
HAL Id: hal-01152664
https://hal.science/hal-01152664v1

Submitted on 18 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Toward a Core Design to Distribute an Execution on a
Many-Core Processor

Bernard Goossens, David Parello, Katarzyna Porada, Djallal Rahmoune

To cite this version:
Bernard Goossens, David Parello, Katarzyna Porada, Djallal Rahmoune. Toward a Core Design to
Distribute an Execution on a Many-Core Processor. PaCT: Parallel Computing Technologies, Aug
2015, Petrozavodsk, Russia. pp.390-404, �10.1007/978-3-319-21909-7_38�. �hal-01152664�

https://hal.science/hal-01152664v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Toward a Core Design to Distribute an
Execution on a Many-Core Processor

Bernard Goossens, David Parello, Katarzyna Porada, and Djallal Rahmoune

DALI, UPVD 66860 Perpignan Cedex 9 France,
LIRMM, CNRS: UMR 5506 - UM2 34095 Montpellier Cedex 5 France,

{bernard.goossens,david.parello,katarzyna.porada,djallal.rahmoune}@

univ-perp.fr

Abstract. This paper presents a parallel execution model and a many-
core processor design to run C programs in parallel. The model auto-
matically builds parallel sections of machine instructions from the run
trace. It parallelizes instructions fetches, renamings, executions and re-
tirements. Predictor based fetch is replaced by a fetch-decode-and-partly-
execute stage able to compute in-order most of the control instructions.
Tomasulo’s register renaming is extended to memory with a technique
to match consumer/producer pairs. The Reorder Buffer is adapted to
allow parallel retirement. The model is presented on a sum reduction
example which is also used to give a short analytical evaluation of the
model performance potential.

Keywords: Microarchitecture, Parallelism, Manycore, Automatic par-
allelization

1 Introduction

Every parallel machine programmer dreams he can run his unchanged C pro-
grams on a parallel computer.

Figure 1 shows a C version and a pthread version of a sum reduction function.

The difference does not lie in the code text (based on the same algorithm)
but in its execution. The C code is run sequentially using a stack and the pthread
code is run in parallel with the help of the pthread system primitives.

This paper aims to show that if we change the execution model, the C code
run can have the same behaviour as the pthread run, i.e. parallel execution. But
of course, the C code is much simpler. Section 2 explains how to run a C pro-
gram in parallel. Section 3 evaluates the Instruction Level Parallelism (ILP) in
benchmarks based on parallel algorithms and lists the main published works on
ILP. Section 4 describes the parallel execution model and its core microarchitec-
ture. Section 5 gives an analytical evaluation of the performance potential of the
proposed model and core design. It also mentions the on-going developments of
simulators and concludes.

2 Toward a Core Design to Distribute an Execution on a Many-Core Processor

uns igned long
sum(uns igned long t [] , uns igned long n){
i f (n==1) r e t u r n t [0] ;
e l s e i f (n==2) r e t u r n t [0]+ t [1] ;
e l s e r e tu rn sum(t , n /2) + sum(&t [n /2] , n−n /2) ;
}

(a) C imp l ementa t i on

typede f s t r u c t{uns igned long ∗p ; uns igned long i ;} ST ;
vo id ∗sum(vo id ∗s t){
ST s t r 1 , s t r 2 ; uns igned long s , s1 , s2 ;
p t h r e a d t t i d1 , t i d 2 ;
i f (((ST ∗) s t)−>i>2){
s t r 1 . p=((ST ∗) s t)−>p ; s t r 1 . i =((ST ∗) s t)−> i /2 ;
p t h r e a d c r e a t e (& t id1 ,NULL , sum , (vo id ∗)& s t r 1) ;
s t r 2 . p=((ST ∗) s t)−>p + ((ST ∗) s t)−> i /2 ;
s t r 2 . i =((ST ∗) s t)−> i − ((ST ∗) s t)−> i /2 ;
p t h r e a d c r e a t e (& t id2 ,NULL , sum , (vo id ∗)& s t r 2) ;
p t h r e a d j o i n (t i d1 , (vo id ∗)&s1) ;
p t h r e a d j o i n (t i d2 , (vo id ∗)&s2) ;
}
e l s e i f (((ST ∗) s t)−> i ==1){s1=((ST ∗) s t)−>p [0] ; s2=0;}
e l s e {s1=((ST ∗) s t)−>p [0] ; s2=((ST ∗) s t)−>p [1] ;}
s=s1+s2 ; p t h r e a d e x i t ((vo id ∗) s) ;
}

(b) p th r ead imp l ementa t i on

Fig. 1: A vector sum reduction: C and pthread implementations

2 Running a C program in parallel.

Figure 2 shows the sum function translation into x86 (gas syntax ; rightmost
operand is the destination). The code is run sequentially because the hardware
is unable to fork at lines 12 and 20. The control flow travels along the binary
tree of calls depth first, leading to a 59 instructions run trace shown on figure 3
(figure 4 left part shows the call tree for sum(t,5)).

1 sum : //sum(t , n)
2 cmpq $2 , %r s i //n>2
3 j a .L2 // i f (n>2) goto .L2
4 movq (% r d i) , %rax // rax=t [0]
5 j ne .L1 // i f (n !=2) goto .L1
6 addq 8(% r d i) , %rax // rax+=t [1]
7 .L1 : r e t // r e t u r n (rax)
8 .L2 : pushq %rbx // save rbx
9 pushq %r d i // save t

10 pushq %r s i // save n
11 sh rq %r s i // r s i=n/2
12 c a l l sum //sum(t , n /2)
13 popq %rbx // rbx=n

14 pushq %rbx // save n
15 subq $8 , %r sp // a l l o c a t e temp
16 movq %rax , 0(% r sp) //temp=sum(t , n /2)
17 l e a q (%rd i ,% r s i , 8) , %r d i // r d i=&t [n /2]
18 subq %r s i , %rbx // rbx=n−n/2
19 movq %rbx , %r s i // r s i=n−n/2
20 c a l l sum //sum(&t [n /2] , n−n/2)
21 addq 0(% r sp) , %rax // rax+=temp
22 addq $8 , %r sp // f r e e temp
23 popq %r s i // r e s t o r e r s i (n)
24 popq %r d i // r e s t o r e r d i (t)
25 popq %rbx // r e s t o r e rbx
26 r e t // r e t u r n rax

Fig. 2: The sum function in X86

Figure 5 shows a modified x86 code for the sum function. The hardware is
assumed to be able to fork, i.e. start a second instruction flow which occurs
on lines 10 and 16 (fork instructions replace call instructions of the original x86
code). Unlike a call instruction, a fork instruction does not save a return address.

Non volatile registers (i.e. rbx, rdi and rsi in this example) are copied to
the forked path, replacing the stack save/restore pair. Hence push and pop are
removed. The stack pointer itself (rsp) is copied to the forked path1.

1 the stack in each section keeps its local variables, e.g. temp on figure 5.

Toward a Core Design to Distribute an Execution on a Many-Core Processor 3

popq %rbx
pushq %rbx
subq $8, %rsp
movq %rax, 0(%rsp)
leaq (%rdi,%rsi,8), %rdi
subq %rsi, %rbx
movq %rbx, %rsi
call sum

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

popq %rbx
pushq %rbx
subq $8, %rsp
movq %rax, 0(%rsp)
leaq (%rdi,%rsi,8), %rdi
subq %rsi, %rbx
movq %rbx, %rsi
call sum

addq 0(%rsp), %rax
addq $8, %rsp
popq %rsi
popq %rdi
popq %rbx
ret

movq (%rdi), %rax
jne .L1

.L1: ret

ja .L2

addq 0(%rsp), %rax
addq $8, %rsp
popq %rsi
popq %rdi
popq %rbx
ret

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

30
31
32
33

movq (%rdi), %rax
jne .L1
addq 8(%rdi), %rax

.L1: ret

sum: cmpq $2, %rsi
ja .L2

//sum(&t[3],2)

sum: cmpq $2, %rsi

movq (%rdi), %rax
jne .L1
addq 8(%rdi), %rax

.L1: ret

pushq %rbx.L2:
pushq %rdi
pushq %rsi
shrq %rsi
call sum

sum: cmpq $2, %rsi
ja .L2

sum: cmpq $2, %rsi
ja .L2

pushq %rbx.L2:
pushq %rdi
pushq %rsi
shrq %rsi
call sum

sum: cmpq $2, %rsi
ja .L2

//sum(t,5)

//sum(t,2)

//sum(&t[2],3)

//sum(&t[2],1)

Fig. 3: The instruction trace for the run of sum(t,5).

The endfork instruction ends a flow. Unlike a return, the endfork does not
give control back to a return address.

1−1 ... 1−5

1−6 ... 1−11

2−1 ... 2−6

2−7 ... 2−11

2−12 ... 2−16

3−1 ... 3−6

3−7 ... 3−12

4−1 ... 4−3

5−1 ... 5−3

section 1

section 2

section 4

section 3

section 5

t[0]+t[1]

t[2] t[3]+t[4]

sum(t,5)

sum(t,2) sum(&t[2],3)

sum(&t[2],1) sum(&t[3],2)

Fig. 4: The call tree (left) for the run of sum(t,5) and its sections (right).

Figure 6 shows how the run is parallelized. The run starts on core 1 which
fetches and executes instructions 1-1 to 1-5. The fork instruction starts a new
flow on core 2. The new flow matches the resume path after fork, i.e instruction
subq on line 11 (figure 5). Core 1 continues its own flow (callee path back to
line 1, instruction cmpq). Both flows are run in parallel, leading to the fetch and
execution of instructions 1-6 to 1-11 (core 1 flow) and 2-1 to 2-16 (core 2 flow).

As core 2 receives valid copies of registers rdi, rsi, rbx and rsp, instructions
2-1 and 2-3 to 2-6 can be executed. Only instruction 2-2 must wait until register
rax is set by core 1 flow. The synchronisation need is easy to detect, thanks
to register renaming. Instruction 2-2 consumes a source rax produced by the

4 Toward a Core Design to Distribute an Execution on a Many-Core Processor

closest instruction writing to rax on the sequential path. As soon as instruction
1-10 writes to rax, the written value is forwarded to instruction 2-2.

1 sum : //sum(t , n)
2 cmpq $2 , %r s i //n>2
3 j a .L2 // i f (n>2) goto .L2
4 movq (% r d i) , %rax // rax=t [0]
5 j ne .L1 // i f (n !=2) goto .L1
6 addq 8(% r d i) , %rax // rax+=t [1]
7 .L1 : end f o r k // r e t u r n (rax)
8 .L2 : movq %r s i , %rbx // rbx=n
9 sh rq %r s i // r s i=n/2

10 f o r k sum //sum(t , n /2)

11 subq $8 , %r sp // a l l o c a t e temp
12 movq %rax , 0(% r sp) //temp=sum(t , n /2)
13 l e a q (%rd i ,% r s i , 8) , %r d i // r d i=&t [n /2]
14 subq %r s i , %rbx // rbx=n−n/2
15 movq %rbx , %r s i // r s i=n−n/2
16 f o r k sum //sum(&t [n /2] , n−n/2)
17 addq 0(% r sp) , %rax // rax+=temp
18 addq $8 , %r sp // f r e e temp
19 end f o r k // r e t u r n rax

Fig. 5: The sum function in X86 modified by fork instructions.

.L2:

sum: cmpq $2, %rsi
ja .L2

shrq %rsi
fork sum

movq %rsi, %rbx

//sum(t,5)1−1
1−2
1−3
1−4
1−5

1−6
1−7
1−8
1−9
1−10
1−11

movq (%rdi), %rax
jne .L1
addq 8(%rdi), %rax

.L1: endfork

sum: cmpq $2, %rsi
ja .L2

//sum(t,2)

.L2:

sum: cmpq $2, %rsi
ja .L2

shrq %rsi
fork sum

movq %rsi, %rbx

//sum(&t[2],3)2−7
2−8
2−9
2−10
2−11

2−1
2−2
2−3
2−4
2−5
2−6

subq $8, %rsp
movq %rax, 0(%rsp)
leaq (%rdi,%rsi,8), %rdi
subq %rsi, %rbx
movq %rbx, %rsi
fork sum

2−12
2−13
2−14
2−15
2−16

sum: cmpq $2, %rsi

movq (%rdi), %rax
jne .L1

.L1:

ja .L2

endfork

//sum(&t[2],1)

addq 0(%rsp), %rax
addq $8, %rsp
endfork

subq $8, %rsp
movq %rax, 0(%rsp)
leaq (%rdi,%rsi,8), %rdi
subq %rsi, %rbx
movq %rbx, %rsi
fork sum

movq (%rdi), %rax
jne .L1
addq 8(%rdi), %rax

.L1:

sum: cmpq $2, %rsi
ja .L2

endfork

//sum(&t[3],2)

endfork
addq $8, %rsp
addq 0(%rsp), %rax

3−1
3−2
3−3
3−4
3−5
3−6

3−7
3−8
3−9
3−10
3−11
3−12

4−1
4−2
4−3

5−1
5−2
5−3

Fig. 6: The instruction trace for the parallel run of sum(t,5).

The full run is divided into 5 flows or sections (figure 4, right part). Each
section is framed by a red rectangle. The longest section is composed of 16
instructions (section 2, from 2-1 to 2-16). Sections are numbered in execution
trace order as indicated by the green arrows. Instructions framed by a blue
rectangle belong to the same call level (e.g. instructions 1-1 to 1-5, 2-1 to 2-6

Toward a Core Design to Distribute an Execution on a Many-Core Processor 5

and 5-1 to 5-3 form the same call level). A section is a full recursive descent (e.g.
section 1 combines 1-1 to 1-5 for n = 5 and 1-6 to 1-11 for n = 2).

Out-of-order execution is crucial to parallelize fetch. As instruction 2-2 does
not block 2-6, the second call can be run in parallel with the first one.

This example shows that if the hardware is changed, the sum function can
run in parallel as in the pthread implementation. However, any link between
threads in the pthread or MPI models must be explicitely added to the code
through OS communication primitives (e.g. MPI Send and MPI Recv or socket
based communications in pthread).

In the parallel model, the sections are totally ordered. New sections are in-
serted in place in the list of existing sections, possibly in parallel, building the
sequential trace of the run. This structure and the renaming process (which as-
signs a new location to each write of each instruction in the sequential trace)
ensure that each read can match the most recent preceding write. In the pthread
or MPI models, this sequential structuration of threads is not available.

For example, if x is local to thread tx and y is local to thread ty, to copy y
into x thread ty sends y to thread tx, which receives it (MPI rendezvous). If x is
global, tx and ty can communicate through x but they must synchronize writes
and reads with pthread mutex. The OS must be invoked to link the sender and
the receiver or to synchronize multiple writers and readers.

In the parallel model, the equivalent of thread ty is section sy writing to y
and the equivalent of thread tx is section sx reading y to copy it into x. Section
sy has instruction iy writing to y (say iy is addq %rbx,%rax, with y in rax, i.e.
y = y + z for some z in rbx) and section sx has instruction ix reading y (say ix
is movq %rax,%rcx, with rcx being x, i.e. x = y). Instruction iy allocates rax0

to rename rax destination. Instruction ix renames its source rax. As sections
sy and sx are ordered and as no instruction updates y between iy and ix, the
renaming of rax in ix matches rax0. Moreover, the hardware synchonizes the
reader ix with the writer iy until rax0 is full. Hence, rendezvous or mutex are
not necessary and the OS need not be sollicited.

Renaming is the key to synchronization and communication between depen-
dent flows. Renaming should be extended to all hardware locations. For example,
instruction 5-1 reads the top of stack word (0(rsp)). This memory location is
written by instruction 2-2. If instruction 2-2 destination a = 0(rsp) is renamed
r, instruction 5-1 renames the same address a with the same name r, exhibiting
the dependency with instruction 2-2. Instruction 5-1, which computes the final
sum, executes after it has received rax from section 4 (second half of the sum)
and a from section 2 (first half of the sum).

3 ILP in programs

Figure 7 displays the ILP of ten benchmarks of the PBBS suite [1]. The PBBS
benchmarks implement various classical parallel algorithms (see table 1).

On figure 7, for each of the 10 benchmarks, the 11 leftmost bars (those with
numbered keys) match eleven parallel runs of the benchmark with increasing

6 Toward a Core Design to Distribute an Execution on a Many-Core Processor

 1

 10

 100

 1000

 10000

 100000

 1e+06

1 2 3 4 5 6 7 8 9 10

I
L
P

Benchmark/Dataset

1
2
3
4
5
6
7
8
9
10
11

seq11

Fig. 7: ILP of ten benchmarks parallel and sequential runs

Benchmark
01 : breadthFirstSearch/ndBFS 02 : comparisonSort/quickSort
03 : convexHull/quickHull 04 : dictionary/deterministicHash
05 : integerSort/blockRadixSort 06 : maximalIndependentSet/ndMIS
07 : maximalMatching/ndMatching 08 : minSpanningTree/parallelKruskal
09 : nearestNeighbors/octTree2Neighbors 10 : removeDuplicates/deterministicHash

Table 1: Ten benchmarks of the PBBS suite

datasets. The rightmost bar (blue colour, seq11 key) matches sequential runs
with the same dataset as key 11 parallel runs.

The sequential runs consider all the dependencies excluding the register false
ones (Write After Read and Write After Write), assuming an unlimited register
renaming capacity, and excluding the control flow ones, assuming perfect branch
prediction. The sequential runs ILP measures the ultimate performance of actual
out-of-order speculative processors.

The parallel runs assume the trace is available when the run starts (no fetch
delay) and in the same time all the destinations (including memory) are re-
named. The stack pointer dependencies are not considered. The parallel runs
ILP measures the ultimate performance an ideal parallel machine achieves when
the run order only depends on the producer to consumer dependencies, excluding
the stack pointer. Each instruction on the trace is run at the cycle next to the
last source reception. The processor is assumed to run all the ready instructions
in the same cycle with a single cycle latency (as in the sequential runs).

Toward a Core Design to Distribute an Execution on a Many-Core Processor 7

All runs are continued until completion. For each benchmark, the 11 parallel
runs vary from 1M to 1G instructions (increasing factor 2) and the sequential
runs are 1G instructions long.

The figure shows that sequential runs have a very low ILP (ranging from 3.2
to 5.6) and parallel runs have a very high ILP (ranging from 600 to 508K for
dataset 11). The difference comes from the dominating distant ILP. Moreover,
when a benchmark is data parallel its parallel run ILP increases proportionally
to the dataset (e.g. benchmarks 1, 2, 5, 6, 9 and 10).

The sequential run ILP we have measured confirms ILP reported values (such
as [6]). Since 50 years many successive research works on ILP were published.

In 1967, Tomasulo [3] presented an algorithm to run floating point instruc-
tions out-of-order. He introduced register renaming which is still used in today’s
speculative cores to parallelize on-the-fly instructions. In 1970, Tjaden and Flynn
[4] measured the available parallelism in a 10 instructions window. They ran their
test programs at 1.86 instructions per cycle.

In 1984, Nicolau and Fisher [5] measured the available parallelism to feed
a VLIW processor. In their experiments, they included a measure of ILP from
runs on an ideal machine with infinite resources. They discovered that scientific
codes present a high ILP, over 1000.

In 1991, David Wall presented the first study centered on ILP[6]. He measured
that the available parallelism a “real” processor finds in 13 benchmarks is 5 on
average, ranging from 3 to 452. In an “ideal” processor3, ILP ranges from 6 to
60 with an average at 25. From this study, we know that there is ILP but it
seems impossible to catch more than 5 independent instructions per cycle.

In 1992, Austin and Sohi [7] measured the SPEC89 suite ILP and analyzed
its distribution. They showed that ILP is arbitrarily distant from the instruction
pointer. They also pointed out the serializing effect of the stack manipulations.
The same year, Lam and Wilson [8] studied the impact of control on ILP. Their
measures showed that a processor with a perfect branch predictor could dra-
matically improve its performance. As in Austin and Sohi work, distant ILP was
detected. To capture this distant ILP, a processor must be able to speculate
on the control flow and use multiple instruction pointers. In 1997, Moshovos
and Sohi have proposed memory renaming in [9], using a predictor to find the
store renaming a load. In 1999, Postiff, Greene, Tyson and Mudge [10] measured
SPEC95 suite ILP. They pointed out that the stack introduces many parasitic
dependencies. To capture distant ILP, the application should be multi-threaded.

In 2004, Cristal, Santana and Valero [11] described a kilo-instructions mi-
croarchitecture. The authors suggested that to capture more ILP, the processor
must have access to instructions far from the fetch point. They gave solutions
to allocate later and free sooner the needed resources to optimize their usage
and so, take care of more ”on-the-fly” instructions with the same resources. In

2 “good” model with a 2K instructions window size, 64 instructions issued per cycle,
256 renaming registers, a branch predictor based on an infinite number of 2-bits
counters and a perfect memory aliasing disambiguation

3 “perfect” model enhances “good” model: infinite renaming, perfect branch predictor.

8 Toward a Core Design to Distribute an Execution on a Many-Core Processor

2012, Sharafeddine, Jothi and Akkary [12] proposed an architecture to partition
a run into parallel threads, forking the leading thread at call. In the sum example
this leads to fork on both of the highest levels calls but not on the lower levels,
capturing only a small part of the distant ILP. In 2013, Goossens and Parello
[13] analyzed distant ILP and showed that ILP could be highly increased when
removing stack pointer updates and false memory dependencies.

From these works, we deduce that i) high ILP is available, ii) most of it comes
from very distant instructions and iii) sequential fetch and stack are the main
obstacles on the ILP capture. Two ideas are suggested to help capture distant
ILP : following multiple instruction flows [8] and renaming memory [9].

4 An execution model to run programs in parallel and its
core implementation.

In section 3 we assumed the full trace is available at run start and all the destina-
tions are pre-renamed. This is not realistic. However, code fetch and destinations
renamings should occur as soon as possible to allow distant ILP capture.

4.1 Parallelizing fetch.

A section is composed of dynamically contiguous instructions. A section starts
when a fork instruction creates it. It ends when an endfork instruction is reached.
A control flow instruction (jump, call or branch) does not end a section. The
same section continues after the control flow instruction.

When a new section is forked, a message is sent to a hosting core4. The
message contains the forked Instruction Pointer (IP), the stack pointer and the
set of non volatile registers. It also contains the identification of the neighbour
sections (e.g. the current creating section). The choosen core queues the message
while it fetches another section. When the section creation message is dequeued,
it fills the register file local to the fetch pipeline stage. The IP, the stack pointer
and the non volatile registers are initialized and other registers are emptied.

For example, when instruction 1-5 forks, a section creation message is sent
to core 2 (say), including register rdi value t, register rsi value 2 and register
rbx value 5. When instruction 2-6 forks, the stack pointer rsp is transmitted to
section 5, pointing on the same stack word as section 2. Hence, sections 2 and
5 share the same stack portion. Thanks to memory renaming, when instruction
5-1 reads stack word 0, it matches with instruction 2-2 write to stack word 0.
Both instructions compute the same address a = rsp + 0.

The fetch pipeline stage fetches along the section pointed to by IP. The fetch
stage has no branch predictor. There are two reasons for such a choice. First,
moving fast along the flow is better obtained by a parallel fetch along multiple
control-computed sections than by a sequential fetch along a single predicted
path, even if the prediction is perfect. Second, a predictor is less cost-effective

4 hosting core choice to optimize load balancing is out of the scope of this paper.

Toward a Core Design to Distribute an Execution on a Many-Core Processor 9

in a core if the flow is divided into sections and distributed on multiple cores.
For these reasons, the fetch stage computes its control rather than predicting
it. To keep the stage hardware simple, each cycle fetches and computes a single
instruction. As a result, each core fetches more slowly than an actual speculative
core but the cores fetch much faster altogether.

Figure 8 shows the fetch-and-decode pipeline stage. The IP addresses the
Instruction Memory Hierarchy (IMH, i.e. L1 instruction cache). The fetched in-
struction addresses the Register File (RF) to read full registers sources. If all
the needed sources are full, the instruction is computed in the ALU. Floating
point instructions, memory accesses, complex integer instructions and instruc-
tions having empty sources are not computed in the fetch stage but later. Com-
puted instructions results are written back to RF, setting the destination register
to full. Uncomputed instructions set their destination register(s) to empty.

The fetch stage includes instruction decoding (not shown). When a fork in-
struction is decoded, it generates a section creation message. The created section
starts at the next instruction. The current section continues at the fork instruc-
tion target. It ends when an endfork instruction is decoded. The IP register is
set to empty and at the next cycle the fifo head message is dequeued and IP and
RF are initialized, which starts the fetch of a new section.

As mentioned on figure 8, the stage critical path is longer than in a speculative
out-of-order pipeline, including a L1 cache traversal, an instruction decoding, a
register file read (2 read ports), an ALU (Arithmetic and Logic Unit) compu-
tation and a register file write (1 write port). This leads to a slow frequency
processor, such as a GPU. Slowness is to be compensated by parallelism.

RF

IP

ALU

section creation
message fifo

mux

mux

IMH

destination register is set to full if instruction is computed
destination register is set to empty otherwise

IP is set to full if control flow instruction is computed
IP is set to empty if endfork or if target is not computed

message : IP, SP, non−volatile registers
message is unqueued when IP is set to empty

fetch−decode stage critical path : icache access + RF read + ALU + RF write

a single
instruction
is fetched
per cycle

Fig. 8: Fetch-decode pipeline stage

4.2 Core pipeline microarchitecture.

Figure 9 shows the six-stages pipeline building the core microarchitecture. On
the bottom part of the design we find a full size rectangle dedicated to commu-

10 Toward a Core Design to Distribute an Execution on a Many-Core Processor

nications with other cores in the processor chip (assumed to be connected by a
Network-on-Chip). The forking request unit (FRU) handles the income/outcome
of section creation messages. The register renaming request unit (RRRU) han-
dles the income/outcome of source registers renamings. The register exporting
request unit (RERU) handles the import/export of renamed registers values. The
address renaming request unit (ARRU) handles the income/outcome of source
memory addresses renamings. The memory exporting request unit (MERU) han-
dles the import/export of renamed memory values. The instruction exporting
request unit (IERU) handles the outcome of retired instructions.

The fetch-decode and register-rename stages follow a single section up to its
end. Renamed instructions enter in-order in a Reorder Buffer (ROB in the retire
stage) and in the Instruction Queue (IQ in the execute-write-back stage). Load-
/store instructions enter in-order in the address renaming queue (ARQ in the
address-rename stage). Register-register instructions from multiple sections are
mixed in the execute-write-back stage. They read sources in a memory keeping
the core renamed registers (register renaming memory or RRM). Load/store in-
structions compute the access address in the execute-write-back stage and save it
in the ARQ. Memory addresses in ARQ are renamed in-order and renamed mem-
ory access instructions enter the Load/Store Queue (LSQ). As these instructions
are renamed they can be run out-of-order.

forking
request renaming

request
renaming
request

address
exporting
request

fetch−decode execute−write−backregister−rename address−rename memory−access retire

fetch−decode

register

IQ

FU

rename

fetch and rename stages
in−order fetch and rename out−of−order execute, load, store and write−back

queue
renaming
address

rename
address

exporting
memory

request

LSQ

memory
renaming
memory

memory
renaming
register

register

ROB

exporting
instruction

request

in−order retire

RRRU RERU ARRU MERU IERUFRU

RRM

MRM

ARQ

of a single section of mixed sections

register−register execute and memory access stages

of mixed sections

retirement stage

Fig. 9: Six-stages core pipeline

Register renaming. Each instruction in the core can be uniquely identified
by its section identifier and its ordinal number in the section. If we assume
the number of sections hosted by a core is bounded by max section and the
number of instructions in a section is bounded by max instruction, a core can

Toward a Core Design to Distribute an Execution on a Many-Core Processor 11

host at most max section ∗max instruction instructions, i.e. as many renamed
destinations. Each renamed destination can be uniquely identified by a pair
(#section, #instruction) (or (s,i) in short).

The fetch-decode stage delivers a partially evaluated instruction to the re-
name stage which renames the empty sources, i.e. either find their local (s,i)
renaming or, if not hosted by the local core, look for the producing core.

If a source s may not be locally renamed by an instruction inst (no instruction
previously fetched in the same section has written to s), its value is requested
to the preceding section, i.e. to another hosting core through the RRRU. In the
same time, a destination d is allocated in RRM for the missing register, as if s
would be locally written. This destination d serves as a caching of the missing
source s. Later references to s in the same section are renamed d.

The renaming request travels from section to section until a producer is found
(i.e. an instruction writing to s). In the sum function example, for any size of
the data, the only register to be renamed is register rax in instructions 12 and
17. In both cases, the producer is the section just preceding the renaming one.

Each core on the travel receives the renaming request in its RRRU. It renames
source s. If the renaming misses, the request is propagated through the RRRU.
If it hits, an export instruction is added to the IQ which waits for the requested
value. When it is received, the export instruction is run, reading the value in
RRM and sending it to the requesting section through the RERU.

The value reaches the requesting core through its RERU. It is written in
RRM, entry d. The IQ is notified that destination d is ready, which allows the
waiting instruction inst to start execution and read d in RRM as source s.

Renaming seems very sequential. To find the producer of source s, the trace
of executed instructions must be travelled backward from the consumer down to
the first instruction writing to s. However, i) only the portion of code ranging
from the producer to the consumer is to be visited and ii) stack pointer based
variables with a positive offset (e.g. 0(rsp)) benefit from a shortcut eliminating
instructions belonging to a call level deeper than the consumer. Statement i)
implies that if a producer is close from a consumer, the portion of code to consider
is short. This is the case for function results used by the resume code (register
rax in the sum function example). Statement ii) implies that if a consumer and
a producer address the same stack frame, the portion of code to consider is also
short, excluding in between function calls. This is the case for local variables set
at function start and later used (stack location 0(rsp) in the sum example).

Only for global variables and heap pointers the travel from producer to con-
sumer can represent a long path, as all the in between sections must be visited
to make sure they do not contain any more recent producer of the consumed
address. However, the caching feature ensures that the high price is rarely paid.
Once renamed in an intermediary consuming section, a global or heap variable
is cached and it can be consumed by neighbour sections for cheap.

Instruction 2-2 on figure 6 illustrates fast renaming applying statement i).
After the renaming of register rax misses in section 2, a request is sent to the

12 Toward a Core Design to Distribute an Execution on a Many-Core Processor

core hosting section 1. The renaming hits in section 1 (instruction 1-10) and the
value of rax is sent back to the core hosting section 2.

Instruction 5-1 illustrates fast renaming applying statement ii). After the
renaming of stack location 0(rsp) at address a misses in section 5, a request is
sent to section 2, bypassing sections 3 and 4 which are at a lower call level than
instruction 5-1. The renaming hits in section 2 (instruction 2-2) and the value
of 0(rsp) is sent back to the core hosting section 5.

Instruction 1-8 illustrates high price renaming of global variable t[0]. The
request travels back to the loader which installs code and global initialized data.
The hardware can i) access to full cache lines instead of single words and ii)
cache the accessed lines along the return path. From statement i), instruction
1-8 gets its own word t[0] but also instruction 1-10 word t[1]. Moreover, from
statement ii), core 1 caches the memory line containing t[0] up to t[4] which can
be consumed cheaply by sections 2 (t[2]) and 3 (t[3] and t[4])5.

Memory renaming. Memory renaming is done like register renaming. Instead
of a Register Alias Table (RAT), the address-rename stage uses a Memory Ad-
dress Alias Table (MAAT). There is one MAAT per section, each MAAT having
one entry per instruction in the section. Each MAAT is a fully associative cache.
Renaming address a in section s means looking for a in section s MAAT. If the
search misses, it indicates that section s does not write to a and the renaming
should be looked for in the section preceding s.

A memory renaming request works like a register one. When renaming ad-
dress a misses, a memory line is allocated in the MRM to host line la containing
a (it caches la). The renaming request travels along contiguous sections until
a producer of la is found. Each visited core receives the request in its ARRU.
The renaming request is enqueued in the ARQ to avoid bypassing renamings of
addresses of the same section not yet done. When the request is dequeued, if
the renaming misses, it is propagated to the preceding section. When it hits, an
instruction to export la is added to the LSQ. The exported memory line travels
back to the requesting core where it is received in the MERU. From there, it is
written to the MRM and the LSQ is notified that a is ready.

Memory renaming transforms the code at run time into a single assign-
ment form. Synchronisation of consumers with their producers and single assign-
ment ensure sequential consistency without any coherency protocol requirement.
Hence, the processor memory distributed in the cores is coherent.

Parallelizing retirement. Sections are created in parallel, as fork instruc-
tions are fetched and run. To keep the cores loads acceptable (no more than
max section sections hosted in a core), terminated sections should retire at the
same speed, i.e. retirement should be parallelized. Retirement frees the sections
in the cores to allow new sections in.
5 stores update full lines. The loader sets a cleared line updated with t[0]. This updated

line is updated again with t[1]. After five such updates, the full line containing t[0]
up to t[4] is set and can be exported to consumers, i.e. sections 1, 2 and 3.

Toward a Core Design to Distribute an Execution on a Many-Core Processor 13

Instructions retire in-order (within their section) by exporting their result
to the successor section6. To be retired, an instruction must be terminated. An
instruction is not exported if it holds a result useless for successors, i.e. if i)
its destination is updated later in the section or ii) it writes to a non volatile
register or iii) it is a control flow instruction or iv) it writes to stack or heap
in a location freed later in the section or v) it has exported its computation
to a consumer. The successor discards exported instructions if their production
may not be consumed anymore. An exported instruction i is discarded by the
successor section s′ if i writes to a destination renamed or freed in s′.

An exported instruction is accepted by the successor section s′ only if its
destination is neither the source nor the destination of any instruction in s′.

In the sum function example, no instruction is exported. For example, the
instruction consuming the final sum to be displayed receives its source from
instruction 5-1 which does not need to be exported (statement v).

An exported instruction is sent to the successor section through the IERU. It
is received in the RRRU (register write) or in the ARRU (memory write). The
destination is tentatively renamed and in case of a hit the exported instruction
is discarded (already renamed destination). It is also discarded if it writes to
stack or heap in a location later freed by the section. Otherwise, the instruction
gets a new local renaming and is saved in its new section ROB.

What is new in the proposed core design ? The core shown on figure 9
is much simpler than actual speculative cores. The core is as small as possible
to maximize the number of cores on the die. As the core is not speculative,
there is no predictor nor renaming repair unit (checkpoints). The LSQ is simpler
than the usual Load-Store Queue as loads are not speculative and store-to-load
forwarding is not necessary. The data memory hierarchy is kept coherent as only
the oldest section can write to and read from it. There is no memory coherency
hardware (e.g. MESI protocol handler). There is no vector computing unit (e.g.
XMM-like) as vectorization is better obtained through parallelism. Each core
implements a single instruction path (no superscalar or VLIW path).

5 Analytical performance evaluation of the parallel
execution model on the sum example and conclusion.

Figure 10 shows 5 tables (one per core) giving the execution timing of the
sum(t,5) run. The instructions numbers are given on the left of each table. The
columns of a table match the 6 pipeline stages. A value in a column represents
the cycle at which the instruction is treated by the corresponding pipeline stage.
For example, instruction 1-8 (load) is handled by core 1, fetched at cycle 8, reg-
ister renamed at cycle 9, load address is computed at cycle 10 and renamed at

6 The oldest section, i.e. the only one with no predecessor, dumps its renamings to the
data memory hierarchy (DMH). When it receives a renaming request which misses,
it loads from DMH and exports the loaded line.

14 Toward a Core Design to Distribute an Execution on a Many-Core Processor

fd rr ew ar ma ret

core 4 pipeline

1−1
1−2
1−3
1−4
1−5
1−6
1−7
1−8
1−9
1−10
1−11

fd rr ew ar ma ret

core 2 pipeline

2−1
2−2
2−3
2−4
2−5
2−6
2−7
2−8
2−9
2−10
2−11
2−12
2−13
2−14
2−15
2−16

4−1
4−2
4−3

3−1
3−2
3−3
3−4
3−5
3−6
3−7
3−8
3−9
3−10
3−11
3−12

15
14

16

15
16
17

23

11 18
10
19
20
21
22
23
24
25
26
27
28
29
30

23 26 31
32
33

28 29 37

fd rr ar ret

core 1 pipeline

7

maew fd rr ar

core 3 pipeline

ma retew

fd rr ar

core 5 pipeline

ew ma ret

16 17 40 41
42
43

5−1
5−2
5−3

1
2
3
4
5
6
7
8
9

10
11 12

2
3
4
5
6
7
8
9

10
11

3
4
5
6
7
8
9

11

13

10

12

4
5
6
7
8
9

10
15
16
17
18

11

13 15

14

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

19
20
21
22
23
24
25
26
27
28
29
30 31

20
21
22
23
24
25
26
27
28
29
30

21
22
23
24
25
26
27
28
29
30
31
32

23

30

32

29

33

34

22
30
31
32
33
34
35
36
37
38
39
40

26
27
28

27
28
29

38
39
40

Fig. 10: Execution timing of the sum(t,5) run.

cycle 11, renamed memory is accessed at cycle 14 (counting 3 cycles to reach
the producer and return the t[0] value) and retired at cycle 15. We assume the
5 sections can be hosted in 5 different cores. We also assume each pipeline stage
manipulates a single instruction. Instruction cache L1 is assumed to always hit.
From this example we see that the code is fetched in 30 cycles (last fetched
instruction is 3-12), i.e. 1.5 instructions per cycle. If the data size is doubled,
the fetch time is 42 cycles (104 instructions fetched, i.e. 2.5 instructions per
cycle). Only fetch latency (i.e. IL1 miss rate) can impact the fetch time. It is
independent of renaming and execute latencies.

The number of instructions is 45 ∗ 2n + 14 ∗ (2n − 1) for the sum of a 5 ∗
2n elements array (i.e. 45 for sum(t,5), 104 for sum(t,10)). The fetch time is
30 + 12 ∗ n (i.e. 30 for sum(t,5), 42 for sum(t,10)). For 1280 elements, 15090
instructions are fetched in 126 cycles, i.e. 120 instructions per cycle. This shows
that even though one instruction is fetched per cycle per core and the control is
computed rather than predicted, fetching in parallel is efficient. Even for modest
data sizes, it outperforms any speculative fetching hardware.

Renaming is not penalized by the distribution of the code nor by its extension
to memory locations. Most of the sources are provided by register value copy at
fork. Function results and stack local variables are obtained from the predecessor
section. Global variables are reached quickly from the first section (which starts
at the main function entrance) and then fastly propagated to other sections,
thanks to full memory line caching. Eventually, instruction retirement frees the
resources at the same rate they are allocated, avoiding cores saturations. The
retirement time is7 43 + 15 ∗ n. For 1280 elements, the 15090 instructions are
retired in 163 cycles, i.e. 92 instructions per cycle.

7 15 cycles is the fetch time of instructions (figure 5) 2, 3, 8-10 (5 cycles), the creation
time of the forked section (2 cycles), the fetch time of instructions 11-16 (5 cycles)
and the retirement of instructions 17-19 (3 cycles).

Toward a Core Design to Distribute an Execution on a Many-Core Processor 15

Devil is in the details. Fine simulation of the model is necessary to prove that
distant ILP present is captured. Two such simulators are on-going projects: a
VHDL implementation of the core pipeline and a qemu and simplescalar based
simulator to quantify the IPC performance of a many-core processor.

The model presented focuses on functions. In the same way, loops can be par-
allelized. For loops can be vectorized, each iteration forming a separate section
with no control. It heritates its iteration counter that can be saved in a register
and used in the iteration body. While loops can be parallelized, launching each
iteration in sequence (no speculation) but parallelizing their bodies.

With the introduction of many-core chips as general purpose processors, the
time has come to produce parallel programs automatically. This paper suggests
that we are not so far from the goal and the hardware can greatly help.

References

1. Shun, J., Blelloch, G.E., Fineman, J.T., Gibbons, P.B., Kyrola, A., Simhadri, H.V.,
Tangwongsan, K.: Brief announcement: The problem based benchmark suite. In:
Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and Ar-
chitectures. SPAA ’12 (2012) 68–70

2. Wall, D.W.: Limits of instruction-level parallelism. In: Proceedings of the Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems. ASPLOS IV (1991) 176–188

3. Tomasulo, R.M.: An efficient algorithm for exploiting multiple arithmetic units.
IBM J. Res. Dev. 11(1) (January 1967) 25–33

4. Tjaden, G.S., Flynn, M.J.: Detection and parallel execution of independent in-
structions. IEEE Trans. Comput. 19(10) (October 1970) 889–895

5. Nicolau, A., Fisher, J.: Measuring the parallelism available for very long instruction
word architectures. Computers, IEEE Transactions on C-33(11) (1984) 968–976

6. Wall, D.W.: Limits of instruction-level parallelism. In: WRL Technical Note TN-
15. (1990)

7. Austin, T.M., Sohi, G.S.: Dynamic dependency analysis of ordinary programs. In:
Proceedings of the 19th annual international symposium on Computer architecture.
ISCA ’92 (1992) 342–351

8. Lam, M.S., Wilson, R.P.: Limits of control flow on parallelism. In: Proceedings of
the 19th Annual International Symposium on Computer Architecture. ISCA ’92
(1992) 46–57

9. Moshovos, A., Breach, S.E., Vijaykumar, T.N., Sohi, G.S.: Dynamic speculation
and synchronization of data dependences. In: Proceedings of the 24th Annual
International Symposium on Computer Architecture. ISCA ’97 (1997) 181–193

10. Postiff, M.A., Greene, D.A., Tyson, G.S., Mudge, T.N.: The limits of instruction
level parallelism in spec95 applications. CAN 27(1) (1999) 31–34

11. Cristal, A., Santana, O.J., Valero, M., Mart́ınez, J.F.: Toward kilo-instruction
processors. ACM Trans. Archit. Code Optim. 1(4) (December 2004) 389–417

12. Sharafeddine, M., Jothi, K., Akkary, H.: Disjoint out-of-order execution processor.
Transactions on Architecture and Code Optimization (TACO) 9(3) (sept 2012)
19:1–19:32

13. Goossens, B., Parello, D.: Limits of instruction-level parallelism capture. Proce-
dia Computer Science 18(0) (2013) 1664–1673 2013 International Conference on
Computational Science.

