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Abstract. This article shows how the operational semantics of a lan-
guage like ORC can be instrumented so that the execution of a program
produces information on the causal dependencies between events. The
concurrent semantics we obtain is based on asymmetric labeled event
structures. The approach is illustrated using a Web service orchestration
instance and the detection of race conditions.

1 Introduction

Several languages have been proposed to program applications based on Web
service orchestrations (BPEL [1] is probably one of the best known). The present
work is based on Orc [2, 3], an orchestration language whose definition is based
on a mathematical semantics, which is needed to define precisely the notion of
causality. Orc is designed over the notion of sites, a generalization of functions
that can encapsulate any kind of externally defined web sites or services as well
as Orc expressions. As usual for languages, the operational semantics of Orc was
defined as a labeled transition system. Such semantics produces naturally sets of
sequential traces, which explicitly represent the observable behaviors of an Orc
program [4].

Finding the causal dependencies in a program is very useful for error detec-
tion. In a non-deterministic concurrent context, this analysis cannot be based
solely on the static structure of the program and requires execution. Dependen-
cies are also very difficult to extract from a sequential record without additional
information to unravel the interleaving of events. This is especially true for the
analysis of QoS or of non functional properties, like timing constraints derived
from the critical path of dependencies [5]. We consider any Orc program, which
has been already parsed and expanded into its Orc calculus intermediate form.
In this program, we distinguish the actions, which are the site calls, and the
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publications (return values of expressions). An event is the occurrence of an ac-
tion during the execution of the Orc program. The events are linked by causal
dependencies, that force the events to be executed in a certain order. We can
distinguish three kinds of dependencies:

– the dependencies that are imposed by the control flow of the program de-
fined by the semantics of the Orc combinators and imposed by the binding
mechanism of Orc variables;

– the dependencies that are provided by the server executing the site calls.
These external dependencies are not part of the Orc description, but could
be returned by the site. We will consider at least that the possible return of
a site call is directly caused by this call;

– the dependencies induced by preemption (the pruning operator of Orc).

The method used in this article is to extend the standard structural opera-
tional semantics (SOS [6]) to rewrite extended expressions, in which additional
information has been added to compute causal and weakly-causal dependencies.
This information is also made visible by extending the labeling of transitions.
Concurrency is just the complement of the weak-causal relation, and conflicts
are defined by cycles in this relation. Capturing causality and concurrency by
instrumenting the semantics rules is a difficult job. This is mainly due to the
fact that these relationships are global and therefore difficult to locate on the
syntactic forms. The solution is to keep information about the causal past in a
context associated with each rule. We build the necessary links between differ-
ent contexts during the execution of rules. The aim is that such instrumented
semantics reproduces the standard behavior of the program while calculating
the additional information needed to track concurrency, causality and conflicts
between the events produced by the execution.

After this introduction, the article presents the contribution compared to
the existing works. Section 3 presents the Orc language from the perspective
of its core calculus and its operational semantics, illustrated using an example
of orchestration of Web services. Section 4 presents our proposed instrumented
semantics based on the construction of event structures, giving the concurrent
semantics of Orc. This section sets out the formal correctness of the approach
stating that this new semantics produces the same executions as the standard
semantics. Before concluding the paper, Section 5 reuses the example of Section
3 to show the causal structure obtained from its execution in the instrumented
semantics and how this can be used to find errors.

2 Related work

The need to dynamically trace the causal dependencies during the execution of
the a program in order to monitor, detect errors or analyze performances is well
recognized for concurrent applications. Causality, seen as a partial order [7], can
be tracked in different ways. Some works are based on an instrumentation of
either the underlying operating system or the source code. For example, vector



clocks have been widely used by the distributed algorithms community in the
context of message-passing systems [8]. The context of Web service orchestra-
tions is more complex as a language like Orc can generate unbounded concur-
rency patterns. To our knowledge, the only instrumentation made on programs is
[9], based on Java byte-code. However, in the considered model, the only source
of causality comes from variable accesses. The second approach is to change the
semantics so that it produces causal information which leads to a concurrent
semantics. The challenge is then to maintain a good form of equivalence with
the original semantics. Several debugging techniques rely on this principle, es-
pecially for performing replay ([10] is a good example for a fragment of the Oz
language). The most successful works in concurrent semantics were conducted
on process algebra (e.g. pi-calculus [11]). Our contribution is in the same vein,
but for the Orc language, in the complex context of wide-area computing. Other
attempts of concurrent semantics for Orc based on event structures have already
been published [12, 13]. They use an ad hoc connection of Petri net diagrams or
Join calculus. It is not clear how this semantics can be implemented in practice
at compile-time that transforms the source code into a concurrent model. An
instrumented semantics solves this problem and allows to catch causal depen-
dencies at runtime.

3 The Orc Programming Language

3.1 Core calculus

Orc is a full programming language, that looks like a functional language with
many non-functional aspects to handle concurrency. The interested reader can
refer to [14] concerning the ability of Orc to design large-scale distributed appli-
cations. The Orc programming language is designed over a process calculus: the
Orc core calculus. All the conveniences offered in the full Orc language are de-
rived from very few central concepts present in the calculus: sites and operators.
Values such as booleans, numbers and strings, arithmetic and logic operators, as
well as complex data types such as shared registers, are just external sites. Even
choices are implemented through the use of sites ift and iff, that publish a
signal if their argument is true or false respectively. Besides sites, four operators
are provided by the calculus to orchestrate the execution. These operators de-
scribe the sequencing of actions (“f >x> g”), the launching of parallel threads
(“f |g”), an original preemption operator (“pruning: f <x< g”) and an alterna-
tive in case of no response (“otherwise: f ; g”). The full syntax of the calculus is
specified by the grammar given in Figure 1. From now on, we denote by Orcs
the set of the expressions allowed by this syntax. The expressions of the calculus
that correspond to real Orc programs, denoted by the set Orc, are those that
do not contain ?k and ⊥ expressions.

There are two kinds of sites in Orc: the external ones, denoted V in the
syntax, and the internal ones defined as an Orc expression with the syntax
def y(x) = f#g where f is the body of the site and g is the remaining of the
program in which y can be used as any site. For the sake of clarity, we consider



f, g, h ∈ Expression ::= p‖p(p)‖?k‖f |g‖f >x> g‖f <x< g‖f ; g‖D#f‖⊥
D ∈ Definition ::= def y(x) = f
v ∈ Orc Value ::= V ‖D
p ∈ Parameter ::= v‖stop‖x
w ∈ Response ::= NT (v)‖T (v)‖Neg
n ∈ Hidden Label ::= ?Vk(v)‖?D‖h(ω)‖h(!v)
l ∈ Label ::= !v‖n‖ω

Fig. 1. The syntax of the Orc core calculus.

in this work that the sites are curryfied, so they have exactly one argument. Site
definitions are recursive, which allows the same expressivity as any functional
language. Calls to external sites are strict, i.e. their arguments have to be bound
before the site can be called, while an internal site can be called immediately, and
its arguments are evaluated lazily. When an external site is called, it sends its
responses to a placeholder ?k. A response can be either a non-terminating value
NT (v) if further responses are expected, or a terminating value T (v) if this is
the last publication of the site, or Neg if the site terminates without publishing
any value. In f |g, the parallel composition expresses pure concurrency; f and g
are run in parallel, their events are interleaved and the expression stops when
both f and g have terminated. Sequentiality can be expressed by the sequential
operator, like in f >x> g, where the variable x can be used in g. Here, f is
started first, and then a new instance of g[v/x], where x is bound to v, is launched
as a consequence of each publication of v. In f <x< g, the pruning operator
is used to express preemption. The variable x can be used in f . Both f and g
are started, but f is paused when it needs to evaluate x. When g publishes a
value, it is bound to x in f , and g is stopped. Other events that could have been
produced by g are preempted by the publication. For example, if g is supposed
to publish two values a and b, only one will be selected and published in each
execution. We say that these two events are in conflict. The pruning operator
is left-associative: in f <x< g <y< h, f , g and h are started in parallel, the
first publication of g is bound to x and the first publication of h is bound to y.
The otherwise operator is used in f ; g. In this expression, f is first started alone
and g is started if and only if f stops without publishing any value. Finally, the
stop symbol can be used by the programmer exactly like a site or a variable
to denote a terminated program. stop still produces an event ω to notify its
parent expression that it has terminated. It then evolves into ⊥, the inert final
expression. ?k and ⊥ cannot be used directly.

3.2 Illustration

We now illustrate the use of Orc in Figure 3. This program defines the in-
ternal site find_best(agencies, destination) that computes the best offers
proposed by the agencies listed in agencies for the destination given as a pa-
rameter. It publishes a unique value that is a pair composed of the best offer



(Publish)
v

!v−→ stop
v closed

(Stop)
stop

ω−→ ⊥
(StopCall)

stop(p)
ω−→ ⊥

(ExtStop)
V (stop)

ω−→ ⊥
(ExtCall)

V (v)
?Vk(v)−−−−→?k

k fresh

(DefDeclare)
[D/y]f

l−→ f ′

D#f
l−→ f ′

D is def y(x) = g

(IntCall)
D(p)

?D−−→ [D/y][p/x]g
D is def y(x) = g

(ParLeft)
f

l−→ f ′

f |g l−→ f ′|g
l 6= ω (ResT)

?k receives T (v)

?k
!v−→ stop

(ParRight)
g

l−→ g′

f |g l−→ f |g′
l 6= ω (ResNt)

?k receives NT (v)

?k
!v−→?k

(ParStop)
f

ω−→ ⊥ g
ω−→ ⊥

f |g ω−→ ⊥
(ResNeg)

?k receives Neg

?k
ω−→ ⊥

(OtherV)
f

!v−→ f ′

f ; g
!v−→ f ′

(SeqV)
f

!v−→ f ′

f >x> g
h(!v)−−−→ (f ′ >x> g)|[v/x]g

(OtherN)
f

n−→ f ′

f ; g
n−→ f ′; g

(SeqN)
f

n−→ f ′

f >x> g
n−→ f ′ >x> g

(OtherStop)
f

ω−→ ⊥

f ; g
h(ω)−−−→ g

(SeqStop)
f

ω−→ ⊥
f >x> g

ω−→ ⊥

(PruneV)
g

!v−→ g′

f <x< g
h(!v)−−−→ [v/x]f

(PruneLeft)
f

l−→ f ′

f <x< g
l−→ f ′ <x< g

l 6= ω

(PruneN)
g

n−→ g′

f <x< g
n−→ f <x< g′

(PruneStop)
g

ω−→ ⊥

f <x< g
h(ω)−−−→ [stop/x]f

Fig. 2. The rules of the operational semantics.

augmented with additional information and the list of other offers sorted by
price. The program is composed of three internal sites. It uses three shared
objects, that are created in lines 15 to 17: the stack offers and the registers
best_offer and best_agency. At line 16, a new register is created through
a call to the site Register() and is bound to the variable r. It is then ini-
tialized to a default value: r.write(null) that can be seen as a shortcut for
r("write")>w>w(null), so the shared register is a site that can publish its ac-
cessors when it is called. As writing in a register does not publish any value,
the otherwise operator is finally used to bound the value to best_offer. At line
11, the site find_offers can be started before the variables are created (left
hand side of pruning operators). each publishes in parallel all the sites contained
into the stack agencies, so all known agencies have to publish their offers. Each



1 def find best(agencies, destination) =
2 def find offers() =
3 each(agencies) > agency > agency(destination) > offer >
4 (offers.add((offer, agency)) |
5 (best offer.read() > o > compare(o, offer) > b >
6 ift(b) > x > (best agency.write(agency) | best offer.write(offer)))) #
7 def extend best() =
8 best agency.read() > ba > best offer.read() > bo > ba.exists(bo) > b >
9 (ift(b) > x > ba.get info(bo) | iff(b) > x > alarm(”inconsistent”)) #

10 def sort offers(offers, best offer) =
11 offers.sort(); best offer.read() = offers.first() >b>
12 (ift(b) > x > offers | iff(b) > x > alarm(”not best”)) #
13 ((t <t< (find offers() | timer(2000))) > t >
14 ((e b, s o) <e b< extend best() <s o< sort offers()))
15 <offers< Stack()
16 <best offer< (Register() >r> r.write(null); r)
17 <best agency< Register() #

Fig. 3. Identification of the best offers for a destination proposed by a pool of agencies.

time a new offer is found, it is added into offer and its price is compared to the
current best known offer. The test is first evaluated and passed as an argument
to ift. If true, the program publishes a signal and the registers can be updated.
find_offers does not publish any value. In parallel with its call, we start a
timer that publishes after 2 seconds a signal. The signal will halt this part of
the program thanks to the pruning operator, and starts the line 14, thanks to
the sequential operator. Line 14 calls both extend_best and sort_offers and
publishes the result when both sites have published. The two sites call an exter-
nal site either to sort the offers or to get extra information about the best offer,
and they perform a test that raises an alarm if something wrong is detected.

Figure 4 shows a possible trace of the program of Figure 3. In this example,
both alarms are due to inconsistencies in the shared registers. To avoid the alarm
“inconsistent”, it is necessary to write into best_offer and best_agency atom-
ically, and to avoid the other alarm, the comparison with the current value of
best_offer and its edition should be atomic. The event best_offer.write(01)
is a cause for both alarms, but it is impossible to detect it in the sequential trace
without any information about causality.

4 Instrumented Semantics

4.1 Method

SOS specifications take the form of a set of inference rules that define the valid
transitions of a composite piece of syntax in terms of the transitions of its com-
ponents. Rewriting transforms terms by executing a rule (it may be a non-
deterministic transition in case of multiple alternatives). The successive transi-
tions represent the program behavior. This may produce a sequence of values,



1. each([A1, A2])
2. timer(2000)
3. new register()
4. new register()
5. A1(D)
6. r.write(null)
7. best offer.read()
8. new stack()
9. offers.add(O1)

10. A2(D)
11. offers.add(O2)
12. compare(null, 01)

13. best offer.read()
14. compare(null, 02)
15. ift(true)
16. ift(true)
17. best offer.write(O2)
18. best offer.write(O1)
19. best agency.write(A1)
20. best agency.write(A2)
21. best agency.read()
22. best offer.read()
23. A2.exists(O1)
24. iff(false)

25. ift(false)

26. alarm(“inconsistent”)

27. offers.sort()

28. best offer.read()

29. offers.first()

30. =(O1, O2)

31. iff(false)

32. ift(false)

33. alarm(“not best”)

Fig. 4. A possible execution for the program in Figure 3 where agencies = [A1, A2]
and destination = D. Each agency publishes an offer O1 and O2 respectively. For the
sake of space and clarity, we only show site calls in this execution.

that can be brought by the labeling of rules. Our approach is based on an in-
strumentation of the rules, that appends additional information to the labels in
order to track the partial order of events. Actually, a label in the instrumented
semantics is a tuple e = (ek, el, ec, ea), where ek is an identifier taken in a count-
able set K, that is unique for the execution, el is a label similar to those of the
standard semantics and ec and ea contain the finite sets of the identifiers of the
causes and the weak causes of the event, respectively. Informally, an event e is
a cause of e′ if e always happens before e′, regardless of the scheduling chosen
by the system. Similarly, e is a weak cause of e′ if e′ can never happen after e,
either because e is one of its causes or because e′ preempts e.

In order to record the information concerning the past of an expression, we
enrich the language with a new syntactic construction: 〈f, c, a〉L means that c
and a are the causes of the Orc instrumented expression f . Thus, if f has c and
a as causes and if it can evolve into f ′, this transition should also have c and a
as causes. The index L expresses the kind of events that can activate the rule:
!v matches any publication, l stands for any label and ω means that c and a
are only the causes of the termination of the program. We also consider that
the external sites track causality themselves, as an internally-defined function
would do. It makes sense as some sites (e.g. +) handle their calls independently,
while others (e.g. shared registers, management library) induce more complex
causality patterns between the calls. Hence, the responses we get include this
additional information. The verification of these responses is not the subject
here, and we suppose them to be correct by hypothesis.

Apart from the introduction of the instrumentation construction and the new
information in the responses, the syntax of the instrumented expressions (Figure
5) is very similar to the regular one. The set of all the expressions allowed by
this extended syntax is Orci. We can notice that every valid Orc program is also



f, g, h ∈ Expression ::= p‖p(p)‖?k‖f |g
‖f >x> g‖f <x< g‖f ; g
‖D#f‖⊥‖〈f,K,K〉L

D ∈ Definition ::= def y(x) = f
v ∈ Orc Value ::= V ‖D
p ∈ Parameter ::= v‖stop‖x‖〈p,K,K〉L
w ∈ Response ::= NT (v,K,K)‖T (v,K,K)

‖Neg(K,K)
n ∈ Hidden Label ::= ?Vk(v)‖?D‖h(ω)‖h(!v)
l ∈ Label ::= !v‖n‖ω

Fig. 5. The extended syntax of the instrumented semantics.

a valid instrumented expression, which means that the instrumented semantics
can be applied without program transformation.

4.2 Labeled Asymmetric Event Structure

Labeled asymmetric event structures (LAES) [15] are natural objects to repre-
sent concurrent executions in a compact way.

Definition 1 (Labelled asymmetric event structure). A labelled asym-
metric event structure (LAES) is a tuple (E,L,≤,↗, Λ).

– E is a set of events,
– L is a set of labels,
– ≤, causality is a partial order on E,
– ↗, weak causality is a binary relation on E,
– Λ : E 7→ L is the labelling function,
– each e ∈ E has a finite causal history [e] = {e′ ∈ E|e′ ≤ e},
– for all events e < e′ ∈ E, e↗ e′, where < is the irreflexive restriction of ≤,
– for all e ∈ E, ↗ ∩[e] × [e], the restriction of weak causality to the causal

history of e, is acyclic.

We also define an induced conflict relation #a as the smallest set of finite
parts of E such that: for E′ ⊂ E and e0, e1, ..., en ∈ E,

– if e0 ↗ e1 ↗ · · · ↗ en ↗ e0 then {e0, e1, · · · , en} ∈ #a,
– if E′ ∪ {e0} ∈ #a and e0 ≤ e1 then E′ ∪ {e1} ∈ #a.

Informally, two events are in conflict if they cannot occur together in the same
execution.

A LAES can be seen as a structure that encodes concisely several sequential
executions; each of them being a linearization of the LAES.

Definition 2 (Linearization). Let E = (E,L,≤,↗, Λ) be a LAES. A finite
linearization of E is a word w = Λ(e0) . . . Λ(en) where the different ei ∈ E are
distinct and such that:



(CauseYes)
f

k,l,c,a−−−−→i f
′

〈f, c′, a′〉L
k,l,c∪c′,a∪a′∪c′−−−−−−−−−−→i 〈f ′, c′, a′〉L

l ∈ L

(CauseNo)
f

k,l,c,a−−−−→i f
′

〈f, c′, a′〉L
k,l,c,a−−−−→i 〈f ′, c′, a′〉L

l 6∈ L

Fig. 6. The semantics of the new operator 〈f, c, a〉L is defined by two additional rules.

– it is left-closed for causality:

∀e ∈ E,∀e′ ∈ {e0, . . . , en}, e ≤ e′ ⇒ e ∈ {e0, . . . , en},

– the weak causality is respected:

∀i, j ∈ {0, . . . , n}, ei ↗ ej ⇒ i < j.

We denote Lin(E) as the set of all finite linearizations of E.

Let (E,L,≤,↗, Λ) be an asymmetric event structure and e, e′ ∈ E two
events. We say that:

– e is a cause of e′, if e happens before e′ in all executions;
– e is a weak cause of e′, if there is no execution in which e happens after e′;
– e and e′ are concurrent, denoted e||e′, if they can occur in either order.

Formally, e||e′ if neither e↗ e′ nor e′ ↗ e.
– e is preempted by e′, denoted e  e′, if e′ can occur independently from
e, but after that, e cannot occur anymore. Formally, e  e′ if e ↗ e′ and
e 6≤ e′.

4.3 Rules

Essentially, the instrumented semantics presented in Figure 7 decorates the rules
of standard semantics, except that two rules are added (see Figure 6). The
transition system defined by this instrumented semantics is denoted→i and the
sequential executions starting from a program f are contained in the set JfKi.

Informally, the expression 〈f, c, a〉L evolves exactly like f , but some causes
and weak causes may be added to the event. For example, if L =!v and f
produces an internal event, that is not a publication, only the rule CauseNo
can be applied, so the instrumentation will have no effect. On the other hand,
if f publishes a value, the rule CauseYes applies and c and a are added to the
causes and weak causes of the publication. Note that c is also added to the weak
causes. This is to ensure that causality is always a special case of weak causality.

Let us now comment the most relevant instrumentations of the other rules.
Let us consider rule SeqV. When a value is published, a new instance of the
right hand side expression is created. All the events produced by this new ex-
pression need the former publication to have occurred before them, i.e. they are



(Publish)
v

k,!v,∅,∅−−−−−→i 〈stop, {k}, ∅〉l

v closed
k fresh

(Stop)
stop

k,ω,∅,∅−−−−→i ⊥
k fresh (StopCall)

P
k,ω,c,a−−−−→i ⊥

P (p)
k,ω,c,a−−−−→i ⊥

(ExtStop)
P

k,!V,c,a−−−−−→i P
′ p

k′,ω,c′,a′
−−−−−−→i p

′

P (p)
k,ω,c∪c′,a∪a′
−−−−−−−−−→i ⊥

(ExtCall)
P

k,!V,c,a−−−−−→i P
′ p

k′,!v,c′,a′
−−−−−−→i p

′

P (p)
k,?Vk(v),c∪c′,a∪a′
−−−−−−−−−−−−→i 〈?k, c ∪ c′ ∪ {k}, a ∪ a′〉l

(DefDeclare)
[D/y]f

k,l,c,a−−−−→i f
′

D#f
k,l,c,a−−−−→i f

′
D is def y(x) = g

(IntCall)
P

k,!D,c,a−−−−−→i P
′

P (p)
k,?D,c,a−−−−−→i 〈[D/y][p/x]g, c ∪ {k}, a〉l

D is def y(x) = g

(ResT)
?k receives T (v, c, a)

?k
j,!v,c,a∪c−−−−−−→i 〈stop, c ∪ {j}, a〉ω

j fresh

(ParLeft)
f

k,l,c,a−−−−→i f
′

f |g k,l,c,a−−−−→i f
′|g

l 6= ω (ResNt)
?k receives NT (v, c, a)

?k
j,!v,c,a∪c−−−−−−→i?k

j fresh

(ParRight)
g

k,l,c,a−−−−→i g
′

f |g k,l,c,a−−−−→i f |g′
l 6= ω (ResNeg)

?k receives Neg(c, a)

?k
j,ω,c,a∪c−−−−−−→i ⊥

j fresh

(ParStop)
f

k,ω,c,a−−−−→i f
′ g

k′,ω,c′,a′
−−−−−−→i g

′

f |g k,ω,c∪c′,a∪a′
−−−−−−−−−→i ⊥

(SeqV)
f

k,!v,c,a−−−−−→i f
′

f >x> g
k,h(!v),c,a−−−−−−−→i (f ′ >x> g)|〈[v/x]g, c ∪ {k}, a〉l

(OtherV)
f

k,!v,c,a−−−−−→i f
′

f ; g
k,!v,c,a−−−−−→i f

′
(SeqN)

f
k,n,c,a−−−−→i f

′

f >x> g
k,n,c,a−−−−→i f

′ >x> g

(OtherN)
f

k,n,c,a−−−−→i f
′

f ; g
k,n,c,a−−−−→i f

′; g
(SeqStop)

f
k,ω,c,a−−−−→i ⊥

f >x> g
k,ω,c,a−−−−→i ⊥

(OtherStop)
f

k,ω,c,a−−−−→i ⊥

f ; g
k,h(ω),c,a−−−−−−→i 〈g, c ∪ {k}, a〉l

(PruneV)
g

k,!v,c,a−−−−−→i g
′

f <x< g
k,h(!v),c,a−−−−−−−→i 〈[〈v, c ∪ {k}, a〉l/x]f, c ∪ {k}, a〉ω

(PruneN)
g

k,n,c,a−−−−→i g
′

f <x< g
k,n,c,a−−−−→i f <x< 〈g′, ∅, {k}〉!v

(PruneLeft)
f

k,l,c,a−−−−→i f
′

f <x< g
k,l,c,a−−−−→i f

′ <x< g
l 6= ω

(PruneStop)
g

k,ω,c,a−−−−→i ⊥

f <x< g
k,h(ω),c,a−−−−−−→i 〈[〈stop, c ∪ {k}, a〉l/x]f, c ∪ {k}, a〉ω

Fig. 7. The instrumented version of the rules of the operational semantics.



consequences of this publication. This is why the new expression is instrumented.
Even if PruneV and SeqV are syntaxically very similar in their standard forms,
the fact that both hand sides of the pruning operator are run in parallel makes
them very different in terms of causality. In the expression (1|x) <x< 2, the
second publication of 2 is a consequence of the first one, but not the publication
of 1. This is why the instrumentation covers the occurrences of the newly bound
variable. However, this is not sufficient. Consider the program (stop <x< 2); 3.
The publication of 3 must wait the end of the left hand side (i.e the publication
of 2). However, this publication is useless, in the sense that no variable x can
be bound to its value. To handle this case, we add an instrumentation to the
whole expression that is only triggered when the expression stops. Finally, the
rule PruneN is also interesting as it generates weak causality. Indeed, in the
program x <s< ((1 + 1)|3), the left hand side can call site + and then publish
3, or publish 3 directly, but can never publish 3 and then call site +, because
a publication preempts any other event. Of course, it could also wait for the
answer of the site and then publish 2, which would preempt the publication of
3. This preemption relation is operated by an instrumentation that contains k
as weak causes and that is triggered only in case of publication.

4.4 Concurrent executions

The equivalent of traces in the instrumented semantics are the concurrent exe-
cutions, represented by LAES.

Definition 3 (Concurrent execution). Let σ = σ1 . . . σn ∈ Jf0Ki, where for
all i, σi = (σi

k, σ
i
l , σ

i
c, σ

i
a). We define the concurrent execution of σ as the LAES:

σ = ({σ1
k, . . . , σ

n
k }, {σ1

l , . . . , σ
n
l },≤,↗, Λ)

where for all i, j ∈ {1, . . . , n}:

– σi
k ≤ σ

j
k if σi

k ∈ σj
c or i = j,

– σi
k ↗ σj

k if σi
k ∈ σj

a,
– Λ(σi

k) = σi
l .

As the fields σi
c and σi

a only contain events that happened before σi in the
sequential execution, both ≤ and ↗ are order relations and every event has
a finite causal history. For the same reason, ↗ is acyclic. Moreover, it is easy
to check that weak causality is more general than causality, so this definition
actually corresponds to a real LAES.

We now state the main result: the behavior of a program is preserved by the
instrumented semantics. It is established through two properties. The first one
justifies the name of the instrumented semantics and the second one proves that
the instrumentation is correct, i.e. that it does not define incorrect behaviors.
Note that we do not give a complete proof of the two propositions for lack of
space, but it can be found in [16].



Proposition 1 (Instrumentation). The projections of the executions pro-
duced by the instrumented semantics on their labels correspond exactly to the
executions of the standard semantics:

∀f ∈ Orc, {σ1
l ...σ

n
l |σ ∈ JfKi} = JfK.

In other words, it is always possible to instrument a standard execution to get a
concurrent execution, and conversely we can get a standard execution from an
instrumented execution by a simple projection.

The proof of this property is straightforward since both semantics contain sim-
ilar rules. The only difficulty comes from the applications of CauseYes and
CauseNo, that slightly modifie the structure of the derivation trees. All in all,
both executions are similar.

Proposition 2 (Correctness). The linearizations that can be inferred from an
execution in the instrumented semantics are correct with respect to the standard
semantics:

∀f ∈ Orc, ∀σ ∈ JfKi, Lin(σ) ⊂ JfK.

This proof is much more complicated. Let us consider a linearization L ∈ Lin(σ).
To prove that L ∈ JfK, we show that it is possible to progressively transform
σ1
l ...σ

n
l into L by applying a series of small steps that correspond either to the

inversion of two consecutive concurrent events, to the preemption of an event by
its successor or to a prefixation of the sequence. As σ1

l ...σ
n
l ∈ JfK and each step

preserves this property, we get that L ∈ JfK. The main difficulty concerns the
proof of the correctness of the two first steps, as it requires a proof for all pairs
of possible consecutive rules.

By introducing concurrency and preemption between events that were arbi-
trarily ordered by the standard semantics, the instrumented semantics gathers
many sequential executions into one concurrent execution, which hugely reduces
the number of different executions. However, all the events contained in a concur-
rent execution are also contained into a single sequential execution. Therefore,
no instrumentation is able to capture conflict, as two conflictual events would
never occur together. This is why completeness cannot be achieved with this
approach.

5 Application

Let us reuse the example presented in Section 3 and the execution of Figure 4.
Figure 8 shows the trace augmented with the causal information gained by the
instrumented semantics.

Figure 9 shows the LAES in its graphical form. Events taht correspond to
site calls are represented in circles and connected by three kinds of arrows. Direct
causality is figured by solid and dashed arrows. Solid arrows represent program
causality, that is specified by the instrumented semantics, while dashed arrows



(1, l1, ∅, ∅)
(2, l2, ∅, ∅)
(3, l3, ∅, ∅)
(4, l4, ∅, ∅)
(5, l5, {1}, {1})
(6, l6, {4}, {4})
(7, l7, {1,4-6}, {1,4-6})
(8, l8, ∅, ∅)
(9, l9, {1,5,8}, {1,5,8})
(10, l10, {1}, {1})
(11, l11, {1,8,10}, {1,8,10})
(12, l12, {1,4-7}, {1,4-7})
(13, l13, {1,4,6,10}, {1,4,6,10})
(14, l14, {1,4,6,10,13}, {1,4,6,10,13})
(15, l15, {1,4-7,12}, {1,4-7,12})
(16, l16, {1,4,6,10,13,14}, {1,4,6,10,13,14})
(17, l17, {1,4,6,10,13,14,16},

{1,4,6,10,13,14,16})
(18, l18, {1,4-7,12,15}, {1,4-7,12,15})
(19, l19, {1,3-7,12,15}, {1,3-7,12,15})
(20, l20, {1,3,4,6,10,13,14,16},

{1,3,4,6,10,13,14,16})

(21, l21, {2}, {2, 1})
(22, l22, {1-7,10,12-16,19-21},

{1-7,10,12-16,19-21})
(23, l23, {1-7,10,12-19,22},

{1-7,10,12-19,22})
(24, l24, {1-7,10,12-19,22,23},

{1-7,10,12-19,22,23})
(25, l25, {1-7,10,12-19,22,23},

{1-7,10,12-19,22,23})
(26, l26, {1-7,10,12-19,22-24},

{1-7,10,12-19,22-24})
(27, l27, {2}, {2, 1})
(28, l28, {1,2,5,9-11,27}, {1,2,5,9-11,27})
(29, l29, {1,2,5,9-11,27}, {1,2,5,9-11,27})
(30, l30, {1,2,4-7,9-18,27-29},

{1,2,4-7,9-18,27-29})
(31, l31, {1,2,4-7,9-18,27-30},

{1,2,4-7,9-18,27-30})
(32, l32, {1,2,4-7,9-18,27-30},

{1,2,4-7,9-18,27-30})
(33, l33, {1,2,4-7,9-18,27-31},

{1,2,4-7,9-18,27-31})

Fig. 8. An execution augmented with causal information. Numbers refer to the events
of Figure 4.

represent data causes, that are managed by the sites themselves. A call to a
write on a site is a cause of the publications of the next read on this site, so
the write is a cause of all the consequences of the read. Moreover, preemption is
figured by dotted arrows. The call to each() — and all its consequences — is
preempted by the publication made by timer(2000) — and all its consequences.

Root causes analysis. This execution concurrently raises two alarms. Let us
consider their last common causes, i.e. the events that are causes of both alarms,
and that are not causes of another such event. The alarms have two last common
causes: timer(2000) and best_offer.write(O1). The timer is not to blame
here, as it has no causes and is just used as a starter for the program. Indeed,
best_offer.write(O1) is the root cause for these two alarms. If this event did
not exist, the value published by best_offer.read() would be O2 for both calls,
A2.exists(O2) and =(02, O2) would be true and no alarm would be raised.

Detection of Race Conditions. We can see that the events best_offer.write(O1)
and best_offer.write(O2) are concurrent, as well as best_agency.write(O1)
and best_agency.write(O2). In this context, these events can interleave so that
best_offer and best_agency get inconsistent values.



Fig. 9. Corresponding LAES in a graphical form.

6 Conclusion

We based our work on the Orc core calculus, as it is expressive enough to easily
generate many situations found in distributed systems, such as causality, con-
currency and preemption, and remains simple enough to be tractable in a formal
work. Our contribution consists of an instrumentation of the standard structural
operational semantics of Orc that tracks causality and weak causality at run-
time to build LAES, well suited to represent concurrent executions. We think
LAES are an interesting tool to access important properties of orchestrations.
We illustrate this point on two questions: root cause analysis and detection of
race conditions. Beyond the Orc language, we think that the article presents a
general approach that can be used for other non-deterministic languages with
concurrency operators. Based on this work, we think it is possible to produce
the same information using a source to source transformation. Such a technique
would be easier to implement, as it does not require to modify the execution
engine of the language.
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