the calculated trend and deseasonalized data.

Stations 4 (Upper Loire), 18 (Middle) and 21 (Lower)

presented a large amount of data and were selected here to

present and discuss the DHR analysis. Similarly, water dis-

charge data at station 15 has been recording daily and con-

tinuously since 1980 and was selected for the DHR analysis

presented in the Results section.

4 Results

4.1 Long-term trends and longitudinal distributions of

Chl a and nutrients

Chl a summer medians (used as the prime indicator of eu-

trophication) showed a very clear longitudinal increase from

the headwaters to river mouth (Fig. 2a). At the headwa-

ters, Chl a concentrations remained below 30 µg L−1 be-

tween 1981 and 2012. It has been shown in other studies

that in the Upper Loire reservoirs which have always been

eutrophic since the 1980s (Aleya et al., 1994; Jugnia et al.,

2004), the phytoplankton assemblage is lake-like and these

species do not survive very long in the turbulent and quite

turbid river downstream (Abonyi et al., 2011, 2014), explain-

ing why Chl a remains at low levels. In the lowest sec-

tion of the Upper Loire (station 9), Chl a was higher but

showed a decreasing trend for the whole period. In the Mid-

dle Loire, Chl a levels increased between 1981 and 1990

by a factor of 2 (Table 3). The highest value ever mea-

sured was at station 18 in early October 1990 (365 µg L−1).

During the next decade, the situation already started to de-

crease in the Middle Loire (−5 µg L−1 yr−1) and even more

in the Lower (−9 µg L−1 yr−1). Finally, since 2002, the de-

cline has generalized across the whole river, and the trend

slopes have reached ≈−5 µg L−1 yr−1 in the Middle Loire

and −4 µg L−1 yr−1 in the Lower Loire.

Winter medians of phosphate concentrations increased

downstream of station 2 (Fig. 2b) and the maximum for the

Upper segment was reached at station 4, where population

density is 143 inhabitant km−2, a maximum for the whole

basin. Population density decreased to 75 inhabitant km−2

between stations 4 and 9, with a corresponding reduction in

the phosphate levels. PO3−
4 levels stabilized in the Middle

Loire (stations 10 to 18).

The general phosphorus decline during the last decade

can be observed along the whole longitudinal profile. Phos-

phate was at its maximum in the 1980s (above 100 µg P L−1)

for almost the whole main stem. It then decreased gradu-

ally to reach lower levels < 70 µg P L−1. In the urbanized

Upper part (stations 3 and 4), from a winter median of

190 µg P L−1 during 1980–1989, phosphate decreased to its

www.biogeosciences.net/12/2549/2015/ Biogeosciences, 12, 2549–2563, 2015
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Table 3. Long-term trends at three stations representative of the Upper, Middle and Lower Loire.

Annual median Trend Significance of trend 1980–2012 (%)

Years Chl a PO3−
4

NO−
3

Chl a PO3−
4

NO−
3

Chl a PO3−
4

NO−
3

µg L−1 µg P L−1 mg N L−1 µg L−1 yr−1 µg P L−1 yr−1 mg N L−1 yr−1

Upper Loire 80–89 9 183 1.4 +2 +16 0.0

Station 4 90–01 12 169 1.8 0 −16 0.0 74 87 77

02–12 11 88 1.4 −1 −3 0.0

Middle Loire 80–89 47 121 1.8 +3 −6 0.0

Station 18 90–01 83 58 1.9 −5 −3 +0.1 82 91 53

02–12 17 26 2.2 −5 −2 0.0

Lower Loire 80–89 50 79 2.5 +5 +12 +0.3

Station 21 90–01 58 89 3.3 −9 −3 +0.1 83 76 71

02–12 14 37 2.6 −4 −5 −0.1
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Figure 2. Longitudinal profiles of summer median Chl a (a), winter median PO3−
4

(b) and NO−
3

(c). Averages for three periods, in relation

to percent arable land (2006) and population density (2008) tested as eutrophication control variables. Uncertainty bars are due to sampling

frequency. Arrows and capital letters (A to E) represent confluences with major tributaries (Fig. 1).

current level (60 µg P L−1). Average phosphate in the Mid-

dle and Lower reaches has decreased at least two-fold since

1980. At the Lower Loire outlet (station 21), phosphate con-

tents increased during 1980–1989 and then decreased at the

rate of ≈−4 µg P L−1 yr−1. Downstream the main reservoirs

(Upper Loire), a noticeable decrease in phosphorus concen-

tration was observed. This was probably partly due to P re-

tention between stations 4 and 5 (Fig. 1) as a large part of the

particulate matter is stored in the reservoir.

The winter nitrate longitudinal profile showed a regular in-

crease from 1 mg N L−1 in the headwaters to 3.5 mg N L−1

at the river mouth (Fig. 2c). This longitudinal rise could

be observed throughout the period of study. The upstream

reservoirs did not seem to impact the nitrogen concentra-

tion as nitrate represented most of the total nitrogen and

the phytoplanktonic uptake within these reservoirs is not

questioned here: Fig. 2c presents winter nitrate concen-

tration. Annual median nitrate concentration remained sta-

ble in the Upper Loire, with no significant trends since

1980. In the Middle segment, it only presented an increas-

ing trend during the 1990s (+0.1 mg N L−1 yr−1) but the

more significant variations were observed in the Lower
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reaches at station 21, where nitrate increased on average at

+0.3 mg N L−1 yr−1 during the 1980s, was a bit in less the

next decade (+0.1 mg N L−1 yr−1) and finally has slightly

decreased since 2002.

These trends provided by the DHR model were always

significant and explained at least 50 % of the variations in

the deseasonalized time series (Table 3). The most signifi-

cant trends were observed in Chl a and PO3−
4 . The long-term

variations in NO−3 were less pronounced, justifying a lower

corresponding strength.

4.2 Seasonal shifts across the longitudinal distribution

of Chl a and nutrients

Throughout the period of study, Chl a concentrations reached

their maximum in July or August for the whole Loire River.

During the 1980s and 90s, phytoplankton production usually

started in early April, reached a peak in early May with a

second peak in late August (Fig. 3a) suggesting the growth

of different phytoplankton communities (Abonyi et al., 2012,

2014). After mid-November, Chl a concentrations were very

low. A slight change is nevertheless apparent: between 1980

and 2000 in the Middle and Lower Loire, Chl a concentra-

tions occasionally reached their maximum in October (as is

the case in the years 1985, 1988, 1989, 1990, 1995; it has not

happened since 1995).

Phosphate spatiotemporal variations showed inverted sea-

sonal patterns between the Upper and Middle–Lower Loire

(Fig. 3b). Maximum phosphorus levels were observed in the

middle part of the Upper section (stations 3 to 5) as a result of

urban pressure, previously mentioned in the longitudinal pro-

file description. In this upstream reach where phytoplankton

development is limited, the seasonal maximum level was ob-

served in summer when low flows cannot dilute urban phos-

phorus inputs; during the period 2002–2012, PO3−
4 medi-

ans reached 140 µg P L−1 at station 4 in June. In the lower

reaches of the Upper Loire, and in the Middle and Lower

Loire (stations 8 to 21), the seasonality of phosphate was in-

verted compared to the Upper Loire and clearly controlled

by eutrophication with a minimum (< 30 µg P L−1) occurring

during summer due to phytoplankton uptake.

Nitrate concentrations had a very clear seasonality

(Fig. 3c) with maximum levels during winter (leaching)

along the whole Loire River. In summer, nitrate was very

low with concentrations around 1 to 2.5 mg N L−1 along

the whole river profile and the lowest concentrations were

recorded in August in the Middle Loire. The summer nitrate

minima have increased since 1980: around 0.4 mg N L−1 in

the Middle Loire between 1980 and 1999, the average sum-

mer 10th percentile increased to 1 mg N L−1 this last decade.

A seasonal Kendall test analysis (station 15, 1980–2012) re-

vealed that water discharge explained 26 % of the nitrate vari-

ance.

The DHR model represented well the time series, depend-

ing on the river reach and the type of variable (Table 4). Sea-

sonal components were stronger in Middle and Lower Loire

than in Upper, with better correlations between the detrended

time series and the calculated seasonal component (45–85 %

of variance explained by the seasonal component in the Mid-

dle and Lower against 15–45 % in the Upper). Chl a series

were well represented by the seasonal component, whereas

PO3−
4 was sometime poorly explained, illustrating the high

variability of this parameter. The nitrate time series presented

the best fits, with around 80 % of the variance explained by

the seasonal component in the Middle and Lower reaches.

4.3 Analysis of the main tributaries variations and

their impacts on the Loire long-term trends

Trends in the main tributaries of the Loire River (stations A

to E) mimicked the Loire River variations with high signs

of eutrophication during the 1980s and 1990s followed by a

general decline (Table 5).

Chl a in the tributaries remained under the Loire main

stem levels in each of the major tributaries except for the

Cher River (station B): its highest Chl a concentrations dur-

ing the 1990s were very close to the extreme values reached

at the same time in the Middle Loire (average seasonal vari-

ation≈ 190 µg L−1 during the 1990s). Nonetheless, trends in

Chl a concentrations followed the same pattern everywhere,

with high seasonal variations and high annual medians be-

tween 1980 and 2001, which has clearly declined over the

last decade.

Phosphate concentrations decreased everywhere continu-

ously from high values in the 1980s (≈ 200 µg P L−1) down

to ≈ 50 µg P L−1 except at station E (Maine River), where

PO3−
4 first increased during the 1980s from 200 µg P L−1 to

peak in 1992 at 300 µg P L−1 and finally declined towards

50 µg P L−1.

Like in the Loire River, nitrate concentrations in the

main tributaries have increased slightly since 1980, but lev-

els and seasonal amplitudes have progressed differently:

quite low in the Upper tributary (station A, annual medians

≈ 1.5 mg N L−1) as NO−3 reached higher concentrations in

the other tributaries and extreme values in the Maine River

with winter maximums over 10 mg N L−1 during the 1990s.

At each station except station A, NO−3 seasonal amplitudes

started to decrease slightly beginning in 2002, i.e., the sum-

mer minimum has slightly increased.

At each major tributary confluence, the tributaries inputs

contributes on average 35 % of the main river nutrient fluxes.

The more significant inputs have come from the Allier River

(station A), discharging almost the same amount of NO−3 and

PO3−
4 as the Upper Loire River. Because of the lack of data

for nutrient flux calculations on a fine temporal scale, these

results are to be considered with caution. But they certainly

give good approximations of how much these tributaries can

influence the Loire main stem eutrophication trajectory.
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Figure 3. Spatiotemporal diagrams of monthly median levels of Chl a (a), PO3−
4

(b) and NO−
3

(c) during three periods along a longitudinal

profile. Dotted vertical lines correspond to the monitoring stations (Fig. 1).

Table 4. Seasonality analysis and changes starting in 1980 at three stations representative of the Upper, Middle and Lower Loire.

Seasonal amplitude Significance (%) Amplitude trend

Years Chl a PO3−
4

NO−
3

Chl a PO3−
4

NO−
3

Chl a PO3−
4

NO−
3

µg L−1 µg P L−1 mg N L−1 µg L−1 yr−1 µg P L−1 yr−1 mg N L−1 yr−1

Upper Loire 80–89 61 101 0.7 41 16 25 0.0 −0.2 +0.1

Station 4 90–01 114 107 0.9 31 33 38 −0.2 +0.7 0.0

02–12 17 26 2.2 24 41 42 −1.2 +0.5 +0.1

Middle Loire 80–89 182 123 2.2 61 44 80 +7.8 −5.6 +0.1

Station 18 90–01 152 71 2.8 64 43 85 −9.8 −3.7 0.0

02–12 57 38 2.1 55 47 84 −8.1 −2.1 0.0

Lower Loire 80–89 184 125 3.2 68 46 78 −2.7 +2.0 +0.4

Station 21 90–01 82 120 5.5 52 62 81 −9.6 −1.6 −0.2

02–12 53 65 3.2 62 51 85 −1.1 −10.4 +0.1

4.4 Seasonal amplitudes of Chl a, nutrients, O2 and pH

in the Middle Loire

As described earlier, Chl a, nitrate and phosphate concen-

trations presented different patterns of seasonality depending

on the location. This section focuses on seasonality of nu-

trients and Chl a at station 18 and on dissolved oxygen, pH

and temperature at station 19. Both of these stations are rep-

resentative of the Middle Loire, where the highest signs of

eutrophication occurred in the early 1990s.

Chl a seasonal variation at station 18 increased during

the 1980s (Fig. 4a) from 150 to 240 µg L−1 (1990) and then

presented a spectacular decline in two steps: first, it went

down to 150 µg L−1 in 1992 and remained at the same level

over the next 8 years; since 2000 it has continued to de-

crease to finally reach levels of amplitude around 50 µg L−1.

Seasonal phosphate variations decreased continuously from

150 µg P L−1 in 1980 to 30 µg P L−1 in 2012 (Fig. 4b), at the

rate of −6 µg P L−1 yr−1 in the 1980s, −4 µg P L−1 yr−1 in

the 1990s and finally reached a stable variation in 2008 (Ta-

ble 4). The seasonal variations of NO−3 have presented an-

other pattern over the last 30 years (Fig. 4c): it increased

from 2.2 mg N L−1 in 1980 to 2.8 mg N L−1 in 1991, then re-

mained stable around 2.9 mg N L−1 for the next 7 years and

finally decreased slightly to 2 mg N L−1.

Interannual dissolved oxygen concentration and pH at sta-

tion 19 have not presented any significant trend (Fig. 4d

and e): since 1990, annual average O2 = 10.8 mg L−1 and

pH= 8.3. At the daily scale, the variations of O2 have been

synchronous with water temperature: the typical O2 daily cy-

cle have corresponded with a minimum at sunrise, followed

by a rapid increase and a maximum observed 2 h after solar

midday; the daily range has reached 10 mg L−1, with oxygen

saturation ranging from 60 to 200 %. These daily variations

greatly challenge the validity of O2 measurements as a wa-

ter quality indicator within the regulatory monthly survey of

such a eutrophic river. Alongside daily oxygen cycles, signif-

icant daily pH cycles were observed (see also Moatar et al.,
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Table 5. Annual medians, DHR model seasonal amplitudes and nutrient flux contributions of the main tributaries.

Annual median Seasonal amplitude Nutrient flux contribution

Chl a PO3−
4

NO−
3

Chl a PO3−
4

NO−
3

PO3−
4

NO−
3

µg L−1 µg P L−1 mg N L−1 µg L−1 µg P L−1 mg N L−1

1980–1989 20 124 1.4 85 180 1.7 54 % 47 %

A 1990–2001 23 83 1.5 134 112 2.1 44 % 43 %

2002–2012 17 51 1.7 83 74 2.3 42 % 36 %

1980–1989 44 108 3.6 147 190 4.3 17 % 32 %

B 1990–2001 61 79 4.1 197 181 5.9 31 % 37 %

2002–2012 13 45 4.7 57 57 3.9 33 % 33 %

1980–1989 28 166 4.0 104 234 3.7 – –

C 1990–2001 44 90 4.2 109 144 5.0 – –

2002–2012 16 59 4.6 37 79 4.2 – –

1980–1989 43 126 3.0 102 137 2.2 – –

D 1990–2001 50 68 2.7 107 87 2.8 – –

2002–2012 6 30 2.8 18 36 2.5 27 % 35 %

1980–1989 50 191 4.0 142 326 4.2 38 % 24 %

E 1990–2001 62 181 4.4 132 236 8.1 33 % 23 %

2002–2012 21 73 4.1 51 102 5.6 35 % 27 %

2001). Dissolved CO2 and/or bicarbonate uptake by primary

producers during the solar day led to increasing pH. By con-

trast, nighttime respiration reduced pH. In the Loire, daily pH

cycles were pronounced with the same phase as the O2 cycle.

The common daily pH range in summer was 0.8 and reached

up to 1 pH. Because these variations are linked to in-stream

biological activities, daily O2 and daily pH amplitudes pre-

sented a well-defined seasonality, with a maximum reached

in summer.

The DHR model applied to water temperature (T ◦C) suc-

cessfully represented the observations with squared correla-

tion coefficients R2 of 0.96. Performances were lower for

discharge (Q) with R2
= 0.57. Both T ◦C and Q trends were

weak (only 20 % of the variances); however, T ◦C increased,

and Q slightly decreased.

5 Discussion

5.1 Role of agricultural and urban pressures on the

Loire long-term variations

The population density profile (Fig. 2) illustrates well the

fact that phosphate concentrations are linked with urban P in-

puts. Thus, most changes in phosphate levels are connected

to more efficient sewage treatment plants (de-phosphatation

steps were setup) and the use of phosphate-free detergents.

De-phosphatation technologies were not implemented at the

same time across the basin, explaining different trends for

different catchments. These observations support previous

studies highlighting the need for phosphorus control (Gosse

et al., 1990; Oudin, 1990). This control has considerably re-

duced phosphate concentration in the surface waters of the

Loire basin (Bouraoui and Grizzetti, 2011). Nevertheless,

Descy et al. (2011) assessed the biogeochemical processes

using numerical models of the Middle reaches during the

year 2005 and found that the phosphorus reduction could not

totally explain the phytoplankton diminution: it was neces-

sary to introduce the effect of grazing by a benthic lamelli-

branch, Corbicula fluminea. The role played by this invasive

clam definitely needs to be assessed, as it has been propagat-

ing dramatically in the Loire Basin since 1990 (Brancotte and

Vincent, 2002) like it has in some other European rivers, with

significant impacts on the phytoplankton biomass (Harden-

bicker et al., 2014; Pigneur et al., 2014). Trends in orthophos-

phate concentrations were sometimes poorly explained by

the DHR model. In summertime, very small increases in wa-

ter discharge could resupply the system with more available

phosphorus, allowing more phytoplankton development, but

this would only be observed at a fine temporal scale. Our

study uses monthly data sets, which is not sufficiently de-

tailed to discuss variations expected at the daily scale: PO3−
4

concentrations are strongly sensitive to total suspended solids

concentration and consequently to water discharge varia-

tions.

The relationship between the winter nitrate levels and

the percentage of the catchment classified as arable land is

strong (Fig. 2), illustrating the fact that nitrate levels orig-

inate mainly from diffuse agricultural sources. The slightly

increasing trend in nitrate could partly be explained by the

delayed response of the environment to external changes

(Behrendt et al., 2002; Howden et al., 2010), or, according
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Figure 4. Trends and seasonal components at station 18 of Chl a (a), phosphate (b) and nitrate (c). Corresponding time series of monthly

medians of both daily min and max of O2 (d) and pH (e) and their amplitude dynamics at station 19 (i.e.,1O2 and1 pH). Water temperature

trend at station 19 (f) and discharge trend at station 15 beginning in 1980.

to Bouraoui and Grizzetti (2008), this might show a lack

of appropriate agro-environmental methods, or a delay in

implementing the 1991 European Nitrates Directive. It has

been shown that mitigation measures in agriculture did de-

crease nitrogen loads in several Swedish rivers (Grimvall et

al., 2014) and in the Rhine and Danube rivers (Hartmann et

al., 2007) making a considerable contrast with many other

temperate lowland rivers where nitrate increasing trends are

still recorded: the Mississippi (Sprague et al., 2011), Ebro, Po

and Rhone rivers (Ludwig et al., 2009) and also the Thames

(Howden et al., 2010). Another potential reason for this in-

crease could be climate change: higher mineralization of or-

ganic matter in the arable soils is expected and caused by an

increased temperature over time (Arheimer et al., 2005) to-

gether with higher soil mineralization (Bouraoui et al., 2002).

This hypothesis would seem reasonably concomitant with

the rising water temperature which was recorded in the Loire

River (Fig. 4f), but it seems too early to fully determine the

link between climate change and nitrate trends.

Such diffuse N sources are seasonal and depend on the

leaching of bare soils through rainfall in winter and retention

through vegetation in the growing season. Thus, it is pos-

sible that the decrease of seasonal nitrate amplitude, which

has been recorded since 2005, is linked to lower discharge

variations; however, the increasing nitrate trend contradicts

a slightly decreasing discharge trend. Figure 3 clearly indi-

cates the negative relationship of phytoplankton and nitrate

in their seasonal cycle: nitrate minima were reached when

Chl a concentrations were maximal, i.e., in summer in the

Middle and Lower sectors. In addition, increases of nitrate

concentration have been seen in summer in the Middle and

Lower sectors (see Sect. 4.2), which has been concomitant

with reduced phytoplankton biomass. However, seasonal am-

plitudes of nitrate did not decrease significantly in the Middle

Loire while the decline of phytoplanktonic biomass started in

the 1990s and has been generalizing across the whole basin

since 2002 (Sect. 4.3). Hence, it is likely that N uptake by

phytoplankton had only a minor influence on seasonal ni-
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trate variations. Denitrification could play a significant role

in seasonal nitrate variations, like in the neighboring Seine

basin (Curie et al., 2011), but further investigation is needed

to fully assess the processes involved. A complete N budget

in the watershed plus the development of a N surplus model

can better explain why nitrate levels remain this high in the

Loire Basin.

5.2 Nutrient limitation variation since 1980

The N : P molar ratio allows one to determine whether the

system studied is potentially under nitrate or phosphate lim-

itation (Koerselman and Meuleman, 1996; Ludwig et al.,

2009) and may constitute the basis of some indicators for as-

sessing the risk of eutrophication in freshwater (Dupas et al.,

2015). Given other controlling factors as non-limiting factors

of phytoplankton growth, if N : P is under 14, the system is

limited by N; over 16, it is considered P limited. In between,

N and P availabilities might be sufficient or the ecosystem

might be co-limited by N and P (Koerselman and Meuleman,

1996).

In the Loire River, a slight increase in annual concentra-

tions of nitrogen during the last 30 years while phosphorus

inputs decreased greatly resulted in the modification of the

N : P molar ratio (Fig. 5). In the Middle Loire, the annual av-

erage ratio has continued to increase since 1980. In summer

during the 1980s, the lowest values observed were occasion-

ally within the Redfield limit but mostly over. Since 1992,

the system has never reached the Redfield limit again and

has remained in the P limitation domain as a result of signif-

icantly reducing phosphorus direct inputs. Similar variations

were observed in other river systems (e.g., the Ebro, Rhone,

Po, Danube, Ludwig et al., 2009; the Seine, Billen and Gar-

nier, 2007; the Mississippi, Turner et al., 2003) where similar

trends in N and P were recorded. The N : P ratio was sub-

ject to a significant seasonality. Its pattern and strength has

changed from low seasonal variations during the 1980s and

a minimum in summer to a well-defined seasonality begin-

ning in 2002 in the Middle and Lower Loire, with a maxi-

mum reached in summer, reinforcing the P limitation aspect

of the Loire River during the phytoplanktonic growth pe-

riod. These results indicate that P limitation of phytoplankton

growth has become a significant factor. When the river hy-

drology remains stable in the summer, phytoplankton is po-

tentially under P limitation. This suggests a potential expla-

nation for the apparent shift in seasonal phases of Chl a con-

centrations (late summer blooms no longer occur, described

in Sect. 3.2): in those cases, the P limitation is reached be-

fore any other limitation. This shift could also be related to

a significant impact of grazing by invasive Corbicula spp.

clams, which would substantially decrease the phytoplank-

ton biomass (Pigneur et al., 2014).
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Figure 5. Variations of total nitrogen over total phosphorus molar

ratios ranges during summer and winter in the Middle Loire (station

18) beginning in 1980 and compared to the Redfield limit (dotted

line). Each patch is composed at the bottom by the 10th percentile

of the recorded data and 90th percentile at the top; the y axis is

logarithmic.

5.3 Daily O2 and pH amplitudes as indicators of

eutrophication mitigation

The 1O2 and 1 pH seasonal amplitudes have decreased

greatly since 1990: around 3.5 mg L−1 in 1990–1995, 1O2

amplitude declined down to 1.25 mg L−1. Similarly, from a

seasonal amplitude at 0.25 pH,1 pH seasonal amplitude was

maximal in 1998 (0.35) and went down to 0.3 in 2007. These

decreasing trends are linked to the apparent decrease of phy-

toplanktonic biomass: the seasonal amplitude of Chl a con-

centrations explained 80 % of the seasonal variations of1O2

and only 59 % for 1 pH amplitudes. Continuous records of

O2 and pH take into account the whole in-stream primary

activity, that is to say, not only the phytoplankton respira-

tion but also macrophytes and periphyton activities. While

Chl a concentrations have continued to decline since 1991,

1O2 and 1 pH stopped decreasing, suggesting that non-

phytoplanktonic activity was rising. Additionally, one would

expect that since phytoplankton biomass declined, water col-

umn irradiance and macrophyte abundance would have risen.

We unfortunately lack data about macrophyte and periphy-

ton developments in the Loire River, but researchers at the

biological reserve Saint-Mesmin located near the city of Or-

léans (station 15) have studied the development of macro-

phytes species since 1998 at 24 river sections (60 m long by

5 m width) and have shown the increasing abundance and

biodiversity of such aquatic plants beginning in 2002. Two

species were dominant, Myriophyllum spicatum and Ranun-

culus fluitans. The role played by fixed aquatic vegetation

on the river biogeochemistry is probably very significant as

macrophytes are known to obtain nutrients contained in the

water component as well as in the sediments (Carignan and

Kalff, 1980; Hood, 2012). Hence, during low PO3−
4 concen-

trations in summer, macrophyte growth is not limited by the

in-stream nutrient limitation.

A major change occurred in the seasonal patterns of daily

maximum of dissolved O2. From a maximum reached in June

or July, at least between 1990 and 2001, the seasonal pat-

tern of daily maximum shifted dramatically to a maximum

reached in winter. On the contrary, daily O2 and pH reached
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their maximum in winter and their minimum in summer (due

to biomass respiration). Such a spectacular change in daily

O2 maximum because of a declining eutrophication has never

been shown in other major European rivers.

When late floods occurred, higher flow velocity in-

creased turbidity and reduced water column irradiance prob-

ably disrupted the well-established dominance of produc-

tion/respiration cycles. Therefore, both dissolved oxygen and

pH levels dropped for a few days. Such episodes happened in

1992 (event described in Moatar et al., 2001), 1998 and 2008.

In those cases, phytoplankton growth was under hydrologic

limitation.

6 Conclusions

The Loire River is a relevant case of a river recovering

from severe eutrophication by controlling phosphorus di-

rect inputs. However, other recent changes should also be

considered. For example, it would be interesting to inves-

tigate the impact of the development of Corbicula clams

(Brancotte and Vincent, 2002) on the biogeochemistry of the

Loire basin surface waters. A potential numerical model of

the Loire basin eutrophication should not only take into ac-

count climate and land-use changes, but also recent ecolog-

ical changes (Descy et al., 2011; Pigneur et al., 2014), and

this model would probably be able to answer many questions

about the occurrence of invasive grazers in the Loire River.

This study has highlighted how contrasted the different

long-term trajectories of Chl a and nutrient concentrations

can be in the different reaches of a eutrophic river and con-

tributed to the better understanding of the current biogeo-

chemical functioning. Although the Upper Loire received the

highest concentrations of phosphorus, the signs of eutroph-

ication were expressed only in the lowest part of the Upper

River because of its morphology. The Middle Loire is very

favorable to eutrophication, and the Lower reach function-

ing and trends remained close to the Middle Loire trajectory

although the Lower Loire receives most of the tributaries in-

puts. Signs of eutrophication remained lower in the major

tributaries than in the main river stem, but it has been shown

that their contribution to the Loire River nutrient fluxes (and

consequently on the phytoplanktonic biomass) at the conflu-

ences can reach up to 35 %.

This study also support previous works on the Loire eu-

trophication, but the analysis of long-term changes in sea-

sonality in this paper could introduce more topics:

1. Controlling P inputs also impacted the river biogeo-

chemistry at the seasonal scale: seasonal amplitudes of

Chl a and orthophosphate greatly decreased, and this

impacted O2 and pH both daily and seasonally. How-

ever, nitrate amplitudes remained quite stable, evidenc-

ing that phytoplankton growth had a minor influence

on seasonal nitrate variations, questioning the exact role

played by fixed aquatic vegetation and denitrification on

the nitrogen cycle.

2. When hydrologic conditions remain favorable for phy-

toplankton growth in summer, orthophosphate concen-

tration becomes the limiting factor.

3. Combined with Chl a concentration time series, 1O2

and 1 pH are relevant metrics for studying eutrophi-

cation variations. High-frequency records of Chl a, O2

and pH could potentially enable the separation between

the phytoplankton and macrophytes impacts on the river

biogeochemistry.

In addition, this study highlights the temporal variability

of different eutrophication metrics: in summer, river biogeo-

chemistry is essentially controlled by production/respiration

processes. Thus, daily and seasonal variations are very sig-

nificant and call into question the classical monthly survey

recommended by national or international authorities.
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