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M-FUNCTIONS AND PARALLEL ASYNCHRONOUS ALGORITHMSH*

DIDIER EL BAZ*

Abstract. The solution of nonlingar systems of equalions Fx = 7 via parailel asynchronous slgorithms
is cansidered. 1t is shown that when £ is continuous, off-diagonally antitone, and strictly diagasally isolone,
then point asynchroneus sterations converge monoelonically to 4 solutien of the problem from supersolutions
and subsolutions. A global cenvergence result for asynchronous jterations, when F is a continuous, surjective
Af-function 15 alse presented.

Key words. nonlinear systems of equations, M -functions, paratlel computation, asynchronous ileratians
AMS{MOS) subjeck classifications, 65W05, 65H 10, 65N20

1. Introduction. There js a variety of parailel iterative methods for nonlinear
problems (sec Baudet [1], Schendel [12, App. 2], Sloboda [13]). In this paper we
consider asynchronous relaxation methods for nonlinear systems of equations. There
is now considerable understanding of the convergence propertics of paralle! asyn-
chronous iterations for a broad class of problems including some lincar and nonlinear
systems of equations, network flow problems, and dynamic programming. First, Chazan
and Miranker [4] have formulated a model of paraliel asynchronous algorithms. They
have shown that paraliel asynchronous iterations converge to the solution of a linear
system of equations Ax =14 il and only if A is an H-matrix. Donnelly [3] has given
convergence results for overrefaxed periadic schemes in the linear case. Mieliou [6]
and Baudet [1] have extended the results of Chazan and Miranker to nonlinear
fixed-point problems by proving the convergence of parallel asynchronous algarithms
for P-contraction mappings. Concurrently, Mieliou [7] has shown that asyachronous
iterations converge monotonically [Tom supersolutions and subsolutions for con-
tinunous, isotone fixed-point mappings. Bertsekas [2] has alse shown the monctonc
convergence of a distributed asynchronous algerithm for a broad class of dynamic
programming problems. [n a recent paper [3], Bertsekas and El Baz obtained the same
resull for single commodity convex network flow problems. In these last two papers
the convergence is based on the property of isotonicily of the fixed-point mappings.
Finaily, Miellou [8] has considered the nonlinear system of equations Fx = 2 and some
corresponding fixed-point mapping G lor block asynchronous iterations, and has
shown that when F is a continuous, surjective M-function, then G is isotone. Moreover,
if G is continuous, then asynchrenous iterations converge monotonically from super-
solutions and subsolutions,

In this paper we concentrate on point asynchronous iterations. We show that
when F is continuous, off-diagonally antitone, and strictly diagonally isotene, then
asynchronous iterations converge monotanically from supersolutions and subsolutions,
We show also that any asynchronous iteration converges to the unique solution of
Fx =z, whatever the value of z, and for any starting point when F is a continuous
surjective M-function. The resulls presented in this paper extend to asynchronous
iteration convergence results for underrelaxed Gauss-Seidel and Jacobi iterations
proved by Rheinbaldt [10, § 3], For other extensions of the convergence resufts in
[10], in particular to block processes, the reader is referred to Rheinboldt [11, § 6].



The class of problems considered in this study is broad. Off-diagonally antitone
mappings and M-functions occur in the discretization of certain boundary value
problems and in the study of nonlinear network flows (see [10], [11]).

In § 2 we introduce a fixed-point problem associaled with the nonlincar system
of equations Fx =z and study the propertics of the fixed-point mapping when F is
continuous, ofi-diagonally antitone, and strictly diagenally isotone. In § 3 we present
convergence results for asynchronous iterations.

. Preliminaries. We consider the solution of nonlinear systems of equations
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where X, - -, x, denote the components of vector x element of the n-dimensional
real linear space R" The natural partial ordering on R" is defined by
For x,ye R", x=y ifandonlyil x;=y, i=1,,n

Lemma 2.1. Let F: D R" > R" be continuous, off-diagonally antitone, and strictly

diagonally isotone, and suppose that for some z € R" there exist points x°, y°e D such that
=y® De{xeRasxsyNe D =R

Then, for any x e D" there exists a unigue vector fe I with components X, for which
(2.1) flxy, - %, x0 =2, i=1 -, n

Proof. Suppose that for xe D' and ie{l, -, n}, filx)<z. Since F is of-
diagonally antitone and x = y°, it follows that (see [10, Def. 2.7])
(2.2) L)<z B8AYEAx, o r o xa)

By the continuity and strict diagonal isotonicity of F {see [10, Def. 2.7]), {2.2) implies
the existence of a unigue X, for which

Mae & = 40 . U -
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For further details about ofl-diagonally antitone and strictly diagonally isotone map-
pings the reader is referred to Ortega and Rheinboldl [9, § 13.5] and Rheinboldt [ 10,
§2],[11, §21.

Now suppose that f;(x} = z,. From the ofl-diagonal antitonicity ol F it follows that

(2.3) Sl xd e x) =[x =g 2 A

By the conlinuity and strict diagonal isotonicity of F, (2.3) implies the existence of a
unique & [or which

Y
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We introduce the fixed-point mapping G: < R" = D' defined by
(2.4) Gx =% where £ is defined by {2.1).

Clearly, G is well defined; moreover, x™ is a fixed point of G il and only if Fx*-=z.
LaMMa 2.2, Under the hypothesis of Lemma 2.1, the fixed-point mapping G, which
is defined by (2.4), is continuous and isotone on D'. Moreover, L =oxt, Gyt for
starting points x° and y? for which Fx"= 7% Fv'.
This result is derived from the prool of Theorem 6.3 of [11]1. x” and y" are a
so-catled subsolution and supersolution, respectively.



1n the notational cenventions of this paper a subscript denotes a compoenent index
uand a superscript denotes an iteration index.

3. Convergence of asynchronous iterations. We consider asynchronous iterations
for the solution of systems of 11 equations Fx =gz,

In brief, an asynchronous iteration relative to the solution of Fx =z, the starting
point x°, the sequence of delays {k” = (k{, - - -, k¥}}, and the sequence of nonempty
subsets of {1,+- -, n} denoted by {47} is a sequence of paints {x "} defined recursively
by

xP ' =xl ifigh?,
ChRE - e e L .
SAxP M X P =y iR,
where for each i=1,- - n:

i occurs infinitely often in the sequence {h 7}, kI is a nonnegative integer,
p=0,1,- - the function d,{p} = p - kf is isotone, and lim ... d{p} = +cc.

For an analysts and examples of asynchronous iterations, reference is made to Baudet
[}, The following theorem states a sufficient condition for the monotone convergence
of certain asynchronous iterations.

Tusorem 3.1, Suppose that the conditions of Lemma 2.1 hold, Then the asyn-
chronous iterations {x"} and {y®} corresponding to the same sequences [h'}, {k"} and
starting from x° and y°, respectively, are uniquely defined and satisfy

4] | 4]
"ExPEaspt syt p=0,1, 0,
lim x?=x*Z y*=1im y*, Fx*= Fy* =z
pr frax

Proof. We recall that by Lemma 2.2 the lixed-point mapping G, which is defined
by (2.4), is continuous and isotone on L. Theorem 3.1 then follows from a convergence
result of Miellou mentioned in the Introduction {see {7, Prop. 1]).

Lrmma 3.2, Suppose that the condivions of Lemma 2.1 hold. Then, Fx" = z=s Fy?,
p=0,1,+1+.

Proof, Since F is off-diagonally antitone and strictly diagonally isolone, it follows
from Theorem 3.1 that for p=0,1, -, and ic h{p]}

Z= M P M S AL T R S AT
For p=0,1, -+, and i g #(p)}, it follows ulso that
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Analogously, we can show that Fx? 5z p=0,1,- .

We now consider a particular class of off-diagonally antitone and strictly diagonally
isotone mappings: M-funcuiens. The reader is referred to Rheinboldt [10, §2], [11,
§2] for a complete study of M-functions. Theorem 3.1 and Lemma 3.2 apply in
particular to continuous M -functions. We now state a giobal convergence resuit for
comtinuous surjective M -functions,



Turorem 3.3. Let F: R - R" be a continuous, surjective M-junction. Then, Jfor
anv z€ R, any asynchronous iteration {x "} converges to the unique solution x™ of Fx =z
for any starting point x"¢ R".

Proof. For given x", z& R" define the vectors 7, 7, x", ¢ R" by

z=min(f{x"), z) Z-max (f{x"),z), i=1on
(3.1) o i -
xXf=F 1z P=F'z

Let {x"}, {#"}, and {x"] denote the asynchronous itcrations relative to the same
problem and to the same sequences (4"}, {k"}, and thai start from x", °, and x",
respectively. Since u continuous surjective M-function is surjectively diagonaily isotone
(see [10, Def. 2.7, Thm. 2.10]}, it follows that for p=0,1,- -+, and i¢ A" the solulions

4 o 1 .
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exist and are unique. 1t follows also that the asynchroncus iterations {x*}, {¥”}, and
{x?} are well defined.
First, we show by induction that

(3.2) x'Ex"ER", p=0t -,

From (3.1}, Fx"5 Fx"= F=% Since F is inverse isotonc, we have (see {10, Def. 2.2])
x°= x®= % From (3.1) and the inverse isotonicity of F it follows also that Fx"<:z =%
F¥ st s

Suppose that for some p &0

K

(3.3) fExtsst for0sk=p
Then, if i€ b7, it is straightforward that
xPtaxt, §Pl=gf, xftax?, PV sxltEE

i i< h® from (3.3} and the off-diagonal antitonicity of F 1t follows that
-k
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Then, by the strict diagonal isotonicity of F, xI'= xI™', Analogously, we can show
that x*''= 7', This completes the induction, By Theorem 3.1 we have
{3.4) lim x" =lim %7 =x*=F 'z
r)—-l' p LY
Then, from (3.2) and (3.4}, it {ollows that lim . xF = x®
The results of Theorems 3.1 and 3.3 can be exiended without difficultics to

underrefaxed asynchronous ierations.

REFERENCES

(1] O. M. BAunLT, Asyachrartous Herative methods for multiprocessors, 1. Assoc, Comput. Much., 25 (1978},
pp. 226-244.

{2] 1. P. BERTSERAS, Distributed dynamic programmting, |EEE Trans, Awiomat. Control, 27 {1942]), pp.
&10-816.



[3] D. P. BeErTsExAS AN T EL Baz, Distribured asynchronous relaxation methods jor convex network
flow problems, S1IAM ). Control Optim,, 23 (1987), pp. 74-84.

f4] 13 Chazax anD W, MIRARKER, Chaotic relaxaiion, Linear Algebra Appl., 2 (1969), pp. 199-222,

[3] 1. 1. P. DonNNELLY, Perigdic chaotic refaxarion, Linear Algebra Appl., 4 (1971), pp. 117-128.

[6] 1. C. MieLLOW, Algorithmes de relaxation chaotigue @ retards, RAIRQ, R-t (1975}, pp. 55-82.

[7] . Ttérations chaatigues & retards, étude de la convergence dans le cas d espaces partieflement
ardonnds, C.R. Acad. 8ci. Paris Sér. | Math., 280 (1975), pp. 233-236.
i8] . Asynchronous iterations and order intervals, in Paratlel Algorithms and Architectures, North-

Holland, Amsterdam, MNew York, 1986,
(8} J. M. OrTEGA A~ W, C. RuUrmINBOLDT, Herative Solution of Nontinear Eguations in Several Variables,

Academic Press, New York, 1970

[10] W. C. RHEINGOLDT, On M-functions and their application 1o nonfinear Gauss-Seidel ierations and 1o
nenwark flows, 1. Math. Anal. Appl., 32 {1970), pp. 274-307.

, On classes of n-dintensignal nonlinear mappings generalizing several (ypes of mairices, in Numeri-
cal Solution of Partial Differentizl Equations-I11, B. Flubbard, ed., Academic Press, New York,
1971, pp. 301-546.

[12] U. S¢HENDEL, fntroduction ro Numerical Methods for Paraltel Computers, Ellls- Horwood, Chichester,
LLE., 1984,

[13] F. Stonona, Nonlinear irerative methods and parallel computation, Apl. Mac, 21 {1976), pp. 252-262.

Pl






