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Travelling waves in a cylindrical magnetohydrodynamically
forced flow

J. Boisson, A. Klochko, F. Daviaud, V. Padilla, and S. Aumaı̂trea)

GIT-SPEC, DSM, CNRS URA 2464, CEA-Saclay, F–91191 Gif-sur-Yvette, France

(Received 11 May 2011; accepted 3 January 2012; published online 4 April 2012)

We present an experimental study of a liquid metal flow electromagnetically forced
in a large aspect ratio coaxial cylindrical geometry. An azimuthal Lorentz force is
applied on the liquid metal gap, through a radial current and an axial magnetic field.
Using ultrasonic velocity measurements, we focus on the effect of these two parame-
ters on the flow properties. We show that, depending on the strength of the magnetic
field and not only on the applied Lorentz force, different dynamical states exist. We
first observe a stationary structure at low forcing. Then, two other regimes of differ-
ent travelling waves are exhibited at higher forcing. We characterize them by their
different frequencies and speeds. Higher magnetic fields clearly promote the faster
waves. Connections with other magnetohydrodynamics instabilities are discussed.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694804]

I. INTRODUCTION

Flows of electrically conducting fluids arise in various phenomena ranging from astro- and
geophysical to industrial processes1, 2 and wave phenomena, such as Alfven-wave,3 are expected
in such fluids although they are not always easy to highlight in lab experiment. In these flows, the
Lorentz force �J × �B, with �J being the current density and �B the magnetic field, plays a significant
role. It can either modify and saturate magneto-hydrodynamic (MHD) instability like in fluid dynamo
action1, 4 or drive flows by a suitable arrangement of imposed magnetic fields and currents, like in
electromagnetic pumps and magnetic stirring.2 Although it is intrinsically a volumic force, the
induction phenomena can constrain the electric current in boundary layers letting the fluid bulk
free of forcing. The size of the boundary layer, eH = H/Ha, is controlled by the Hartmann number
Ha = Bo H

√
σ/ρν with Bo the imposed magnetic field, H a characteristic length, σ the electrical

conductivity, ρ the density of the fluide, and ν its kinematic viscosity.3 Moreover, an anisotropic
damping due to the Lorentz force and Joule dissipation tends to reduce fluctuations and to promote
a 2D velocity field by canceling the vortices perpendicular to the imposed magnetic field.2, 5 One
way to study these phenomena is to use a well-defined geometry between two coaxial cylindrical
electrodes placed in an axial magnetic field. Without electrical current but with a motion driven by
moving boundaries, the stability of this Taylor–Couette flow for conducting fluid with a additional
imposed magnetic field, has been studied in Ref. 4. It has been shown that this geometry can generate
oscillatory modes.6 More recently, similar geometries have been experimentally used to exhibit the
magneto-rotational instability which is assumed to play a key role in accretion disks.7, 8

Instabilities can also be expected when the flow is only driven by a Lorentz force. Indeed, the
profile of the tangential velocity uθ can be computed in an infinite cylinder neglecting the induction
effects9

uθ (x) =
Boio R1

[(
x ln(ηx) − η2x ln(x)

) − ln(η)
x

]
4πρν(η2 − 1)

(1)
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with io the imposed current by unit of length, η = R1/R2 the ratio of the radius of the inner
electrode, R1, over the outer electrode, R2, x = r/R1 the radial coordinate normalized by R1, ρ

the fluid density, and ν the kinematic viscosity. Such a velocity profile is actually unstable fol-
lowing the Rayleigh criterion.4 Some instabilities phenomena have been studied in the early 1980s
(Ref. 10) and experimental evidence has been reported11 for a limited range of forcing in a device with
� = (R2 − R1)/H � 1 with H the cell height. The same kind of devices, with � ∼ 1 have been used
to study more specifically turbulent boundary layers problems in this configuration.12, 13 Because of
the difficulty to use usual anemometry techniques in liquid metals,14 the velocity was not directly
measured all these experiments. Local or global potential measurements were instead performed.
However, it has been shown in that measurements of velocity profiles by using ultrasonic techniques
are also relevant in liquid metal MHD.15–17

In this work, we have applied ultrasonic technique to study velocity profiles of a liquid metal alloy
subjected to a Lorentz forcing, between two motionless cylindrical electrodes. We will especially
focus on the respective action of the driving current and the magnetic field on the flow. In a first
part, we detail the experimental device. In a second part, we first present the behaviours of the
mean velocity when the intensity of the input current and the applied magnetic field are changed
independently. Then, we show the time evolution of the velocity profile in order to exhibit the two
distinct wave regimes that we can observe depending on the magnetic strength, for a given applied
Lorentz force. The last part is devoted to discussion and concluding remarks.

II. EXPERIMENTAL SETUP

A. Cell description

Figure 1 shows a vertical cut of the experimental device. An azimuthal Lorentz force is generated
by a radial current and an axial magnetic field in order to force a cylindrical layer of liquid alloy:
galinstan.18 In the design of the experiment, a special care has been devoted to the homogeneity of
the input current and magnetic field, without fluid motion. The inner and the outer electrodes are
made of a large mass of copper in order to limit the Joule effect within the cell and to allow the current

FIG. 1. Schematic view of the experimental setup. A is the inner cylinder (copper) B corresponds to the outer cylinder
(copper), C is the polycarbonate covers. The liquid metal (galinstan) is represented in green.
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homogenization. Indeed we benefit from the conductivity difference between copper and galinstan
(the ratio of their electrical conductivity is about 16) to homogenize the current in the bulk of the
electrodes before it crosses galinstan. This is also why we divide the current arrivals and departures in
eight axisymmetric locations (see Figure 1) in the top and the bottom for the inner cylinder (A), and
on the lateral surface for the outer cylinder (B). Moreover the eight current arrivals enter deep in the
mass in the inner cylinder. With our filling procedure, the wetting of galinstan is good. The resistivity
of the overall device is less than 0.1 ohm and mainly due to wiring and connectors. However, we
hope that some residual contact resistivity helps to bring a more homogeneous current along the axis.
The symmetry and the homogeneity of this design have been tested by numerical computation.19

The top and bottom covers are made of polycarbonate implying an insulating boundary condition
where the Hartmann layer is formed.

The height of the annular channel is H = 120 mm. Galinstan is confined in a gap of 12 mm
between the two cylindrical electrodes of radius R1 = 28 mm and R2 = 40 mm. Thus, η = 0.7
and the aspect ratio is � = 0.1 (see Figure 1) as in some previous Taylor-Couette devices.20 We
especially checked that the radial inhomogeneity of the applied field is less than 0.5% within the
fluid gap. Its axial variations are less than 4.5% and we take care to keep it symmetrical with respect
to the mid-plane of the cell and to the axial alignment of all the apparatus. The coil, powered by a
Sorensen DP 8-800 power supply and water-cooled, can reach a magnetic field up to 0.15 T. The
radial current crossing the cell is supplied by a Kepco BOP 20-50MG power supply providing up
to 50 A.

B. Dimensionless parameters

With a length scale equal to the fluid gap, δ = R2 − R1, a natural velocity scale appears from
the dimensionless Navier-Stokes equation driven by the Lorentz force

Uo =
√

Bo Ioδ

R1 Hρ
(2)

coming from a balance between the advection term and the Lorentz force effective at large Reynolds
number. Notice that the balance of Lorentz force with the diffusion term, effective at low Reynold
number, would give the linear scaling

U ′
o = Bo Ioδ

2

R1 Hρν
. (3)

This is actually the typical velocity scale appearing in Eq. (1). The order of magnitude of this
velocity, for the highest forcing available, is: Uo ≈ 6 cm/s and U ′

o ≈ 11 m/s and the corresponding
Reynolds number, Re = Uoδ/ν ≈ 2000 and Re′ = U ′

oδ/ν ≈ 4 × 105. Obviously, the second scaling
is inconsistent. Notice that a Reynold number constructed on the largest scale H would have reached
a value up to 20 000. The magnetic Reynolds number, Rm = μoσUoδ, measuring the ratio of the
characteristic time of magnetic diffusion, μoσδ2, over advection time, δ/Uo, is less than 10−3 in our
case. This shows that the magnetic field lines are almost unaffected by the flow. The interaction
parameter, N, usually introduced to estimate the ratio of the induced Lorentz force σ (u × Bo)
× Bo to the advection, N = σ B2

oδ/(ρUo) is of order one in our case. The last relevant dimensionless
parameter in our experiment is the Hartmann number, Ha = Bo H

√
σ/ρν giving the size of the

boundary layers of the velocity on the walls perpendicular to the magnetic field, eH = H/Ha. This
is also the layer where all electrical currents are concentrated. Typically in our experiment, one
get a Ha up to 460 and a Hartmann layer eH smaller than 0.3 mm, i.e., eH/H ∼ 2 × 10−3. By the
channelling of the currents near the top and bottom plate into the Hartmann layer, the magnetic
field also generates a boundary layer near the vertical electrod, called the Shercliff layer, which is
assumed to scale21 like eS = δ/Ha1/2. This layer is of order of 0.5 mm.

One can assume that instabilities will occur when these boundary layers destabilize i.e., when
the Reynold numbers built on their width, ReH = UoeH/ν and ReS = UoeS/ν, overcome a given onset:
Rec

H � 25 and Rec
S � 65, both based on energetical stability criteria.22 Therefore, we could expect
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instability across the lines Ha = Re
�Rec

H
and Ha = Re2

(Rec
S )2 in the plane (Ha, Re). Notice that in both

cases the magnetic field stabilizes the flow. However, once the fluid moves under the action of the
Lorentz force, one may consider consequences of the rotation on the flow. This can be estimated with

the Elsasser number, balancing the Lorentz and centrifugal forces: 
 = σ B2
o R

2ρUo
= Ha2

Re � R
H , where R is

a characteristic radius of curvature of the cell, we took R = (R1 + R2)/2. Therefore, one can expect
an hydromagnetic driven instability for large 
 and centrifugal driven instability at low 
.

C. Measurement device

The physical properties of liquid metal, opacity, high thermal conductivity, and the high current
density inside the cell, prevent the use of usual anemometry methods, such as hot wire, particles
image velocimetry, or Laser Doppler velocimetry to study the flow. The previous studies used
local or global potential measurements.10, 13 However, to deduce the velocity field from this kind
of measurement some assumptions are needed.14 We use here an ultrasonic Doppler velocimeter
DOP3010 from Signal processing with two ultrasound probes to extract directly velocity profiles as
function of the vertical coordinate. The measure is based on two Ultra–sound pulses (USP) emitted
by the probe. The working frequency is around 4 MHz. The temporal resolution is limited by the
time delay between successive pulses which depends on the expected velocity of the flow and the
sound speed in the material. In our case it cannot be smaller than 0.1 s. Nine locations have been
arranged for our two probes on the top and bottom of the cell. The adjustment of the polycarbonate
thickness with the ultrasonic wavelength, lets transmit an echo signal strong enough to get confident
velocity estimations. Special care has been taken during the filling to prevent air bubbles. However,
as the wetting of galinstan on the polycarbonate plate is not good, multi-reflections on this interface
galinstan-polycarbonate, could polluted the first 10 mm of the measure. Each location has different
angles, ranging from 0◦ to 8◦, with respect to the cylinder axis in order to be able to deduce the
azimuthal and axial velocities. The USP are scattered by galinstan oxides present in the media.
Ultrasonics probes give the projection on their axis of the velocity profile. This profile is estimated
by a sampling of 550 measurement gates at different location along the probe axis, corresponding
to a spatial resolution of 1/4 mm. It is worth noticing that the volume explored by the probe is not
homogeneous along the axis. There is a tightening of the beams up to the near field limit around
d2f/(4c) ∼ 2.5 cm with d the probe diameter, f the probe frequency, and c the sound speed in
galinstan. Then the beam width diverges with an angle α ∼ c/( f d) = 4.5◦ due to diffraction.

D. Experimental procedure

Benchmarks of ultrasonic velocity measurement in gallium and gallium alloys with respect to
other fluids and other measurement probes, underline possible problems with gallium oxides.15, 17

Although they are used as scatters, they can accumulate near the sensor and decrease the signal
quality. In order to have well-reproducible results with the USP, it is necessary to get homogenized
scatters in galinstan. As the main oxide Ga2O3 seems to have an almost equal or slightly higher
density than the fluid,23 we drive the fluid to the highest speed available (with Io = 50 A and Bo

= 1000 G) during 20–60 s them before each measurement. That insures the mixing of the oxides.
Then we let the flow relax during 30–60 s at the value Io, Bo, prescribed for the measurement before
starting the measurement. This procedure and our filling procedure, where we try to remove all
the contact with air, in addition to the fact that most of the presented measurements are made from
the top plate, prevent the accumulation of large among of oxides near the sensor.

III. RESULTS

A. Global behaviours of the flow

Figure 2 shows the velocity profiles, averaged in time, of probes with angles of 8◦ – V1 (left)
– and 0◦ – V2 (right) – these probes are located at a radius Rprobes = (R1 + R2)/2 and are separated
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FIG. 2. Time averaged velocity profiles (over 200 snapshot) – for Io · Bo = 1000, 3000, 5000 G.A (corresponding to Re
= [∼670, ∼1670, and ∼2670]) at different cell current (Icell = 10, 15, 20, 30, and 40 A) of the probes at 8o (a) and
at 0o (b). Note that on the right, curves have been shifted for clarity, the dash line gives the value of the shift from 0. The
value of the shift increases when the magnetic field increases.

by an angle of 2π /3. Each curve is the average of 200 instantaneous profiles. Three values of the
forcing product Io · Bo = 1000, 3000, 5000 G.A are plotted in Figure 2 (from the bottom to the
top) and for each value Io · Bo = constant, 4 values of the current are represented. As expected,
the profiles, V1 of the probe with an angle, increase with the forcing since they measure a part of the
tangential velocity ūθ . Due to the Hartmann layer each tangential profile is nearly flat in the bulk.
It can be noticed that for low forcing, profiles seem independent of the individual values of Io and
Bo as long as their product is constant. This is not true anymore at high forcing. It is worth noticing
that the velocity near the upper wall in the near field limit, i.e., for z < 20 mm, is polluted by the
multi-reflection of the sound wave at the plexiglas galinstan interface.

The profiles of the axial velocity component are almost 0 in average, but we represent them
shifted in Figure 2 in order to clarify the effect of the magnetic field. One can notice that the
fluctuations of underlining structures in the axial velocity field do not vanish after time averaging.
Structures of the same order are actually also present on the other probe. The wavelength of these
structures seems to evolve with the magnetic field. Such a structure can be explained by a secondary
flow. It can be a consequence of a first stationary instability but we do not succeed to catch the
threshold of this first instability. Indeed, measurements at small velocity are difficult mainly because
long measurements are necessary and it is more difficult to prevent the sedimentation of the scatters.
It could be also the consequence of tangential and axial inhomogeneity of the current induced by the
Hartmann boundary layer. Indeed as soon as eH is smaller than H then the current is not anymore
only radial, some lateral boundary Shercliff layers develop, scaling with 1/

√
B.21 Then the forcing

can be not only tangential.
In spite of the care brought to keep the experimental device symmetrical, velocity profiles are

not symmetrical between the top and bottom parts of the cell. This can be due to some measurement
problems, indeed the ultrasonic beam is not symmetrical, the scatter density can be inhomogeneous,
etc. It can also come from flow asymmetry or from both effects. For instance, gradient density of
the scatters can change the velocity detection but can also modify the fluid properties. In order to
pick out between these hypotheses, a probe has been placed under the bottom plexiglas plate. In this
case, the structure appears stronger near the bottom, i.e., near the sensor. This tends to prove that the
asymmetry is mainly due to measurement problems although the symmetry is not entirely recovered
in this case. For practical reasons, most of the measurements have been performed with sensors at
the top where they are most easy to adjust. Therefore hereafter, we will focus our attention on the
phenomena occurring on the first half of the cell.

With two probes, we are able to rebuild the mean tangential and axial velocity. To prevent
boundary effects, the average is estimated only in the bulk between z = 30 mm and z = 90 mm.
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FIG. 3. The mean velocity along the tangential axis, 〈ūθ 〉 (open symbols) and near 0, along the z axis, 〈ūz〉 (full symbols),
as a function of the forcing Fo = Bo, Io. Spatial mean is estimated between z = 30 mm and z = 90 mm. The colors represent
the different current intensity for a given Fo. The full line is the best square root fit of the azimuthal velocity.

These mean values for both components are plotted in Figure 3 as a function of the forcing
Fo = Bo · Io. Colored symbols deal with the imposed intensity for a given Fo. The tangential
component increases with the forcing, whereas the axial does not. The magnitude of 〈ūθ 〉 is of order
of the crude one, obtained by dimensional analysis in Sec. II B and the growth is compatible with
an expected square root behaviours 〈ūθ 〉 ∼ a

√
Io · Bo − b with a = 0.86 and b = 13 (b is necessary

because near Fo ∼ 0 a viscous linear behaviour is expected). Such a scaling, corresponding to a
balance between advection and Lorentz force, was expected in our range of Reynolds number (from
600 to 3000). However, as noticed on the previous figure, points are more scattered when the forcing
is increased. It seems that the mean tangential velocities tend to increase with magnetic field at a
given Fo. For instance at Fo = 10000 A.G the mean tangential velocity is about 8 mm/s (i.e., 10%)
smaller for Io = 40 A and Bo = 250 G (orange stars) than for Io = 10 A and Bo = 1000 G (dark blue
circles). The mean axial velocity is hopefully nearly 0.

We complete these results by the evaluation of the fluctuations of the profiles. The root mean
square (rms) value of the time average velocity profiles, σ (ūθ ), in the gap z = 30 mm to z = 90 mm
is computed. Results are shown in Figure 4 as a function of the forcing Fo for various intensi-
ties. For low forcing, the fluctuations grow with the forcing. However, for the smaller current of
Figure 4, i.e., Io = 10 A (blue dark circles), fluctuations reach a maximum value for Fo

= 6000 A.G. This is also observed for Io = 15 A (cyan squares) where the maximum is reached
at higher forcing, i.e., for Fo = 8000 A.G. This can be understood as a stabilizing effect of
the magnetic field (which can be large in these cases) although it increases the driving Lorentz
force. Fluctuations continuously grow when Io is large. Then, at large forcing, the magnetic field
stays moderated and cannot compensate the fluctuations induced by the growth of the forcing. In
this case, relative fluctuations are almost constant with σ (ūθ )/〈ūθ 〉 ∼ 0.02 − 0.025. In contrast to
the mentioned observation for the mean value in Figure 3, for a given large Fo, fluctuations are
now around 2 mm/s larger for Io = 40 A and Bo = 250 G (orange stars) than for Io = 10 A
and Bo = 1000 G (dark blue circles). By this comparison of Figures 3 and 4, it seems that
a part of the kinetic energy of the fluctuations is transferred to the mean flow when the mag-
netic field is increased at a given Fo. The forcing is then more efficient to improve the mean
flow rate.

It has to be noted that the drop in the rms value for Io = 10, 15 (which is also present for Io

= 8, 12, but not represented here) corresponds to a change in the Vz mean profile measure. Indeed,
as shown in the top curves of Figure 2 (right), the mean profile presents 3 maxima initially (curves
from orange to cyan), but only one subsists after the rms drop (curve dark blue).
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B. Dynamical regimes

In order to have better understanding of this process of restabilization, we studied the time
evolution of instantaneous velocity profiles.

Figure 5 shows the spatiotemporal diagrams of the axial velocity for Io = 10 A and Bo = 200,
700, 800, and 1200 G. In spite of the background noise, Figure 5(a), for which Bo = 200 G, exhibits
only a stationary spatial structure around z = 55 mm (and a slighter around z = 85 mm). By increasing
the magnetic field further, it appears that this structure becomes unstable and generates some not
perfectly periodic propagative waves as shown in Figure 5(b) for Bo = 700 G. The wavelength seems
to decrease when the magnetic field is increased as illustrated in Figure 5(c) for Bo = 800 G. Finally
for higher field, spatial structures almost disappear whereas waves of higher frequency emerge on
Figure 5(d), where Bo = 1200 G. Following these observations, one can expect that the maximum
observed on the fluctuations shown in Figure 4 for Io = 10 A would be smoothed out by longer time
averaging. However, it could keep trace of the stationary structure observed a lower magnetic field
which is destabilized by these waves.

In order to confirm these observations, we have plotted the power spectral density, PSD, of the
temporal trace at Io = 10 A in Figure 6 for different values of the magnetic field. These PSDs have
been averaged in space over gates between z = 20 and z = 70 mm. It underlines the frequency change
of waves observed in Figure 5. There are no significant frequencies at low driving (blue curves)
i.e., for Bo ≤ 600 G. A peak at a low frequency, f1, appears near f1 = 0 Hz (less than 15 mHz in
our case) for Bo slightly below 600 G corresponding to the first travelling waves, TW1, observed in
Figures 5(b) and 5(c). The amplitude of this frequency first grows and then decreases with increasing
Bo. This frequency also slightly shifts to higher values (up to 45 mHz). When the amplitude of this
frequency starts to decrease another higher peak starts to grow around finite frequency f2 ∼ 195 mHz.
This appears more clearly in Figure 6 where the excess of the amplitude A* of the low frequency (i.e.,
<0.1 Hz) and high frequency (>0.1 Hz) peaks are plotted in blue and red, respectively. Clearly, the
low frequency peak starts to grow around Bo = 600 G and reaches a maximum around 800 G. At that
magnetic field, the high frequency peak starts to grow. Above 1200 G only this last peak remains.
For these waves, the frequencies evolve slightly from 195 mHz to 222 mHz when the magnetic field
is increased from 800 G to 1200 G.

Then we consider the time correlation at different locations in space along the 30 < z < 70 mm
axes which underlines the different nature of the observed waves. In Figure 7 is plotted the time
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FIG. 5. Spatiotemporal diagrams of the axial velocity, uz, for different forcing regimes for Io = 10 A and (a) Bo = 200 G,
(b) Bo = 700 G, (c) Bo = 800 G, (d) Bo = 1200 G (the colormap is between −8 to 8 mms−1). On this last figure a zoomed
view is shown in the inset.

correlation for different distance between measurement gate in a 2D plot. Each distance interval is
average on all the gates. A low pass filter of 2 Hz is applied to the signal. The travelling waves appear
clearly in this representation. It is worth noticing that the low frequency wave (left), TW1, and high
frequency (rigth), TW2, are actually both propagative but in different directions. In the upper half
part of the cell we consider, waves always keep the same direction. However, it seems that they both
propogate in the other direction of the lower part, although we do not perform systematic study with
probes at the bottom. Notice that, at our level of accuracy, the correlation measurements between
two ultrasonic probes at different azimuthal angles do not reveal other correlation time than the one
related to advection at the mean azimuthal velocity.

To confront these waves with others expected in MHD, it is useful to estimate the Lundquist
number L = σ

√
μo/ρBoδ ∼ 7 × 10−2 at the highest magnetic field. Indeed, only for large enough

L can Alfven wave propagate, because L is also the magnetic Reynolds number based on the velocity
of Alfven waves Va = Bo/

√
μoρ ∼ 1.3 m/s. Such fast waves would be difficult to measure in

our device anyway. From the slope of the spatiotemporal structure we can deduce a velocity of
propagation as shown in Figure 8 as a function Bo for TW1 Io = 10. This speed, c1, increases
with Bo but never overcomes the mm/s. For fixed magnetic field, the velocity increases with the
current. Typically for Bo = 600 G, the speed grows linearly form c1 = 0.26 mm/s at Io = 10 A to c1

= 0.815 mm/s at Io = 20 A. In the regime TW2, a speed, c2 of order of the cm/s is observed. However,
in our range of parameters available in this regime and with our level of accuracy there is no clear
dependency of c2 with the forcing. The low frequencies (less than 1 Hz) observed in our device are
of the same order as some frequencies observed in secondary instability like the wavy vortex of the
Taylor–Couette flow.24 However, it is difficult to do quantitative comparison because the forcing and
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FIG. 6. (a) Temporal spectrum of the vertical probe, spatially averaged between 20 < z < 50 for Io = 10 A and magnetic field
Bo ∈[200 1200] G from the blue to the red curve. (b) Evolution of the amplitude of highest peak of the PSD for frequencies
smaller than 0.1 Hz (red squares) and larger than 0.1 Hz (blue circles).

geometry are different. It is worth noticing that for both waves, the wavelength defined as λi = ci/fi,
i = 1, 2, is of order of the cm, i.e., of order of the fluid gap.

These transitions from stationary structure to TW1 and from TW1 to TW2, is also observed at Io

= 8 A and Io = 12 A. For higher currents we observe only the low frequency travelling waves, TW1,
in the range of magnetic field accessible in our experiment. At the highest forcing available no wave
is observed. Therefore, we are able to establish the state diagram shown in Figure 9 where different
symbols mark the presence of no frequency, low frequency (<0.1 Hz), and higher frequency peaks.
Modulated waves occur at the overlaps. One can notice that when the magnetic field is fixed and the
current is increased, then the fast travelling waves (TW2) can be modulated by the slower, as clearly
shown in the horizontal line around Ha = 182. We can suspect that restabilization occurs at higher
magnetic field, but this deserves further studies.
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FIG. 7. 2D plot of the time correlation of waves at different location in space along the z axis. (a) TW1 for Io = 10 A and
Bo = 880 G and (b) TW2 at Io = 10 A and Bo = 1200 G.
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FIG. 8. Travelling velocity of the TW1 wave as a function of the applied magnetic field for Io= 10 A.
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IV. DISCUSSION AND CONCLUSIONS

We have performed an experiment where a conducting fluid is forced electromagnetically
between two cylindrical coaxial electrodes providing a radial current and an axial magnetic field.
Our aim was to underline the respective role of the parameters entering in the forcing: the current
and magnetic fields. We found that

� the time averaged velocity profile is mainly along the tangential component and shows fluctu-
ations smaller than 20% (based on the maximum and minimum of the fluctuation).

� The mean tangential velocity grows approximatively like the square root of the forcing
Fo = Io · Bo corresponding to a fully nonlinear regime.

� a closer study shows that for a given Fo, a growth of the magnetic field, induces a growth of
the mean flow and reduces the fluctuations.

� We exhibit dynamical regimes starting from a stationary structure present at high currents and
low magnetic fields.

� There is an intermediate regime where the structure seems destabilized and the system shows
low frequency travelling waves (starting at nearly 0 mHz and going up to 45 mHz when the
magnetic field is increased).

� Finally, when the magnetic field is high, these travelling waves decline and another kind of
travelling waves grows at higher frequency (around 200 mHz).

It is important to distinguish these phenomena from various MHD instabilities existing in similar
geometries. Because of its implication in astrophysics, the most studied instability is probably the
Magneto-Rotational Instability (MRI).25, 26 Starting with a purely stable tangential velocity field
forced mechanically, it has been shown that a magnetic field perpendicular to the velocity field
destabilizes the flow and enhances the momentum transport. Stable azimuthal velocity profile against
the Rayleigh criterion ∂(r · uθ )/∂r > 0 is a precondition to relevancy of the MRI. We are in a different
case in our system. Indeed as long as the induction is neglected, the velocity profile in Eq. (1) does
not satisfy the Rayleigh stability criterion; due to the motionless outer wall it should be also the case
when induction is considered.9 However, it is worth noticing that the velocity of the waves TW1 is of
order of the one predicted and observed in Helical MRI.27 The main difference is that in our case, the
wave does not grow from purely tangential flow since a stationary structure is already there. Other
magneto-inertial waves have been detected in the Derviche Tourneur Sodium (DTS) experiment.28

Although there are no applied current nor tunable magnetic fields in this spherical-Couette flow, the
shear and the global rotation imposed to the fluid can be controlled independently. The reduction
of the number of tangential modes when global rotation is included could have some connection
with the reduction of fluctuations observed when the magnetic field is increased. Indeed rotation and
magnetic fields both imply a bi-dimensionalization of the flow.

In order to distinguish rotational and magnetic effects on the instabilities of the flow, we also
plot on Figure 9, the lines corresponding to the laminarisation of the Hartmann layer (dashed line),
the laminarisation of the Shercliff layer (dotted-dashed line), and the dotted line 
 = 1 below
which the centrifugal effects dominate. The precise value of the critical value Rec

S and Rec
H is still

debated22 and should depend on the precise geometry of the device. For instance in a straight pipe,22

an energetic criterion guarantees stability of the Hartmann layer for Rec
H < 25, whereas linear

analysis predicts Rec
H = 48 000, and numerical simulation with nonmodal pertubations observed

instabilities for Rec
H ≥ 390. In Figure 9, we choose Rec

S = 65 and Rec
H = 25 or Rec

H = 390. Despite
these uncertainties, it is tempting to assume that instability of the Hartmann layer is irrelevant for
our observations. The TW1 waves could be controlled only by hydro-rotational effect since they
occur essentially for 
 < 1. The waves TW2 may imply magnetic effects, since they appear around
the boundary where the Shercliff layer is stabilized, and rotational effects. Indeed, it is known that
even for 
 > 1, the rotational effects can play a role in determining stability of the flow at least
for the Bödwadt–Hartmann boundary layer problem.29 Obviously, this assumption needs a lot of
further theoretical and experimental works. For instance, the role of the cell geometry, aspect ratio,
and curvature, on the stability of the boundary layers deserves more study which could be helpful to
discern the different aspects of the observed instability.
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It would also be interesting to connect these mechanisms to instabilities explored in Ref. 13
by the measurement of global potential applied through the cell. We plan to perform such global
measurements to try to catch traces of the instabilities in the injected power. The torque applied by the
moving fluid to the confining walls is another interesting global quantity to connect to the observed
instabilities. Such a measurement performed in Taylor-Couette flow reveals puzzling results.31, 32 In
our case, this measurement could be facilitated by the fact that the walls are motionless.

Concerning purely electromagnetically forced flows, one can first notice that a low frequency
instability has been reported in large electromagnetic pump.30 Although the geometry based only on
induction by a time-dependent magnetic field is quite different, one can think that the analysis of our
simplified design can help to characterize the role of current and magnetic fields in such instabilities.
It is difficult to match our experiment with the one presented in Ref. 11, because of their differences:
larger aspect ratio, strongest magnetic field, different working fluids. However, it is the closest from
our device. Beyond the different range of explored forcing parameters, it is worth noticing that
similar behaviours still exist. Our direct measurements of the flow velocity along the axis reveal
the structure underlying the flow and should be helpful to understand the instability mechanism.
However, it will be useful to implement some local potential probes in our cell to facilitate the
comparison and increase the time resolution. Finally, it is tempting to try to describe the observed
instabilities in the framework of weakly nonlinear phenomena and amplitude equations with few
modes in interaction that are able to describe various dynamical regime as shown even recently in
Ref. 33. During the reviewing processes, we noticed a publication on numerical simulations of a
similar device that deserved a close comparison with our experimental results.34
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