
HAL Id: hal-01152719
https://hal.science/hal-01152719v1

Submitted on 18 May 2015 (v1), last revised 26 Aug 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Activity Networks with Delays application to toxicity
analysis

Franck Delaplace, Cinzia Di Giusto, Jean-Louis Giavitto, Hanna Klaudel,
Antoine Spicher

To cite this version:
Franck Delaplace, Cinzia Di Giusto, Jean-Louis Giavitto, Hanna Klaudel, Antoine Spicher. Activity
Networks with Delays application to toxicity analysis. [Research Report] Laboratoire d’Informatique,
Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe BIOINFO MDSC - Modèles Discrets pour
les Systèmes Complexes. 2015. �hal-01152719v1�

https://hal.science/hal-01152719v1
https://hal.archives-ouvertes.fr


Activity Networks with Delays
application to toxicity analysis

Franck Delaplace2, Cinzia Di Giusto1, Jean-Louis Giavitto3, Hanna Klaudel2, and
Antoine Spicher4
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Abstract. ANDy, Activity Networks with Delays, is a discrete time framework
aimed to the qualitative modelling of time-dependent activities such as biological
networks and regulatory pathways.
Activities involve entities playing the role of activators, inhibitors or products of
biochemical network operation. Activities may have given duration, i.e., the time
required to obtain results. An entity may represent an object (e.g., an agent, a
biochemical species or a family of thereof) with a local attribute, a state denoting
its level (e.g., concentration, strength). Entities levels may change as a result of
an activity or may decrease gradually as time passes by.
The semantics of ANDy is formally given via high-level Petri nets ensuring this
way some modularity. As main results we show that ANDy systems have finite
state representations even for potentially infinite processes and that ANDy’s con-
cept of time has a direct counterpart in timed automata.
These results together with a modular and concise syntax make ANDy suitable
for an easy and natural modelling of time-dependent (biological) systems. We
conclude our paper with a general discussion on toxic behaviours, in particular
we present a classification of toxicity properties and give some hints on how they
can be verified with existing tools on ANDy systems.

1 Introduction

Activities are a central concern in many domains such as business (workflows, sup-
ply chains), transaction modelling (database transactions, web services) or biological
systems (biological networks, regulatory pathways). These activity-driven domains, al-
though quite different, share foundational principles and concern: the causal relation-
ships among activities. It deals with questions such as, how long does it take to complete
an activity, when it can be performed, or whether it can be delayed or even ignored.

Our main motivation comes from biological systems where data are species and the
activities the reactions among them but we believe that our model could be adapted
also to handle other domains as the ones mentioned above. Our proposal stems from
reaction systems [5], a formalism based on reactions, each defined as a triple (R, I, P )
with R set of reactants, I set of inhibitors and P set of products, and R, I and P taken
from a common set of species. Reaction systems are based on three basic assumptions:



(i) a reaction can take place only if all the reactants involved are available but none
of the inhibitors are;

(ii) if a species is available then a sufficient amount of it is necessary to trigger a
reaction;

(iii) species are not persistent: they become unavailable if they are not sustained by a
reaction.

We complement this model by adding several important features. We allow a richer
description of species states using attributes having potentially multiple values and in-
troduce timing aspects. More precisely, the resulting formalism, Activity Networks with
Delays (ANDy), targets systems composed of various entities (i.e., species in reaction
systems) that evolve by means of time-dependent activities. Each entity is characterised
by one attribute, called level, representing rates, activation/inhibition status or expres-
sion degrees (e.g., low, medium, high). Activities are rules describing the evolution of
systems, involving (as for reaction systems) three sets of entities: activators, which
must be present, inhibitors, which must be absent, and results whose expression levels
have to be modified (increased or decreased). The introduction of time concerns both
activities and entities. Activities have a duration and entities are subject to a decay pro-
cess or aging that models the action of a non-specified environment: i.e., levels decrease
with time progression. Another difference is in the semantics of activities: while in re-
action systems a maximal concurrency model is considered, here we adopt two types
of activities: mandatory and potential ones. The former set of activities, once enabled,
must take place altogether in the same time unit (in maximal concurrency) while the
latter, non deterministically one at the time, may be performed or not. Following [31],
as in our modelling all entities have discrete states and share the same global clock, it
is reasonable to work with discrete time constraints.

Our main objective is to provide effective tools for the description and the under-
standing of the mechanisms and of the structural properties underpinning biological
interactions networks. In biology, ordinary differential equations (ODE) remain the pre-
dominant modelling methodology[1]. Such models present however some drawbacks:
they need a precise quantification of parameters, random interactions are difficult to
model outside an averaged approach, system openness and non-linearities make hope-
less the existence of analytic solutions, and numerical methods – often the only sensible
option – are mainly descriptive and cannot form the basis for an explanatory theory. On
the other hand, many languages and tools have been developed to build and explore dis-
crete qualitative models in various application domains. Such models are rough abstrac-
tions of real world processes but they make possible to unravel the entangled causal re-
lationships between system’s entities. More specifically in systems biology, formalisms
like Petri nets [3], Boolean networks [30], process algebras [7] or rewriting systems [16]
(to cite a few) have been used with undeniable success to understand the causal links
between structure and behaviour in molecular networks. Nonetheless, the management
of time is somewhat problematic in all of the previous approaches. In general, timing
aspects are either disregarded or handled at a primitive level, which leads to expres-
siveness problems for the modeller. For example, modelling a synchronous evolution
directly in Petri nets requires a coding that is not necessarily natural for a biologist.
This is why here we propose a qualitative discrete formalism for biological systems

2



that provides, in particular, a direct account of timing aspects natural in biology such as
activity duration and decay.

We complement our designing process with a general discussion on toxicity prop-
erties and how they can be tested against ANDy systems. In this respect, we aim at
providing a methodology rather than a precise technique of testing.

Organisation of the paper. This paper is the extended and revised version of BIOPPN
workshop paper [12]. The main difference with respect to [12] is the introduction of
time aspects in ANDy systems and a more mature taxonomy of toxicity properties.

Section 2 introduces the principles behind ANDy networks and gives a formal def-
inition of ANDy in terms of high-level Petri nets. It also states the main results of the
paper addressing the finiteness of state space and the expressiveness of the formalism
in terms of timed automata. The encoding of an ANDy network into timed automata is
exponential showing the expressive relevance and the concision of the original ANDy’s
notation. In Section 3 we discuss an axiomatisation of toxicity properties and finally
Sections 4 and 5 discuss related works and conclude.

An Appendix with additional material: the details of the encoding into timed au-
tomata and a supplementary example on the assimilation of aspartame in human body
is added for the reviewer convenience.

2 Activity Networks with Delays

In this section we give the syntax and semantics of Activity Networks with Delays
(ANDy) which is composed of a set of entities E driven by a set of activities. We as-
sume to work with a discrete notion of time represented by a tick event.

Entities. Each entity, e ∈ E , is associated to a finite number of levels Le (from 0 to
Le − 1), that in general represent ordered expression degrees (e.g., low, medium, high)
and refer to a change in the entity capability of action. A decay duration is associated
to each level of an entity e through the function δe : [0 . .Le − 1] → N+ ∪ {ω} allow-
ing different duration’s for different levels and where ω means unbounded duration. If
δe(i) = ω, then level i is permanent and it can be modified only by an activity. Other-
wise, if δe(i) 6= ω, the presence of the entity at level i is transient: once entity e at level
i has passed δe(i) time units its level will pass to i− 1, i.e., it decays or ages gradually
as time passes by. We fix δe(0) = ω as no negative level is allowed. In principle, this
substitutes a set of unspecified activities accounting for the action of an underspecified
environment that consumes entities. A state s of an ANDy network assigns to each entity
e ∈ E a level η ∈ [0..Le − 1]. The initial state s0 sets each entity e to a given level ηe.

Activities. The evolution of entities is driven by activities

ρ ::= Aρ; Iρ
∆ρ−−→ Rρ

where ∆ρ ∈ N is the activity duration, Aρ (activators) and Iρ (inhibitors) are sets of
pairs (e, ηe), and Rρ (results) is a non empty set of pairs (e, v), with e ∈ E , ηe ∈
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[0 . .Le− 1] and v ∈ Z. Entities can appear at most once in each set Aρ, Iρ and Rρ, cf.,
Remark 1 below. We write e ∈ Aρ to denote (e, ·) ∈ Aρ, similarly for Iρ and Rρ. We
omit index ρ if it is clear from the context.

An activity ρ can take place only if it is enabled, this depends on the activator and
inhibitor levels appearing in Aρ and Iρ. Nonetheless, observing only the current level
of each entity is not enough to decide if an activity is enabled: such approach will miss
the handling of decays and duration. To take into account a notion of elapsed time, an
activity ρ is enabled (i.e., may happen) if and only if:

− for each entity ea of the activators set Aρ (i.e., (ea, ηa) ∈ Aρ), ea is available at
least at level ηa for the whole duration ∆ρ;

− for each entity ei of the inhibitors set Iρ (i.e., (ei, ηi) ∈ Iρ), ei is available at a level
strictly inferior to ηi for the whole duration ∆ρ;

If an entity is an activator (resp. an inhibitor) at level ` for some activity ρ, it is also an
activator (resp. an inhibitor) for ρ at all levels l ≥ ` (resp. l ≤ `). When an activity takes
place, entities’ levels appearing in the results are updated with the increment or decre-
ment (up to the range of entity levels) v specified in the rule. Duration ∆ρ characterises
the number of ticks required for yielding change of levels of results, ∆ρ = 0 denotes
an instantaneous activity.

Remark 1. Notice that:

− An entity may be both in A and R, e.g., as in an auto-catalytic production where
reaction products themselves are activators for the reaction. Similarly, an entity may
be both in I and R: thus representing self-repressing activities.

− Activators and inhibitors are not “consumed”.
− An entity can appear in the same activity simultaneously as an activator and as an

inhibitor but we require them to occur with different levels. For instance, the rule

{(e, η)} ∪A; {(e, η′)} ∪ I ∆−→ R where η < η′

requires that the activity takes place only if the level le of e belongs to the interval
η ≤ le < η′. In particular, if e has to be present in an activity exactly at level η, e
should appear as an activator at level η and as inhibitor at level η′ = η + 1.

− The set of activators and inhibitors A ∪ I is allowed to be empty. In this case,
the activity is constantly enabled. This accounts for modelling an environment that
continuously sustains the production of an entity. In this case a duration ∆ 6= 0
may be used to account for a start-up time.

− Once triggered an activity ρ must wait at least ∆ρ before being enabled again5.

It is important to note that when an activity is enabled, it is not necessarily per-
formed. The idea is to make a distinction between two types of activities:

5 This is a non restrictive hypothesis and by slightly modifying Definition 3 one can obtain
different semantics that could depend on the specific modelled scenario: e.g., once enabled an
activity ρ can be triggered an unbounded number of times or once per time unit.
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1. potential activities, denoted α in a set P: if enabled, they may occur in an inter-
leaved way thus the result depends on the order they are performed. It may happen
that no potential activities occur even if they are enabled;

2. mandatory activities, denoted β in a setM: if enabled they must occur within the
same time unit. All enabled mandatory activities occur simultaneously.

As all mandatory activities βi are triggered simultaneously, all updates related to an
entity e are collected and summed up before being applied to the current level of e.

Definition 1 (ANDy network). An ANDy network is a triple (E ,M,P) where E is the
set of entities,M is the set of mandatory activities and P is the set of potential ones.

An ANDy network evolves by triggering enabled activities in two separate phases
implementing one evolution step:

Ph. 1 In this phase (between two ticks) potential activities that are enabled may be
triggered. Their action occurs non-deterministically in an interleaved way. Any
potential activity is triggered at most once in this phase.

Ph. 2 This phase is the tick transition: the effect is that all concerned entities must decay
and all enabled mandatory activities are performed simultaneously. Notice that
as activators and inhibitors are not “consumed”, there are no conflicts and so there
is a unique way (per time unit) to execute all enabled mandatory activities.

Example 1 (Repressilator). The repressilator [13] is a synthetic genetic regulatory net-
work in Escherichia Coli consisting of three genes (lacI, tetR, cI) connected in a feed-
back loop such that each gene inhibits the next gene and is inhibited by the previous
one. The repressilator exhibits a stable oscillation with fixed time period that is wit-
nessed by the synthesis of a green fluorescent protein (GFP ). According to [13]: “the
resulting oscillation with typical periods of hours are slower than the cell division cycle
so the state of the oscillator has to be transmitted from generation to generation”.

It may be modelled with five entities E = {lacI, tetR, cI,GFP, gen}. The first
three represent the three genes, each with two levels denoting an on/off state where
level 1 = on has decay time 2. GFP has two levels (on/off ) with unbounded decay.
Finally, the evolution of successive generations is represented by entity gen with, let’s
say, seven levels (with unbounded decay) to differentiate among generations.

The behaviour is modelled with potential and mandatory activities: potential activ-
ities (on the left below) are used to represent the feedback loop between lacI, tetR,
and cI . Mandatory activities (on the right) handle the synthesis of GFP and show the
evolution of generations.

α1 : ∅; (lacI, 1)
2−→ (tetR,+1) β1 : (lacI, 1); ∅ 0−→ (GFP,+1)

α2 : ∅; (tetR, 1)
2−→ (cI,+1) β2 : (lacI, 0); (lacI, 1)

0−→ (GFP,−1)

α3 : ∅; (cI, 1)
2−→ (lacI,+1) β3 : (gen, 0); (gen, 6)

1−→ (gen,+1)

β4 : (gen, 6); ∅ 1−→ (gen,−6)

In particular, the evolution of successive generations is circular modulo 7 (generations
evolve from 0 to 6 and then they start again from 0) this allows us to have a finite number
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of levels for gen). Activities β3 and β4 describe such a behaviour. Notice in particular
the use of inhibitor (gen, 6) in β3 that allows to apply the activity for all levels of gen
from 0 to 5 and to apply β4 for level 6.

We now exhibit a possible execution scenario for the repressilator, the table below
shows for each line the current level of each entity:

lacI tetR cI GFP gen description
0 0 1 0 0 initial state
0 0 1 0 0 after Ph. 2 (tick)
0 0 1 0 0 after Ph. 1 (no activity)
0 0 1 0 1 after Ph. 2 (tick and activity β3)
0 1 1 0 1 after Ph. 1 (activity α1)
0 1 1 0 1 after Ph. 2 (tick)
0 1 1 0 1 after Ph. 1 (no activity)
0 1 0 0 2 after Ph. 2 (tick, decay of cI and activity β3)
1 1 0 0 2 after Ph. 1 (activity α3)
1 1 0 0 2 after Ph. 2 (tick)
1 1 0 0 2 after Ph. 1 (no activity)
1 0 0 1 3 after Ph. 2 (tick, decay of tetR and activities β1, β3)

�

2.1 Petri Net formalisation.

The semantics of ANDy networks is formalised in terms of high-level Petri nets. We
recall here the notations together with some elements of their semantics [23].

Definition 2. A high-level Petri net is a tuple (P, T, F, L,M0) where:

− P is the set of places, T is the set of transitions, with P ∩ T = ∅;
− F ⊆ (P × T ) ∪ (T × P ) is the set of arcs;
− L is the labelling of P ∪ T ∪ F defined as follows:
− ∀p ∈ P , L(p) is a set of values;
− ∀t ∈ T , L(t) is a computable Boolean expression (a guard);
− and ∀f ∈ F , L(f) is a tuple of variables or values.

− M0 is the initial marking putting a multiset of tokens in L(p) in each p ∈ P .

The behaviour of high-level Petri nets is defined as usual: markings (states) are func-
tions from places in P to multisets of possibly structured tokens in L(p). A transition
t ∈ T is enabled at marking M , if there exists a valuation σ of all variables in the
labelling of t such that the guard L(t) evaluates to true (Lσ(t) = true) and there are
enough tokens in all input places p of t to satisfy the corresponding input arcs, i.e.,
Lσ((p, t)) ∈ M(p) for each input place p of t. The firing of t produces the marking
M ′: ∀p ∈ P,M ′(p) = M(p) − Lσ((p, t)) + Lσ((t, p)) with Lσ(f) = 0 if f /∈ F ,
− and + are multiset operators for removal and adding of one element, respectively.
We denote it by M [t:σ〉M ′. Observe that for ANDy we are considering a subclass of
high-level Petri nets where at most one arc per direction for each pair place/transition is
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allowed and only one token can flow through. So, starting from an initial marking asso-
ciating one token per place, this situation is maintained at each step of the net evolution.

As usual, in figures, places are represented as rounds, transitions as squares, and
arcs as directed arrows. By convention, primed version of variables (e.g., x′) are used
to annotate output arcs of transitions, their evaluation is possibly computed using un-
primed variables (e.g., x) appearing on input arcs. With an abuse of notation, singleton
markings are denoted without brackets, the same is used in arc annotations. Also we
refer to valuated variables without effectively mentioning the valuation σ: e.g., we say
that the current value of variable w is w instead of σ(w). An example of firing is shown
in Figure 1.

We say that a marking M is reachable from the initial marking M0 if there exists
a firing sequence (t1, σ1), . . , (tn, σn) such that M0[t1:σ1〉M1 . .Mn−1[tn:σn〉M . The
state space of an initially marked Petri net comprises all the reachable markings.

7p1

5p2

p3t

x>y ∧x′=x+y

x

y
x′

p1

p2

12 p3t

x>y ∧x′=x+y

x

y
x′

Fig. 1. Example of firing of transition t with σ = {x = 7, y = 5, x′ = 12}.

ANDy’s formalisation. In order to properly describe decay and the semantics of activ-
ities we need to record three kinds of information:

1. (decay) since how long an entity is at the current level since the last update,
2. (activators) since how long an entity is available at a level less or equal to the current

one (recall that levels are inclusive),
3. (inhibitors) since how long a level greater than the current one has been left.

Notice that duration relative to Items 1 and 2 for the current level can be different: i.e., if
an entity is continuously sustained by some activities it remains available in the system
at the current level for a period that may be longer than the corresponding decay time.
Thus Item 1 reports the duration since the last update (i.e., when the activity concerning
the entity has been performed) and Item 2 is the duration since the first appearance of
the entity at that level.

For this reason, we model each entity e ∈ E by a single Petri net place pe carrying
tuples 〈le, ue, λe〉 as tokens where le is the current level of e; ue is a counter storing the
duration spent in the current level since the last update (Item 1): 0 ≤ ue ≤ δe(le); and
λe is a tuple of counters with Le fields (one for each level). Each counter λe[i] contains
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a duration interpreted as follows:

λe[i] =


since how long e has reached level i (Item 2) for 0 ≤ i ≤ le

since how long e has left level i (Item 3)
(or 0 if e has not yet reached i). for le < i ≤ Le − 1

Each place is initialised to 〈ηe, 0, 0Le〉 where ηe is the given initial level of e and
0Le denotes vector λe of counters uniformly initialised with zero.

It is worth observing that once a duration in λ has reached the maximum duration
for all activities (D = max{∆ρ | ρ ∈ M ∪ P}) it is useless to increment it, as for all
duration greater than D, the guards of all activities involving the entity are satisfied.

Notation 1 We denote by λ{x/[l . . l + n]} the systematic update of values in counters
λ[l] . . λ[l + n] to x. incD(λ) is the increment by one of all values in λ: i.e., ∀k ∈
[0 . .Le − 1], λ[k] = min(λ[k] + 1, D) with D ∈ N.

In order to cope with time aspects present in ANDy, we introduce a tick transition
tc (Figure 2(a)) that represents the time progression. Its effect is the one described
by Phase Ph. 2 above: it increments counters of entities, takes care of the decay and
simultaneously performs all enabled mandatory activities. More precisely:

Time: All counters in the entities are incremented by one: we pass from 〈l, u, λ〉 to
〈l, u+1, incD(λ)〉. Counter u remains unchanged for levels of unbounded duration.

Decay: An entity may stay at level l for δ(l) time units (i.e., u ≤ δ(l)). Decay happens
as soon as the interval δ(l) is elapsed and is obtained by decreasing the level by
one, till reaching level zero. We pass from 〈l, u, λ〉 to 〈l − 1, 0, incD(λ){0/l}〉.

Updates on a place pr of a result entity r at level lr containing token 〈lr, ur, λr〉,
due to an activity ρ (i.e., (r,±n) ∈ Rρ with n ∈ N) are performed6 as follows :

Increase +n: 〈lr + n, 0, λr{0/[lr + 1 . . lr + n]}〉. lr becomes lr + n, ur is reset to 0
restarting the counter for level lr + n and λr is updated to record the change to the
new level by resetting the counters λr[i] for all levels i from lr + 1 to lr + n.

Maintenance 0: 〈lr, 0, λr〉: the current level is recharged resetting ur to 0.
Decrease −n: 〈lr − n, 0, λr{0/[lr − n+ 1 . . lr]}〉. This case is symmetric to the in-

crease one, except for the treatment of λr that is updated by resetting counters λr[i]
for all levels i from lr − n+ 1 to lr.

Finally, every potential activity α ∈ P is modelled with a transition tα (Figure 2(b))
complying to Phase Ph. 1 above.

Definition 3. Given an ANDy network (E ,M,P) with initial state (e, ηe) for each e ∈
E , the high-level Petri net representation is defined as tuple (P, T, F, L,M0) where l,
l′, u, u′, λ, λ′, w, w′ range over variables and:

6 For the sake of simplicity, in the explanation we consider updates that do not exceed allowed
boundaries, these cases are handled as expected in Definition 3.

8



pρ

...

...

pe

...

...

tc

wρ

w′ρ

〈le,ue,λe〉

〈l′e,u
′
e,λ

′
e〉

(a) Clock transition.

pr· · ·

pa

...

pi

...

pα

tα
〈le,ue,λe〉 〈le,ue,λe〉

〈lr,ur,λr〉 〈l′r,u
′
r,λ

′
r〉

wα w′α

(b) Transition for α ∈ P .

Fig. 2. Scheme of Petri net modelling of ANDy.

− P = {pe | e ∈ E} ∪ {pρ | ρ ∈M∪P};
− T = {tc} ∪ {tα | α ∈ P};
− F = {(p, tc), (tc, p) | p ∈ P} ∪

{(pe, tα), (tα, pe), (pα, tα), (tα, pα) | α ∈ P, e ∈ Aα ∪ Iα ∪Rα}
− Labels for places in P :

L(pρ) = [0 . . D] for each ρ ∈M∪P
L(pe) = [0 . .Le − 1]× [0 . . d]× [0 . . D]Le for each e ∈ E

with d = max{δe(i) | i ∈ [0 . .Le − 1]} and D = max{∆ρ | ρ ∈M∪P}
− Labels for arcs in F :

L((pρ, tc)) = wρ L((tc, pρ)) = w′ρ for each ρ ∈M∪P
L((pe, tc)) = 〈le, ue, λe〉 L((tc, pe)) = 〈l′e, u′e, λ′e〉 for each e ∈ E

For each potential activity α ∈ P and e ∈ Aα ∪ Iα ∪Rα:

L((pe, tα)) = 〈le, ue, λe〉 L((tα, pe)) =

{
〈le, ue, λe〉 if e /∈ Rα
〈l′e, u′e, λ′e〉 otherwise

L((pα, tα)) = wα L((tα, pα)) = w′α

− Labels for transitions in T :
L(tc) = Calc

where Calc is a complex formula given by Algorithm 1 that contains equalities
of the form x′j = cj for each net variable x′j labelling an output arc of tc. The
algorithm takes as input all possible valuations σ for net variables of input arcs of
tc.

L(tα)= wα ≥ ∆α ∧ w′α = 0 ∧∧
(a,ηa)∈Aα(la ≥ ηa ∧ λ[ηa] ≥ ∆α) ∧∧
(i,ηi)∈Iα(li < ηi ∧ λ[ηi] ≥ ∆α) ∧∧
(r,+n)∈Rα Cr+ ∧

∧
(r,0)∈Eα Cr0 ∧

∧
(r,−n)∈Rα Cr−,

9



Algorithm 1 Calc’s algorithm
function CALC

for all ρ ∈M∪P do w′ρ := max(wρ + 1, D)

for all e ∈ E do
l′e := le u′e := ue λ′e := incD(λe)
if δ(le) 6= ω then u′e := ue + 1

if ue > δ(le) then l′e := max(0, le − 1) u′e := 0

for all β ∈M do
if ∀(a, ηa) ∈ Aβ(la ≥ ηa and λ[ηa] ≥ ∆β) and
∀(i, ηi) ∈ Iβ(li < ηi and λ[ηi] ≥ ∆β) and (wβ ≥ ∆β) then
w′β := 0
for all (r, v) ∈ Rβ do l′r := l′r + v u′r := 0

for all e ∈ E do
l′e := max(0,min(l′e,Le − 1))
if l′e < le then λ′e := λ′e{0/[l′e + 1 . . le]}
if l′e > le then λ′e = λ′e{0/[le + 1 . . l′e]}

return
∧
J(x′j = cj)

where J is the number of output arcs of tc, x′j is the variable labeling the output arc and
cj is its evaluation via Calc

for each potential activity α ∈ P with

Cr+ :〈l′r, u′r, λ′r〉 = 〈min(lr + n,Lr − 1), 0, λr{0/[lr + 1 . . min(lr + n,Lr − 1]}〉
Cr0 :〈l′r, u′r, λ′r〉 = 〈lr, 0, λr〉
Cr− :〈l′r, u′r, λ′r〉 = 〈max(0, lr − n), 0, λr{0/[min(0, lr − n) . . lr]}〉.

− The initial marking is M0(pe) = 〈ηs, 0, 0Le〉 for each e ∈ E and M0(pρ) = 0 for
ρ ∈M∪P .

We now comment on the transitions guards. Input and output arcs between the same
place and transition with the same label (read arcs) are denoted in figures with a double-
pointed arrow with a single label. We detail the conditions and the results of firing of tα
corresponding to a potential activity α = A; I

∆−→ R. We have:

− place pα retains whether the activity can be performed wα ≥ ∆ and after firing the
token is updated to 0, (w′α = 0).

− each activator a ∈ A has to be present at least at level ηa for at least ∆ time units,
this is expressed by guard la ≥ ηa ∧ λ[ηa] ≥ ∆;

− each inhibitor i ∈ I has not to exceed level ηi for at least ∆ time units, this is
guaranteed by guard li < ηi ∧ λ[ηi] ≥ ∆;

− each result is updated according to conditions Cr+ (increase), Cr0 (maintenance),
Cr− (decrease);

10



Fig. 3. The general shape of the ANDy network for the Repressilator from Example 1 (arcs anno-
tations are omitted).

Transition tc is always enabled, the effect of the firing is that all connected places are
modified according to the valuation σ “computed” by algorithm Calc. The firing up-
dates the levels of all entities dependently if they are involved in a mandatory activity
or decay and increments the counters in pρ (w′ρ = wρ + 1) for all ρ ∈ M∪ P unless a
mandatory activity β is performed in which case the corresponding w′β is set to 0.

Example 2. Figure 3 gives the Petri net representation of the ANDy system introduced
in Example 1, obtained via the Snakes library.

Expressiveness. The first result that we show for ANDy networks concerns the finite-
ness of the state space. Actually, even if the number of species and levels is finite, as a
state of the network includes an information concerning time (that could be unbounded,
if one takes a naive representation of dates), this could lead to an infinite state space.
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Nonetheless in our case, when the local counters have reached the maximal duration
for activities D, no new behaviours can be triggered by the system. This immediately
provides a way of abstracting without loosing precision and thus getting a symbolic
representation.

Theorem 2. Let N be an ANDy network. The state space of N is finite

Proof (Sketch). The proof follows from the observation that the type of tokens for each
place is finite and each place can have at most one token. ut

Following from this result, it is easy to build a timed automata model [2] of the
semantics of ANDy, this could help in better understanding and supporting the notion of
time. Since their introduction timed automata have been widely used to model complex
real time systems and to check their temporal properties. Since then many variants have
been considered depending of synchronisation policies (synchronous, urgent, broadcast
[4]).

The timed automaton should have as many localities as the markings of the Petri net.
Tick transitions of the Petri net are represented by the natural time progression in timed
automata and the discretization is imposed by specific guards. This simple encoding has
the same size as the state space and therefore exponential. In Appendix A we provide a
different encoding that is compositional with respect to entities and potential activities.
This encoding is more compact but still exponential because of the nature of mandatory
activities that have to be treated simultaneously and dynamically.

Next theorem states that the semantics in terms of timed automata is equivalent to
the one of Definition 3.

Theorem 3. ANDy can be encoded into timed automata preserving the semantics. The
size of the encoding is exponential.

This last result not only clarifies that ANDy can suitably handle time aspects but also
it underlines the concision of the model. As a matter of fact, the syntax of ANDy profits
from the advantages of Petri net modelling: i.e., the state space is the combination of
local information. This is not the case for automata where the number of localities is al-
ready exponential. Moreover the rule-based architecture of ANDy guarantees a modular
construction of systems which is not the case neither (in general) for Petri nets nor for
timed automata.

3 Application to toxicology

In this section, we explore the notion of toxicity and provide a methodology to analyse
it in ANDy. Toxicology [32] studies the adverse effects of the exposures to chemicals
at various levels of living entities: organism, tissue, cell and intracellular molecular
systems. During the last decade, the accumulation of genomic and post-genomic data
together with the introduction of new technologies for gene analysis has opened the
way to toxicogenomics. Toxicogenomics combines toxicology with “Omics” technolo-
gies7 to study the mode-of-action of toxicants or environmental stressors on biological

7 “Omics” technologies are methodologies such as genomics, transcriptomics, proteomics and
metabolomics.
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systems. The mode-of-action is understood as the sequence of events from the absorp-
tion of chemicals to a toxic outcome. Toxicogenomics potentially improves clinical
diagnosis capabilities and facilitates the identification of potential toxicity in drug dis-
covery [14] or in the design of bio-synthetic entities [28].

The main approach used in toxicogenomics employs empirical analysis like in the
identification of molecular biomarkers, i.e., indicators of disease or toxicity in the form
of specific gene expression patterns [11]. Clearly, biomarkers remain observational in-
dicators linking genes related measures to toxic states. In this proposal, we comple-
ment these empirical methods with a computational method that aims at discovering the
molecular mechanisms of toxicity. This way, instead of studying the phenomenology of
the toxic impacts, we focus on the processes triggering adverse effects on organisms.
Usually, the toxicity process is defined as a sequence of physiological events that causes
the abnormal behaviour of a living organism with respect to its healthy state.

Healthy physiological states generally correspond to homoeostasis, namely a pro-
cess that maintains a dynamic stability of internal conditions against changes in the
external environment. Hence, we will consider toxicity outcomes as deregulation of ho-
moeostasis processes, namely deviation of some intrinsic referential equilibrium of the
system. Biological processes are usually given in terms of pathways which are causal
chains of the responses to stimuli, this way the deregulation of homoeostasis appears as
the unexpected activation or inhibition of existing pathways. Moreover, in the context
of toxicogenomics it is crucial to take into account at least two other parameters: the
exposure time and the thresholds dosage delimiting the ranges of safe and hazardous
effects. Considering the qualitative nature of ANDy models, we believe that the potential
contribution lies in the analysis of the etiology of toxic processes. From this perspective,
toxicity properties can be classified into two categories:

1. properties characterising pathological states or more generally associated to symp-
toms and

2. properties characterising sequences of states (traces), e.g., non viable behaviours.

The former class of properties basically leads to check the reachability of some states,
while the latter may be used to unravel sequences of events leading to toxic outcomes.

ANDy allows us to describe such scenarios and the Petri net representation of a
reaction network with the associated marking graph may be used to detect and predict
toxic behaviours related to the dynamics of biological networks, both from the point of
view of the dose (e.g., some species exceed a pathological level) and from the point of
view of the exposure (e.g., some species persist in time beyond some maximal exposure
time). Remark that defining toxicity by characterising properties on sequences of events
is more general than just characterising pathological states. It addresses the needs to
characterise multifactorial scenario (e.g., periodical behaviours relating possibly several
species) and to discover complex etiology among reactants.

From healthy states to healthy behaviours. In ANDy a state is a marking in the mark-
ing graph, it collects for each species its current level and the corresponding λ vector.
The first step is to observe that some states can be naturally characterised as dangerous,
they highlight particular symptoms (e.g. the dosage of a poison has become relevant).
LetD be the set of such states. Symmetrically to dangerous states, there are some states
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that characterise a “safe” condition (e.g. the organism is functioning normally and does
not presents hazardous symptoms), denoted H. Notice that there are states that are not
assigned to any of the two classes, we group them into theR set. Characterising harmful
states corresponds only to verify toxicity problems as in Item 1 above, more complex
properties (Item 2) need to refer to (sets of) traces in the marking graph. We therefore
classify possible behaviours starting from an initial state into four toxicity scenarios:

1. those that lead to states in D,
2. those that irremediably quit H and never reach it again: the tail of the trace visits

only states in D orR (e.g., when a gene mutation knock out some pathway);
3. those that quitH for too long in terms of ticks (even if they may reach it again), the

regulation system allows, in principle, to reestablish the homeostatic equilibrium
but the process takes too long, compromising the viability of the organism (e.g.,
DNA damage caused by hydrogen peroxide in Escherichia Coli can be recovered to
some extent by DNA repair enzymes but the perturbation may lead to cell apoptosis
if to important or too long [22]);

4. those that quit H an unbounded number of times (systemic metabolic dysfunction,
slow poisoning)

All these properties can be given in terms of temporal logic formulae. As mentioned
above, the first item corresponds to reachability analysis thus instead of logic formulae
ad hoc algorithms can be used as well. The second item can be dealt with formulae like
the following in CTL: EF EG (s /∈ H), which means it is possible (EF) that starting
from a certain moment all visited states (EG) will not belong to set H. The remaining
items correspond to more complex formulae whose formulation depends on the specific
property of the system under consideration, for instance taking into account a precise
number of ticks or a concrete sequence of states.

From healthy behaviours to healthy states. Notice that sometimes it is not suffi-
cient or possible to describe the healthy condition of an organism (i.e. the ability of
maintaining its capabilities) only in terms of the sets H and D. Indeed, for some or-
ganisms their viability conditions are characterised by complex behaviours such as spe-
cific traces or oscillations. We, thus, define toxic (and symmetrically viable) behaviours
Ttoxic (resp. Tviable) by giving the property characterising them (or simply by enumer-
ating the traces). The properties can be described by specific temporal logic formulae
(that can be rather complex employing also recursive operators). For instance, we can
consider viable all traces that infinitely repeat an ordered sequence of three states as
in our example of the repressilator (e.g., only lacL ON, then only tetR ON, and finally
only cI ON) and where the period of oscillation is six ticks. This way toxicity can be
checked by testing whether a trace belongs or not to Ttoxic. For instance, suppose that
we want to describe the periodic activation of three genes a, b and c, we could use this
µ calculus formula to describe Tviable:

ν.X(a ∧ 〈−〉〈−〉〈−〉tt ∧ [−](b ∧ [−](c ∧ [−]X)))

which means we are in a state with a activated, followed by three transitions, for each
first transition we should have b activated and then c and so on recursively. In our case,
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as the state space is finite, any ANDy network may be simulated by a Büchi automaton
and the questions above may correspond either to check word acceptance or language
inclusion, which are both decidable questions in our case.

Moreover once we have given the specification of viable and toxic behaviour, we
may infer several interesting sets of states:

− states starting from which all possible futures are behaviours in Tviable/toxic
− states that have at least one possible future in Tviable/toxic,
− states that are included only in Tviable/toxic.

Example 3. We generalise here the example of the repressilator given above: we take
three entities {A,B,C} each with decay duration 2 that are inhibited in turn by poten-
tial activities:

α1 : ∅; (A, 1)
2−→ (B,+1)

α2 : ∅; (B, 1)
2−→ (C,+1)

α3 : ∅; (C, 1)
2−→ (A,+1)

we consider a new perturbed variant of the system with an additional entityD with only
one level (i.e., the entity is permanent) such that α1 and α3 remains unchanged and α2

is modified in α′2 : (D, 1); (B, 1)
4−→ (C,+1).

0

1

0

1
A′ =

[
A =

[
0 2 4 6 8 10 11 12 13 14 16 time

· · ·

· · ·

Fig. 4. Entities levels evolving with time corresponding to the given scenario.

Figure 4 above shows the periodic activation of entity A (first line) each six time
units while the second line shows the periodic behaviour ofA (second line, here denoted
with A′ to avoid confusion) in the system perturbed with entity D.

We now define Tviable as all traces where entityA is activated every six ticks, clearly
with this property all traces in the perturbed system will be toxic.

�

Notice that formulae describing properties can be rather long requiring, for instance,
a complex combination of all possible cases and interleaving. To this aim, in the future
we plan to design a language with dedicated primitives that abbreviate common use
cases (i.e., macro instructions). A second example coming from a different domain and
involving a greater number of activities and entities is given in Appendix B.
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4 Related works

From a technical point of view, the closest related work is on reaction systems [5] or
their Petri net representation [25]. Although we use a similar definition for activity, the
semantics we have proposed is inherently different: in [5] all enabled reactions occur in
one step while we consider two forms of activity evolution: simultaneous for mandatory
activities and interleaved for potential ones. Furthermore, we have introduced discrete
abstract levels that, to the best of our knowledge, are not taken into account in reaction
systems. Also, we have presented a more elaborated notion of time that governs both
entities and activities. In [6] the authors consider an extension of reaction systems with
duration but it concerns only decay and not duration of activities. Furthermore the decay
is referred to the number of steps and not to the discrete time progression as in our case.

From the Petri net modelling point of view, our representation of time is consider-
ably different from the approaches traditionally used in time and timed Petri nets ([8]
presents a survey with insightful comparison of the different approaches). The main
difference lies on the fact that the progression of time is implicit and external to the sys-
tem. By contrast, in our proposal we have assumed the presence of an explicit way of
incrementing duration (modelled by synchronised counters). This is also different from
the notion of timestamps introduced in [18] that again refers to an implicit notion of
time. Indeed, our approach is conceptually closer to Petri nets with causal time [29] for
the presence of an explicit transition for time progression. Nevertheless, in our approach
time cannot be suspended under the influence of the environment (as is the case in [29]).

In a broader sense, our work could also be related to P-systems [26,24] or the κ-
calculus [10] that describe the evolution of cells through rules. Both these approaches
are mainly oriented to simulation while we are interested in verification aspects. Finally,
always related to the modelling in Petri nets but with a different aim, levels have been
used in qualitative approaches to address problems related to the identification of steady
states in genetic networks such as in [9]. Nevertheless these contributions abstract away
from time related aspects that are instead central in our proposal. Finally, it is interesting
to notice that our formalism adds a new node in between timed and qualitative regions
in the classification in [19].

5 Final remarks

We have introduced ANDy to model time-dependent activity-driven systems, which con-
sist of a set of entities present in the environment at a given level. Entities can age as
time passes by and their level is governed by a set of mandatory and potential activities
with duration. The resulting Petri net is compact and provides an intelligible graphi-
cal representation of the described activities. Moreover, the network is easily scalable:
the size of the network grows linearly with the number of added entities and activi-
ties. We have shown that, despite the ability of modelling timed (thus infinite) systems,
ANDy networks have finite state space and that they have an alternative but exponential
formulation with equivalent semantics into timed automata (TA).

The development of an equivalent semantics in terms of modular TA, was instru-
mental. Even if the TA formulation will have little impact on the final users, it helped us
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to clarify the semantics of the temporal relationships in ANDy by confronting the high
level Petri net approach with the direct representation of clocks accessible in TA. We
insisted on a compositional form of TA, despite the fact that it will make the translation
more complex than a direct translation, because we strongly advocate for modularity to
face the scalability and reusability challenges posed by systems biology.

Finally we have discussed how toxicity problems can be addressed using our for-
malism. To the best of our knowledge this is the first attempt to give a general methodol-
ogy, a systemic approach of toxicity analysis rather than a particular technique to verify
them.

As the semantics of ANDy is given in terms of high-level Petri nets, ANDy networks
can be easily used as overlay of existing implemented tools. We have prototyped a
tool to simulate and build the state space of an ANDy network using the SNAKES
toolkit [27]. We have also developed an alternative implementation using the MGS
framework [17] to test several strategies that can be used to avoid the combinatorial
explosion and to build lazily the state space. The first results are very positive, ANDy is
particularly suited to describe biological systems, in particular regulatory networks and
pathways whose formalisation is based on rules (activities). The tools above have been
effectively used in the analysis of several applications: in physiology (modelling the
metabolism of glucose) [12], in the modelling of regulatory networks (e.g., the repres-
silator), etc. We have used SNAKES and MGS as they allow a rapid prototyping but we
plan to re-implement the framework and to base further developments on mainstream
tools that are well supported in the Petri net system biology community as simulation
tool Snoopy [20] and related analysis tool MARCIE [21].

We plan to develop the ANDy approach along several directions. We want to extend
decay function to arbitrary maps in L. The problem is to generalise the notion of in-
crease and decrease in a relevant way for the application. More structure can also be
given to the notion of entity. Characterising an entity by several attributes (instead of
only one level) raises the question of the causal relationships between these attributes
and their update strategy. Another aspect that will be addressed in the future is to con-
sider dynamic models where entities are created and deleted, as in [15]. Finally, it would
certainly be interesting to find a systematic way for approximating stochastic rates into
activities duration and decays.
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A Encoding into Timed Automata

In Section 2 we have hinted at the construction of a timed automaton coming directly
from the marking graph of an ANDy network. Here we present another encoding that is
syntax-driven which is not straightforward because of the management of mandatory
rules. Unfortunately, even if the obtained automata is smaller, we cannot avoid it to
be exponential at least in the number of activities. We conclude this section showing
that the semantics of ANDy in terms of timed automata is equivalent to the semantics in
terms of high-level Petri nets.

Timed automata. A timed automaton is an annotated directed (and connected) graph,
with an initial node and provided with a finite set of non-negative real variables called
clocks. Nodes (called locations) are annotated with invariants (predicates allowing to
enter or stay in a location). Arcs are annotated with guards, communication labels, and
possibly with some clock resets. Guards are conjunctions of elementary predicates of
the form x op c, where op ∈ {>,≥,=, >,≤} where x is a clock and c a (possibly
parameterised) positive integer constant. As usual, the empty conjunction is interpreted
as true. The set of all guards and invariant predicates will be denoted by G.

Definition 4. A timed automaton TA is a tuple (L, l0, X,Σ,Arcs, Inv), where

− L is a set of locations with l0 ∈ L the initial one, X is the set of clocks,
− Σ = Σs ∪Σu ∪Σb is a set of communication labels, where Σs are synchronous,
Σu are synchronous and urgent, and Σb are broadcast ones,

− Arcs ⊆ L × (G ∪ Σ ∪ R) × L is a set of arcs between locations with a guard in
G, a communication label in Σ ∪ {ε}, and a set of clock resets in R = 2X ; for all
a ∈ Σu, we require the guard to be true;

− Inv : L→ G assigns invariants to locations.

It is possible to define a synchronised product of a set of timed automata that work
and synchronise in parallel. The automata are required to have disjoint sets of locations,
but may share clocks and communication labels which are used for synchronisation.
We define three communication policies:

− synchronous communications through labels a ∈ Σs that require all the automata
having label a to synchronise on a;

− synchronous urgent communications through labels u ∈ Σu that are synchronous
as above but urgent meaning that there will be no delay if transition with label u
can be taken;

− broadcast communications through labels b!, b? ∈ Σb meaning that a set of au-
tomata can synchronise if one is emitting; notice that, a process can always emit
(e.g., b!) and the receivers (b?) must synchronise if they can.

The synchronous product TA1 ‖ . . . ‖ TAn of timed automata, where for each
j ∈ [1, . . . , n], TAj = (Lj , l

0
j , Xj , Σj ,Arcsj , Inv j) and all Lj are pairwise disjoint

sets of locations is the timed automaton TA = (L, l0, X,Σ,Arcs, Inv) such that:

− L = L1 × . . .× Ln and l0 = (l01, . . . , l
0
n), X =

⋃n
j=1Xj , Σ =

⋃n
j=1Σj ,
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− ∀l = (l1, . . . , ln) ∈ L : Inv(l) =
∧
j Inv j(lj),

− Arcs is the set of arcs (l1, . . . , ln)
g,a,r−→ (l′1, . . . , l

′
n) such that (where for each a ∈

Σs ∪Σu, Sa = {j | 1 ≤ j ≤ n, a ∈ Σs
j ∪Σu

j }): for all 1 ≤ j ≤ n, if j 6∈ Sa, then

l′j = lj , otherwise there exist gj and rj such that lj
gj ,a,rj−→ l′j ∈ Ej ; g =

∧
j∈Sa gj

and r =
⋃
j∈Sa rj .

The semantics of a synchronous product TA1 ‖ . . . ‖ TAn is that of the under-
lying timed automaton TA (synchronising on synchronous and broadcast communi-
cation labels) as recalled below, with the following notations. A location is a vector
l = (l1, . . . , ln). We write l[l′j/lj , j ∈ S] to denote the location l in which the jth
element lj is replaced by l′j , for all j in some set S. A valuation is a function ν from
the set of clocks to the non-negative reals. Let V be the set of all clock valuations, and
ν0(x) = 0 for all x ∈ X . We shall denote by ν � F the fact that the valuation ν satisfies
(makes true) the formula F . If r is a clock reset, we shall denote by ν[r] the valuation
obtained after applying clock reset r ⊆ X to ν; and if d ∈ R>0 is a delay, ν + d is the
valuation such that, for any clock x ∈ X , (ν + d)(x) = ν(x) + d.

The semantics of a synchronous product TA1 ‖ . . . ‖ TAn is defined as a timed
transition system (S, s0,→), where S = (L1×, . . . × Ln) × V is the set of states,
s0 = (l0, ν0) is the initial state, and→⊆ S × S is the transition relation defined by:

− (sync): (l̄, ν)→ (l̄′, ν′) if there exist arc l
g,a,r−→ l′ ∈ Arcs such that ν � g, ν′ = ν[r],

for Sa = {j | 1 ≤ j ≤ n, a ∈ Σs
j }, l′ = l[l′j/lj , j ∈ Sa], and there is no enabled

transition with urgent communication label from (l̄, ν);
− (urgent): as (sync) but a ∈ Σu and there is no delay if transition with urgent com-

munication label can be taken;
− (broadcast): (l̄, ν) → (l̄′, ν′) if there exist an output arc lj

gj ,b!,rj−→ l′j ∈ Arcsj and

a (possibly empty) set of input arcs of the form lk
gk,b?,rk−→ l′k ∈ Arcsk such that

for all k ∈ K = {k1, . . . , km} ⊆ {l1, . . . , ln} \ {lj}, the size of K is maximal,
ν �

∧
k∈K∪{j} gk, l′ = l[l′k/lk, k ∈ K ∪ {j}] and ν′ = ν[rk, k ∈ K ∪ {j}];

− (timed): (l, ν)→ (l, ν + d) if ν + d � Inv(l).

Here we exemplify timed automata usage: consider for instance the network of timed
automata TA1 and TA2 with synchronous (non urgent) communications only:

l1
x < 2

l2
x < 2TA1

l3
∅

l4
∅

x > 0; b; ∅

TA2

x = 1; a; {x}

x = 1; c; ∅
true; a; {x}

whose behaviour is given by their synchronised product TA1 ‖ TA2:

(l1,l4)

x < 2
(l1,l3)

x < 2
(l2,l3)

x < 2
(l2,l4)

x < 2

x > 0; b; ∅

x = 1; c; ∅ x = 1; a; {x} x = 1; c; ∅

x > 0; b; ∅
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and where a possible run is:

[(l1, l3);x = 0] [(l1, l3);x = 1] [(l2, l3);x = 0] [(l2, l3);x = .5] [(l2, l3);x = .5] [(l2, l4);x = 1]

Encoding into timed automata. We are now ready to introduce the encoding of the
high-level Petri net formalisation of ANDy, to this aim we need to add some notation:

Notation 4 Let B = {β1, . . . , βn} be the set of all mandatory activities identifiers from
M, ordered alphabetically, i.e., βi < βj if i < j. We denote by

B~ = {seq(h) | h ∈ P(B) ∧ h 6= ∅} ∪ {ε},

the set of sequences seq(h) obtained by concatenating the identifiers in non-empty
subsets h of B , where for each h = {βi1 , . . . , βim | ∀j, k : ij < ik} ∈ P(B),
seq(h) = βi1 · · ·βim . We assume that if B~ = {h1 . . hk}, then the hi’s are ordered by
decreasing length and alphabetically in such a way that h1 = β1 · · ·β|B| and hk = ε.

Moreover, βi = h[i] is the identifier at the i-position, and h = h1 − h2 is the
sequence of identifier in h1 without those in h2.

The encoding of an ANDy network is the synchronised product of one timed automa-
ton for each entity in E together with a set of auxiliary automata that are used to handle
potential and mandatory activities. The idea is that the global state of an ANDy network
is divided into its local counterparts represented by state of entities (i.e., their levels).
Thus for each entity e we build a timed automaton TA(e, ηe) which has as many loca-
tions as the levels in e. Auxiliary automata are used to implement the encoding of places
pρ (TA(ρ) for ρ ∈ M ∪ P) and to realise time progression together with mandatory
activities (TA√). More formally:

Definition 5. Given an ANDy network (E ,M,P), with initial expression level ηe for
each e ∈ E , the corresponding timed automata encoding is

J(E ,M,P)K =
∏
e∈E

TA(e, ηe) ‖
∏
α∈P

TA(α) ‖
∏
β∈M

TA(β) ‖ TA√

where TA(e, ηe), TA(α),TA(β) and TA√ are defined next. In the following we assume
B to be the set of identifiers of mandatory activities inM.

Entities. TA(e, ηe) = (Le, l
0
e , Xe, Σe,Arcse, Inve) where:

− Le = {lei | i ∈ [0 . .Le]} ∪ {khi , k
d,h
i | i ∈ [0 . .Le], h ∈ B~} with l0e = leηe

− Xe = {λei , uei | i ∈ [0 . .Le]} ∪ {xe}
− Σs

e = {α | α identifier of an activity in P}, Σb
e = B~, Σu

e = {
√
h | h ∈ B~}

− Arcse = ArcsP ∪ArcsM where

ArcsP={lj
g(Aα)∧g(Iα)∧xe=0,α,r−−−−−−−−−−−−−−−→ le | eAα ≤ j < eIα , α ∈ P, e ∈ Aα∪Iα∪Rα}

with j, e, eAα , and eIα are levels of e defined as follows:
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eAα =

{
ηa if (e, ηa) ∈ Aα
0 otherwise

eIα =

{
ηi if (e, ηi) ∈ Iα
Le otherwise

g(Aα) =

{
λeηa ≥ ∆α if (e, ηa) ∈ Aα
true otherwise

g(Iα) =

{
λeηi ≥ ∆α if (e, ηi) ∈ Iα
true otherwise

m =

{
max(0,min(j + v,Le − 1)) if (e, v) ∈ Rα
j otherwise

r =


∅ if (e, v) 6∈ Rα
{uem, } ∪ {λex | x ∈ [j + 1,m]} if (e, v) ∈ Rα ∧m− j > 0

{uem, } if (e, v) ∈ Rα ∧m− j = 0

{uem, } ∪ {λex | x ∈ [m+ 1, j]} if (e, v) ∈ Rα ∧m− j < 0

ArcsM = {lj
g(d)∧g,h?,∅−−−−−−−→ kd,hj , | j ∈ [0 . .Le − 1], h ∈ B~} ∪

{lj
¬g(d)∧g,h?,∅−−−−−−−−→ khj , | j ∈ [0 . .Le − 1], h ∈ B~} ∪

{kd,hj
true,h′,r∪{xe}−−−−−−−−−−→ le, | j ∈ [0 . .Le − 1], h, h′ ∈ B~, h < h′} ∪

{khj
true,

√
h′,r′∪{xe}−−−−−−−−−−−→ l′e, | j ∈ [0 . .Le − 1], h, h′ ∈ B~, h < h′}

where

g =
∧n
k=1 g(βk) ∧

∧m
k=1 ¬g(β′m) for h = β1 · · ·βn and h1 − h = β′1 · · ·β′m

g(β) = g′(Aβ) ∧ g′(Iβ) and β = Aβ ; Iβ
∆β−−→ Rβ

g(d) = uj > δe(j)

g′(Aβ) =

{
j ≥ ηa ∧ λeηa ≥ ∆β if (e, ηa) ∈ Aβ
true otherwise

g′(Iβ) =

{
j < ηi ∧ λeηi ≥ ∆β if (e, ηi) ∈ Iβ
true otherwise

m = max(0,min(
∑
i∈[1 . . n] f(h[i]′) + j − 1,Le − 1))

m′ = max(0,min(
∑
i∈[1 . . n] f(h[i]′) + j,Le − 1))

where f(h[i]) =

{
v if (e, v) ∈ Rβi
0 otherwise

r =


{uem} ∪ {λex | x ∈ [j + 1,m]} if m− j > 0

{uem} if m− j = 0

{uem} ∪ {λex | x ∈ [m+ 1, j]} if m− j < 0

r′ =


{uem′} ∪ {λex | x ∈ [j + 1,m′]} if m′ − j > 0

{uem′} if e ∈ h′ ∧m′ − j = 0

{uem′} ∪ {λex | x ∈ [m′ + 1, j]} if m′ − j < 0

∅ if e /∈ h′
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where e ∈ h denotes formula: ∃βk = Aβk ; Iβk
∆βk−−−→ Rβk s.t. h = β1 · · ·βn, 1 ≤

k ≤ n ∧ (e, v) ∈ Rβk
− Inve(l

e
i ) = uei ≤ δe(i) for all i ∈ [0 . .Le]

Potential activity. TA(α) = (Lα, l
0
α, Xα, Σα,Arcsα, Invα) for α ∈ P where

− Lα = {lα}, l0α = α, Xα = {wα}, Σs
α = {α}

− Arcsα = {lα
wα≥∆α,α,{wα}−−−−−−−−−−→ lα}

− Invα(lα) = true.

Mandatory activity. TA(β) = (Lβ , l
0
β , Xβ , Σβ ,Arcsβ , Invβ) for β ∈M where

− Lβ = {lβ , l′β}, l0β = lβ , Xβ = {wβ}, Σb
β = B~, Σu

β = {
√
h | h ∈ B~}

− Arcsβ = {lβ
wβ≥∆β ,h?,∅−−−−−−−−→ l′β | h ∈ B~, β ∈ h} ∪ {l′β

true,
√
h,{wβ}−−−−−−−−−→ l′β | h ∈

B~, β ∈ h}
− Invβ(lβ) = true and Invβ(l′β) = true.

Time. TA√ = (L√, l0√, X√, Σ√,Arcs√, Inv√) where

− L√ = {lh | h ∈ B~} ∪ {l⊥}, l0√ = lh1
, X√ = {x}, Σb√ = B~, Σu√ = {

√
h | h ∈

B~}

− Arcs√ =
{lhi

x=1,hi!,∅−−−−−−→ lhi+1, lhi+1
true,

√
hi,{x}−−−−−−−−−→ lh1 | h, i ∈ [1 . . n− 1]}

∪ {lhn
x=1,hn!,∅−−−−−−→ l⊥, l⊥

true,
√
ε,{x}−−−−−−−−→ lh1

}
− Inv√(l) = true for all l ∈ L√.

Theorem 5. The above encoding of ANDy network (E ,M,P) is correct and complete.

Proof (Sketch). Follows by induction on the length of the run and from a case analysis
on the transition performed.

Some intuitions on the proof follows. For each entity e, the corresponding marking
of place pe, M(pe) = 〈le, ue, λe〉, in the Petri net representation is encoded by the state
(location lele and valuations of clocks variables uele , λ

e
i for i ∈ [0 . .Le − 1]) of each

timed automaton TA(e, ηe). Marking of places pρ (for ρ ∈ M ∪ P) is given by the
valuation of clock wρ in the corresponding timed automaton TA(ρ).

Each transition of the Petri net is encoded by (a series of) timed automata arcs.
For each transition tα (corresponding to potential activity α) involving e there is a
(synchronous) arcs in the timed automaton TA(e, ηe) whose guard describes its role in
the activity (activator, inhibitor or result). Clockwα in TA(α) implements the constraint
that the activity α is performed at most once in the interval ∆α: wα ≥ ∆α. This way,
the synchronous product of all automata reconstructs the full guard of the activity α and
exactly one transition in the synchronised product of automata corresponds to the firing
of transition tα. The state reached after this transition coincides with the corresponding
marking in the Petri net.

Transition tc is trickier as time progression causes decay but more importantly the
simultaneous action of mandatory activities. Notice that mandatory activities concern
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lβ1β2 lβ1 lβ2 lε l⊥
β1β2! β1! β2! ε!

√
β1β2

√
β1

√
β2

√
ε

Fig. 5. The shape of timed automaton TA√ for B~ = {β1β2, β1, β2, ε}, where
√
β1β2,

√
β1,√

β2,
√
ε are all synchronous urgent communication labels.

the global state of an ANDy network (the maximal set of enabled mandatory activities
has to be performed each time tc fires) but each sub-automaton of the synchronised au-
tomaton as only a partial/local information. That is why, we need to introduce the aux-
iliary automaton TA√ that coordinates and gathers partial information from all other
automata. Thus, the implementation of tc has two phases. The first one gathers partial
information, performs the selection of the largest set of enabled mandatory activities
and forces the time to progress in a discrete fashion; the second phase completes the
time progression and synchronises all timed automata communicating the chosen max-
imal set of mandatory activities. Both phases are initiated by automaton TA√ which
has two types of arcs: broadcast ones for the first phase and urgent synchronous ones
for the second (see Figure 5). More precisely, TA√ progressively interrogates the enti-
ties timed automata TA(e, ηe) and the mandatory activities automata TA(βi) to “com-
pute” for each automaton the maximal set of enabled mandatory activities. This is ob-
tained through broadcast arcs labelled with sequences of mandatory activities identifiers
h ∈ B~, from the longest (h = seq(B) = β1 · · ·βn) to the shortest (h = ε, i.e., no
mandatory activity is enabled). As broadcast is a non blocking transition and because
of the ordering on sequences in B~, each entity automaton chooses its maximal set of
mandatory activities it is involved in. If it is necessary, it also performs decay. When
all automata TA(e, ηe) and TA(βi) have agreed on some sequence h = βi1 . . βim (in
the worst case h is empty) the first phase is completed and {βi1 , . . , βim} is the largest
set of enabled mandatory activities. The second phase is then implemented with an ur-
gent synchronous arc synchronising all automata: TA√, TA(e, ηe), for each e ∈ E , and
TA(βi), for i ∈ [i1 . . im]. Notice that guards on broadcast transitions constraint the
clocks to progress by one time unit at once. As a consequence, at the end of the two
phase algorithm, timed automata of entities and of places pρ together with the corre-
sponding clocks valuations exactly encode the marking reached after firing tc. ut

B Blood glucose regulation

Here we introduce another example: glucose regulation in human body (Figure 6). This
example shows that ANDy model is not limited to genetic regulations but it may express
other kinds of interactions. In the following, we are always referring to the process
under normal circumstances in a healthy body.

Glucose regulation is a homeostatic process: i.e., the rates of glucose in blood
(glycemia) must remain stable at what we call the equilibrium state. Glycemia is reg-
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ulated by two hormones: insulin and glucagon. When glycemia rises (for instance as
a result of the digestion of a meal), insulin promotes the storing of glucose in muscles
through the glycogenesis process, thus decreasing the blood glucose levels. Conversely,
when glycemia is critically low, glucagon stimulates the process of glycogenolysis that
increases the blood glucose level by transforming glycogen back into glucose.

We will focus on the assimilation of sweeteners: i.e., sugars or artificial sweeten-
ers such as aspartame. Whenever we eat something sweet either natural or artificial,
the sweet sensation sends a signal to the brain (through neurotransmitters) that in turns
stimulates the production of insulin by pancreas. In the case of sugar, the digestion
transforms food into nutrients (i.e., glucose) that are absorbed by blood. This way,
sugar through digestion increases glucose in blood giving the sensation of satiety. In
case the income of glucose produces hyperglycemia, the levels of glucose are promptly
equilibrated by the intervention of insulin. Unlike sugar, artificial sweeteners are not as-
similated by the body, hence they do not increase the glucose levels in blood. Neverthe-
less the insulin produced under the stimuli originated by the sweet sensation, although
weak, can still cause the rate of glucose to drop engendering hypoglycemia. In response
to that, the brain induces the stimulus of hunger. As a matter of fact this appears as an
unwanted/toxic behaviour, indeed the assimilation of food (even if it contains aspar-
tame) should calm hunger and induce satiety not the opposite.

This schema suggests that we should consider four levels for glycemia: low, hunger,
equilibrium and high. Likewise for insulin we assume three levels: inactive, low and
high. All other actors involved in glucose regulation, have only two levels (inactive
or active). In this example, duration do not play a fundamental role, for the sake of
simplicity we have set all complementary activities such as production of insulin and
glucagon, to take the same amount of time, the signal to the brain is the fastest, and the
decay of glycemia values are much longer than the digestion process.

Thus the set of involved entities is

E = {Sugar,Aspartame,Glycemia,Glucagon, Insulin}

Brain 

Food intake

Digestion

Pancreas

glucose level

Insulin

Glucagon

Fig. 6. Glucose metabolism
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and their expression levels and corresponding decays are:

levels duration
Lsugar = {0, 1} δsugar(1) = 2
Laspartame = {0, 1} δaspartame(1) = 2
Lglycemia = {0, 1, 2, 3} δglycemia(1) = 8

δglycemia(2) = 8
δglycemia(3) = 8

Lglucagon = {0, 1} δglucagon(1) = 3
Linsulin = {0, 1, 2} δinsulin(1) = 3

δinsulin(2) = 3

The levels of glycemia are: 0 corresponding to low, 1 to hunger, 2 to equilibrium and 3
to high. Likewise for insulin we have 0 that corresponds to inactive, 1 to low and 2 to
high. All levels for the other species are 0 for inactive and 1 for active. �

The set of potential activities P = {αk = Ak; Ik −→ Rk | k ∈ [1..9]} for the
glucose metabolism example is:

α1 : (Sugar, 1); ∅ −→ (Insulin,+1), (Glycemia,+1)
α2 : (Aspartame, 1); ∅ −→ (Insulin,+1)
α3 : ∅; (Glycemia, 1) −→ (Glucagon,+1)
α4 : (Glycemia, 3); ∅ −→ (Insulin,+1)
α5 : (Insulin, 2); ∅ −→ (Glycemia,−1)
α6 : (Insulin, 1), (Glycemia, 3); ∅ −→ (Glycemia,−1)
α7 : (Insulin, 1); (Glycemia, 2) −→ (Glycemia,−1)
α8 : (Glucagon, 1); ∅ −→ (Glycemia,+1)

α1 and α2 represent the assimilation of Sugar and Aspartame, respectively: while As-
partame only increases the level of Insulin, Sugar also increases Glycemia. α3 takes care
of hypoglycemia, i.e., a Glycemia level equal to 0 (obtained by using (Glycemia, 1)
as inhibitor) engenders the production of Glucagon. On the contrary, hyperglycemia
causes the production of Insulin (α4). The presence of Insulin lowers Glycemia (activ-
ities α5, α6, α7). In particular Insulin level equal to 1 plays a role in the decrease of
Glycemia only in case of hyperglycemia α6 or hypoglycemia α7, otherwise the sig-
nal is not strong enough and we need Insulin at level 2 to see the effect on Glycemia
(α5). Last activity describes the role of Glucagon which if active increases the level of
Glycemia.

For this example, the set of mandatory activities is empty. Observe now the be-
haviour of Glycemia in the following scenario:

initial state 〈3, 0〉
8 time units elapse, counter at level 3 updates 〈3, 8〉
one time unit elapses, Glycemia decays 〈2, 0〉
one time unit elapses, counter at level 2 updates 〈2, 1〉
activity α5 decreases Glycemia level 〈1, 0〉
8 time units elapse, counter at level 1 updates 〈1, 8〉
one time unit elapses, Glycemia decays 〈0, 0〉
one time unit elapses, no effect since δglycemia(0) = ω 〈0, 0〉. �

27



Figure 7 shows a simplification of the ANDy network (E ,P, ∅). It focuses only on
the activity schema linking inputs (i.e., activators and inhibitors) to results. Each input
arc is labeled with either letter A or letter I denoting whether the input place is an
activator or an inhibitor, respectively. Likewise, each output arc is labeled with a + or
a - to denote increase or decrease of product levels by 1. For each activity transition
α, we have omitted place qα and all arcs in the opposite direction. The numbers inside
each transition refers to the corresponding activity.

Sugar Aspartame

GlycemiaGlucagon Insulin

1

A

+
+

2

A

+

3
I+

4
A +

5

A-

6

A A
-

7

I
A

-

8
A +

Fig. 7. Simplified ANDy network of glucose metabolism.

Figure 8, instead, shows a portion of the complete initially marked ANDy network
for the glucose metabolism example, focusing only on activity α7.

The following properties can be expressed in CTL:

Symptoms: Is it possible to have an anomalous decrease of glucose levels in blood
(revealing hypoglycemia)?

EF(Glycemia, 0)

Causality: Does assimilation of sweeteners cause hypoglycemia?

EF[((Sugar, 1) ∨ (Aspartame, 1)) ∧ (Glycemia, 1)]→ AF(Glycemia, 2)

For the second formula we show two paths given as sequences of activities (ab-
stracting away from time transitions), one that satisfy the formula and the other that
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(3, 0)

qglycemia

(0, 0)

qinsulin

1 qα7tcL(tc)

〈lg, ug〉

〈l′g, u′g〉

〈li, ui〉

〈l′i, u′i〉

tα7 L(tα7
)

〈lg, ug〉

〈li, ui〉

〈l′g, u′g〉

w

0

Fig. 8. A portion of the ANDy network of glucose metabolism with an initial marking.

contradicts it. The first one corresponds to the assimilation of sugar. It induces an in-
crease of the production of insulin and an augmentation of the blood glucose levels.
Nonetheless the levels of insulin produced are not enough to cause the glycemia to drop
and the formula is satisfied.

(Sugar, 1), (Aspartame, 0), (Glycemia, 1), (Insulin, 0), (Glucagon, 0)
α1−→

(Sugar, 1), (Aspartame, 0), (Glycemia,2), (Insulin, 1), (Glucagon, 0)

Unlike previous path, the assimilation of aspartame causes only an increase of in-
sulin. Unfortunately, this increment is sufficient to induce a decrease of blood glucose
levels thus contradicting the formula above.

(Sugar, 0), (Aspartame, 1), (Glycemia, 1), (Insulin, 0), (Glucagon, 0)
α2−→

(Sugar, 0), (Aspartame, 1), (Glycemia, 1), (Insulin, 1), (Glucagon, 0)
α7−→

(Sugar, 0), (Aspartame, 0), (Glycemia,0), (Insulin, 1), (Glucagon, 0)

This illustrates the toxic behaviour caused by aspartame.
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