
HAL Id: hal-01152588
https://hal.science/hal-01152588v1

Preprint submitted on 18 May 2015 (v1), last revised 9 Jul 2015 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Automatic and Transparent Transfer of Theorems along
Isomorphisms in the Coq Proof Assistant

Théo Zimmermann, Hugo Herbelin

To cite this version:
Théo Zimmermann, Hugo Herbelin. Automatic and Transparent Transfer of Theorems along Isomor-
phisms in the Coq Proof Assistant. 2015. �hal-01152588v1�

https://hal.science/hal-01152588v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Automatic and Transparent Transfer of

Theorems along Isomorphisms

in the Coq Proof Assistant

Theo Zimmermann1 and Hugo Herbelin2

1 École Normale Supérieure, Paris, France
theo.zimmermann@ens.fr

2 Inria Paris-Rocquencourt, Paris, France
hugo.herbelin@inria.fr

Abstract. In mathematics, it is common practice to have several con-
structions for the same objects. The mathematicians will identify them
modulo isomorphism and will not worry later on which construction they
use, as theorems proved for one will be valid for all.
When working with proof assistants, it is also common to see several
data-types representing the same objects. This work aims at making the
use of several isomorphic constructions as simple and as transparent as
it can be done informally in math. This requires inferring automatically
the missing proof-steps.
We are conceiving an algorithm to do so and implementing it as a plugin
for Coq 3.

1 Introduction

Linear maps being identified to matrices, real numbers being seen once as equiv-
alence classes of Cauchy sequences, once as Dedekind cuts, once as infinite se-
quences of digits, once as a subset of complex numbers... There is a great many
cases when identifying several constructions of the same objects can be useful
in mathematics. In particular, proofs are then done on the most convenient one
but theorems apply to all.

In formal systems like Coq [4], a canonical example is the various construc-
tions available for natural numbers. The most natural construction and the clos-
est to the mathematical view is unary (0, S 0, S (S 0) and so on) while the more
efficient binary construction is closest to what is available in most programming
languages.

When several constructions coexist, they often share an axiomatic represen-
tation, abstracting away from the internal details. In Coq, it is possible to do
proofs directly on the axiomatic representation thanks to the module and func-
tor system [1]. While this has the advantage of factoring proofs, it makes also

3 This plugin introduces a new tactic called exact modulo. Its most recent version is
available on the web at https://github.com/Zimmi48/transfer.

the proof harder as it does not allow taking advantage of the specifics of the
implementation.

The purpose of this work is to make easy transporting theorems to all iso-
morphic constructions even when the proof relies on one particular such con-
struction. While in an informal setting, the mathematician will declare that “we
can identify the two structures” once she has proved they were isomorphic and
will proceed from there, our goal is to justify that claim because it will be that
missing justification that the proof checker will ask for. Moreover, we need to
determine when this justification is missing and insert it automatically.

Although we focus on isomorphic structures in our description of the problem
and in our examples, we want to emphasize that we thrive to be as general as
possible and require as little as possible to allow the automatic transfer of a
theorem. Sometimes an isomorphism is required but sometimes it is not. Our
algorithm will typically allow the following transfer:

Example 1. Take two sets A and B. If we have the following result on the first
set:

Axiom 1 (A is empty).
∀x ∈ A,⊥ .

then a surjective function f : A → B is all we need to transfer the result and
get:

Theorem 1 (B is empty).
∀x ∈ B,⊥ .

Here is the complete corresponding Coq development (using our plugin –
although in that case, it is extremely easy to build the proof by hand):

Parameter A B : Set.

Axiom emptyA : ∀ x : A, False.

Parameter f : A → B.

Parameter g : B → A.

Axiom surjf : ∀ x : B, f (g x) = x.

Declare Surjection f by (g, surjf).

Theorem emptyB : ∀ x : B, False.

exact modulo emptyA.

Qed.

In the remainder of this text, we will start by presenting our current algorithm
which is able to transfer a limited but already interesting set of theorems. Then,
we will detail our ideas to generalize it. Finally, we will compare our approach
to previous related works.

2 How to Transfer a Theorem

To start, we are limiting ourselves to transferring first-order formulas containing
only universal quantifiers, implication and relations.

We only require from the user to provide a set of surjective functions between
related data-types, along with a proof of surjectivity, and transfer lemmas.

That is, we can relate two data-types A and A′ by producing a function
f : A → A′ and a proof that f is surjective. To ease our task, we will require
that the proof that f is surjective be given by producing a right-inverse g and a
proof that

∀x ∈ A′, f(g(x)) = x .

If the user wishes to transfer a relation R ∈ A × A × . . . × A to a relation
R′ ∈ A′ × A′ × . . .×A′ , she must provide a transfer lemma of the form

∀x1 . . . xn ∈ A,R(x1, . . . , xn) ⇒ R′(f(x1), . . . , f(xn))

where f is called the transfer function between R and R′.
The declared surjections and transfer lemmas will be stored in tables (maps).

A given surjection can be retrieved by looking for a pair of data-types while a
given transfer lemma can be retrieved by looking for a pair of relations. There
can be only one stored item for each key which prevents to define several distinct
isomorphisms between two structures.

Example 2 shows how this is enough for transferring interesting theorems
from one data-type to another.

Example 2. Suppose we are given two data-types to represent N, called nat and
N together with two relations ≤nat and ≤N.

We know nothing of their implementation but we are also given two functions
N.to nat : N → nat and N.of nat : nat → N and the four accompanying axioms:

Axiom 2 (Surjectivity of N.to nat).

∀x ∈ nat,N.to nat(N.of nat(x)) = x .

Axiom 3 (Surjectivity of N.of nat).

∀x′ ∈ N,N.of nat(N.to nat(x′)) = x′ .

Axiom 4 (Transfer from ≤N to ≤nat by N.to nat).

∀x′, y′ ∈ N, x′ ≤N y′ ⇒ N.to nat(x′) ≤nat N.to nat(y′) .

Axiom 5 (Transfer from ≤nat to ≤N by N.of nat).

∀x, y ∈ nat, x ≤nat y ⇒ N.of nat(x) ≤N N.of nat(y) .

Finally, we are given the following result to transfer:

Axiom 6 (Transitivity of ≤nat).

∀x, y, z ∈ nat, x ≤nat y ⇒ y ≤nat z ⇒ x ≤nat z .

All these results enable us indeed to transfer Axiom 6 into Theorem 6.

Theorem 6 (Transitivity of ≤N).

∀x′, y′, z′ ∈ N, x′ ≤N y′ ⇒ y′ ≤N z′ ⇒ x′ ≤N z′ .

Proof. Let x′, y′, z′ ∈ N and assume that the two following hold:

x′ ≤N y′ , (1)

y′ ≤N z′ . (2)

From (1) (respectively (2)) and Axiom 4, we draw

N.to nat(x′) ≤nat N.to nat(y′) , (3)

N.to nat(y′) ≤nat N.to nat(z′) . (4)

We can now apply Axiom 6 to N.to nat(x′), N.to nat(y′) and N.to nat(z′) and
conclude

N.to nat(x′) ≤nat N.to nat(z′) . (5)

We then apply Axiom 5 to get

N.of nat(N.to nat(x′)) ≤N N.of nat(N.to nat(z′)) . (6)

That is (rewriting with Axiom 3):

x′
≤N z′ . (7)

⊓⊔

You will have noticed that Axiom 2 has not been useful here. It would have
been if there had been a quantification to transfer inside one of the hypotheses.

Algorithm 1 takes as input two formulas (called theorem and goal) differing
only in the data-types that are quantified over and in the relations they contain,
as well as a proof of theorem. It outputs a proof of goal provided that the differ-
ences between the two formulas all correspond to previously declared surjections
and transfer lemmas.

The algorithm recurses over the structure of the two formulas (which must
be the same). There are two main cases: when the formulas are atoms (i.e. in
our case, relations applied to arguments) or dependent products. Dependent
products are the way in which the Calculus of Constructions [5], the logical base
of Coq, models both universal quantification and implication. An implication is
just a non-dependent product, i.e. A ⇒ B is just an abbreviation for ∀x : A,B
when x does not appear in B.

Note also that in the Calculus of Constructions as well as in any other type-
theory-based logic, proofs can be viewed as programs, and in particular the proof
ρA⇒B of an implication A ⇒ B can be viewed as a function that takes a proof
ρA of A as argument and produces a proof ρA⇒B(ρA) of B.

Algorithm 1 Transfer a Theorem

Precondition: In the environment Γ, F and F ′ are two well-defined formulas
and ρF is a proof of F .

Postcondition: ExactModulo(Γ, F, F ′, ρF) is a proof of F ′ in environment Γ or it
is a failure.

function ExactModulo(Γ, F, F ′, ρF)
if F = F ′ then

return ρF
else if F = R(x1, . . . , xn) ∧ F ′ = R′(x′

1, . . . , x
′

n) then
f ← transfer function between R and R′

⊲ return failure if it does not exist
ρtransfer ← proof of compatibility of f with respect to R and R′

for i← 1 to n do

if x′

i 6= f(xi) then
return failure

return ρtransfer(x1, . . . , xn, ρF)
else if F = ∀x : A,B ∧ F ′ = ∀x′ : A′, B′ then

Γ ← Γ, x′ : A′

x ← ExactModulo(Γ, A′, A, x′)
if x 6= failure then

ρrec ← ExactModulo(Γ, B,B′, ρF (x))
⊲ return failure if ρrec = failure

return λx′. ρrec
else

f ← surjection from A to A′ ⊲ return failure if it does not exist
g ← right-inverse of f
ρsurjection ← proof that g is a right-inverse of f
Bsubst ← B where x was replaced by g(x′)
B′

subst ← B′ where x′ was replaced by f(g(x′)) in covariant places
ρrec ← ExactModulo(Γ, Bsubst, B

′

subst, ρF (g(x
′)))

⊲ return failure if ρrec = failure
Now λx′. ρrec is a proof of ∀x′ : A′, B′

subst. With the help of ρsurjection we
can transform it into ρF ′ a proof of ∀x′ : A′, B′.

return ρF ′

else

return failure

You will have noticed the strange choice of substituting x′ with f(g(x′))
only in covariant places. As x′ = f(g(x′)), we could have done the substitution
wherever we liked. We do it only in covariant places so that the formulas in
the recursive calls will have exactly the right form when reaching the atomic
case (relations). One can convince oneself that substituting in covariant places
is enough by observing what it gives on the last example (transitivity of ≤N)
while remembering that the right-hand side of an implication is covariant while
the left-hand side is contravariant.

We could then have added support for logical connectives such as ∧ and ∨

or the existential quantifier ∃ but as they play no specific role in the Calculus of
Constructions (unlike universal quantification and implication), we rather want
a more general way of treating any such addition. As for the negation ¬A, in
Coq it is defined as A ⇒ ⊥ so it is already supported provided we unfold its
definition first.

3 Generalizing

There are a lot of things that Algorithm 1 does not handle yet but would be
nice to have.

Functions. So far we have considered only relations. Even though any function
can be expressed as a relation, it would be a lot more convenient to be able to
transfer functions directly. Given that relations are represented as functions to
the special sort Prop in Coq, what we need is a generalization where functions
to any type would be supported, as well as internal operators.

New connectives. We want to be able to handle logical connectives such as ∧

and ∨ but also various other combinators and non-propositional functions. For
instance, we should be able to transfer theorems involving equality.

Other equivalence relations. Currently, Leibniz (structural) equality plays a spe-
cial role as it has to appear in the surjection lemmas. Leibniz equality has the
advantage of allowing rewriting in any subterm. But techniques have already
been devised [6] to allow rewriting with other equivalence relations and we plan
to inspire from them.

No right-inverse. For simplicity, we have asked so far for proofs of surjectivity
which involved producing a right-inverse. This has a major drawback. Indeed,
surjectivity is equivalent to having a right-inverse only if we admit the Axiom
of Choice. We want our algorithm to be as general as possible, therefore we will
work to remove that requirement.

3.1 Generalizing Declarations

Transfer lemmas. The Coq Morphisms library4 introduces a new notion of
respectful morphisms for a binary homogeneous relation. We draw from [2] the
idea of using the generalized heterogeneous version for our transfer declarations.
Heterogeneous relations bring us the ability to relate objects from one data-type
with objects from another data-type.

4 The Coq Morphisms library is part of the work of Matthieu Sozeau [6] to generalize
rewriting for equivalence relations that are not Leibniz equality. Its documentation
is available online at https://coq.inria.fr/library/Coq.Classes.Morphisms.html.

We will note

(R ##> R’) f g := ∀ (x : A) (x’ : B), R x x’ → R’ (f x) (g x’) .

This can also be seen as a (commutative) diagram.

A B

C D

R

f g

R′

Then, to continue on our previous example,

Example 3. let us consider an heterogeneous binary relation natN relating ele-
ments of nat with elements of N. One possible definition would be:

Definition natN x x’ := N.of_nat x = x’.

Then, we can declare how to transfer various functions and relations:

Theorem le_transfer : (natN ##> natN ##> impl) le N.le.

where le represents ≤nat, N.le represents ≤N and impl is a relation corre-
sponding to the implication (also, note that ##> is right-associative). That is,
after unfolding the definitions of natN, ##> and impl:

Theorem le_transfer :

∀ (x : nat) (x’ : N), N.of_nat x = x’ →

∀ (y : nat) (y’ : N), N.of_nat y = y’ →

le x y → N.le x’ y’.

Considering two new Boolean functions iszero nat and iszero N, we can
make explicit how they relate in the following way:

Theorem iszero_transfer :

(natN ##> @eq bool) iszero_nat iszero_N.

where @eq bool is the Boolean equality.
Finally, considering two operations Nat.add and N.add:

Theorem plus_transf : (natN ##> natN ##> natN) Nat.add N.add.

Surjection lemmas. That very same idea of respectful morphisms can be used
to replace the surjection declarations we used so far. Just as we had replaced
the implication → by a new relation impl, we will use a new relation @all to
represent ∀ :

@all A (λ x : A, B) := ∀ x : A, B .

Then, to continue our previous example,

Example 4. the surjection lemma from nat to N can be replaced by:

Theorem natN_surj :

((natN ##> impl) ##> impl) (@all nat) (@all N).

That is, after unfolding the definitions of natN, ##>, impl and @all:

Theorem natN_surj : ∀ P P’,

(∀ (x : nat) (x’ : N), N.of_nat x = x’ → P x → P’ x’) →

(∀ x : nat, P x) → ∀ x’ : N, P’ x’.

In the general case, we have proved5 that any surjection declaration can be
replaced by a declaration of the form

((R ##> impl) ##> impl) (@all A) (@all A’)

but the latter is more general (it does not require a right-inverse for the surjective
function and can handle more relations than just Leibniz equality).

3.2 Transfer to the context

In [6], Matthieu Sozeau gives a set of inference rules to find where a rewrite can
occur and the proof that the rewrite is correct. Building the proof will sometimes
require prior declarations that some functions are respectful morphisms for some
homogeneous relations. For our purpose, we need to generalize these rules to
heterogeneous relations.

As before, we take a theorem and a goal as arguments and we must produce
a proof of thm → goal, that is impl thm goal. We borrow the notation

Γ ⊢ τ R
p τ ′

which means that given an environment Γ in which τ and τ ′ are well-defined, p
is a proof of R(τ, τ ′).

Initially, given a theorem Γ ⊢ τ and a goal Γ ⊢ τ ′, we want to find a judgement
of the form:

Γ ⊢ τ impl
p τ ′

5 Here is the proof as a Coq development:

Theorem surj_decl :

∀ (A B : Type) (f : A → B) (g : B → A), (∀ x, f (g x) = x) →

let R x x’ := f x = x’ in

((R ##> impl) ##> impl) (@all A) (@all B).

Proof.

lazy delta zeta.

intros A B f g H1 R R’ H2 H3 x’.

apply H2 with (x := g x’); trivial.

Qed.

Rules. We give in Fig. 1 the rules to get to that judgement, adapted from [6].
We have dropped the Unify rule as it was used for rewriting but does not apply
in our case. To avoid unnecessary complexity, we have also chosen to drop the
Sub rule in a first version.

p : R(τ, τ ′) ∈ Γ

Γ ⊢ τ R
p τ ′

Env
p : R(τ, τ ′) ∈ Tables

Γ ⊢ τ R
p τ ′

Table

Γ, x : τ1, x
′ : τ ′

1,H : R(x, x′) ⊢ τ2
S
p τ ′

2

Γ ⊢ λx : τ1.τ2
R ##> S

λx:τ1,x′:τ ′

1
,H:R(x,x′).p

λx′ : τ ′

1.τ
′

2

Lambda

Γ ⊢ f R ##> S
pf

f ′ Γ ⊢ e R
pe e′

Γ ⊢ f(e) S
pf (e,e′,pe)

f ′(e′)
App

Γ ⊢ @all τ1 (λx : τ1.τ2)
R
p @all τ ′

1 (λx′ : τ ′

1.τ
′

2)

Γ ⊢ ∀x : τ1, τ2 R
p ∀x

′ : τ ′

1, τ
′

2

Forall

Γ ⊢ impl τ1 τ2
R
p impl τ ′

1 τ ′

2

Γ ⊢ τ1 → τ2 R
p τ ′

1 → τ ′

2

Arrow

Fig. 1. exact modulo inference rules.

From these rules, we plan to derive a deterministic algorithm, which we will
implement and test.

We will now illustrate each of these rules by a few examples, taken from the
transfer of Axiom 6 (transitivity of ≤nat) to Theorem 6 (transitivity of ≤N).

Example 5. Initially, we want to find a judgement of the form

⊢ ∀x, y, z ∈ nat, x ≤nat y ⇒ y ≤nat z ⇒ x ≤nat z

impl

∀x′, y′, z′ ∈ N, x′
≤N y′ ⇒ y′ ≤N z′ ⇒ x′

≤N z′ .

By rule Forall, this reduces to

⊢ @all nat (λx : nat, ∀y, z ∈ nat, x ≤nat y ⇒ y ≤nat z ⇒ x ≤nat z)

impl @all N (λx′ : N, ∀y′, z′ ∈ N, x′

≤N y′ ⇒ y′ ≤N z′ ⇒ x′
≤N z′) .

By rule App, this reduces to

⊢ λx : nat, ∀y, z ∈ nat, x ≤nat y ⇒ y ≤nat z ⇒ x ≤nat z

R λx′ : N, ∀y′, z′ ∈ N, x′

≤N y′ ⇒ y′ ≤N z′ ⇒ x′
≤N z′ , (8)

⊢ @all nat R ##> impl @all N . (9)

Then (9) is solved by applying rule Table. We get R = natN ##> impl . Fi-
nally, we can report the value of R in (8) and apply rule Lambda and thus our

initial problem reduces to

x : nat, x′ : N, H : natN x x′ ⊢∀y, z ∈ nat, x ≤nat y ⇒ y ≤nat z ⇒ x ≤nat z

impl ∀y′, z′ ∈ N, x′ ≤N y′ ⇒ y′ ≤N z′ ⇒ x′ ≤N z′ .

From now on, Γ = x : nat, x′ : N, H : natN x x′, y : nat, y′ : N, H1 :
natN y y′, z : nat, z′ : N, H2 : natN z z′ . We now consider the problem of
finding a judgement of the form

Γ ⊢ x ≤nat y ⇒ y ≤nat z ⇒ x ≤nat z

impl x′ ≤N y′ ⇒ y′ ≤N z′ ⇒ x′ ≤N z′ .

By rule Impl, this reduces to

Γ ⊢ impl (x ≤nat y) (y ≤nat z ⇒ x ≤nat z)

impl impl (x′ ≤N y′) (y′ ≤N z′ ⇒ x′ ≤N z′) .

By rule App, this reduces to

Γ ⊢ y ≤nat z ⇒ x ≤nat z
R y′ ≤N z′ ⇒ x′

≤N z′ , (10)

Γ ⊢ impl (x ≤nat y)
R##>impl impl (x′

≤N y′) . (11)

By rule App, (11) reduces again to

Γ ⊢ x ≤nat y
S x′ ≤N y′ , (12)

Γ ⊢ impl S##>R##>impl impl . (13)

We will make sure that the tables are pre-filled so that judgements such as
(13) can be solved with rule Table. In that case, we will get S = impl−1 and
R = impl . Now by rule App, (12) reduces to

Γ ⊢ y T y′ , (14)

Γ ⊢ le y T##>impl
−1

N.le y′ . (15)

Rule Env allows us to derive (14) with T = natN .
As for (15), it can be solved after a few more steps by using the knowl-

edge that (natN ##> natN ##> impl−1) le N.le which will be one of the user-
provided transfer lemmas (in that case, it corresponds to Axiom 4). Therefore,
there only remains to solve (10) in ways similar to this example.

4 Related work

4.1 Proof reuse

More than ten years ago, Nicolas Magaud [3] proposed an extension of Coq that
seemed to share our objectives. Notably, he was able to transfer all the theorems
that were, at the time, in the standard Arith library, from nat to N.

The approach was quite intricate because it was able to transfer proofs, and
not just theorems. Given two isomorphic data-types, one will be considered as
the origin type and the other one as the target type. The first step is to define
functions to model the origin constructors within the target type. Moreover, new
recursion operators behaving like the ones of the origin type are added to the
target type.

With such a projection of the origin type into the target type, it is easy to
project operators and relations. Proofs are transferred in the same way. The last
step is to establish extensional equality between projected operators and the
corresponding native operators of the target type.

While interesting, we do not need to take such a complicated path for our
objective which is only theorem reuse. Using Magaud’s approach requires much
more work in establishing the relations between the two data-types. Moreover,
our approach is more powerful in a sense: we can transfer properties between
two data-types even if we know nothing of their content and the transfer lemmas
where provided as axioms.

4.2 Algorithm reuse

A much more recent work by Cohen et al [2] has been of much inspiration to
us. However, the focus is not the same. The authors are thinking in term of
program verification and algorithm reuse through parametricity when refining
proof-oriented data-types into efficient computation-oriented data-types. Para-
metricity then enables the automatic transfer of algorithm correctness proofs.

A main difference showing that their work and our work are complementary
rather than overlapping lies in that they typically allow refined types to contain
more objects, including objects which would have no meaning (no specification).
We require precisely the opposite so as to be able to translate theorems stating
properties for all elements, including unicity properties. However, as our second
algorithm will accept other equivalent relations than just Leibniz equality, we
will still be able to work with types in which the same object has many equivalent
constructions.

5 Conclusion

In this paper, we have shown how a simple algorithm can make use of a few
initial declarations to ease the reuse of results from one data-type to another.

As we improve our algorithm and become able to transfer more theorems,
we will still have a lot to do in order to make our plugin as simple-to-use as
possible.

A first easy step will be to transform our exact modulo tactic into an apply

modulo tactic.
Then, we will need to allow for compositionality in ways similar to [2]. First,

by allowing and handling transfer declarations for parametrized types. Then,
by finding paths from one type to another, even when the relation between the

two was not declared, but can be established by going through a sequence of
transfers.

We view this work as a little but quite interesting step in the enormous task
of making the use of a formal proof system as easy as a pen-and-paper proof.

References

1. Jacek Chrzaszcz. Implementing modules in the coq system. In Theorem Proving in
Higher Order Logics, pages 270–286. Springer, 2003.

2. Cyril Cohen, Maxime Dénès, and Anders Mörtberg. Refinements for free! In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), volume 8307 LNCS, pages 147–162,
2013.

3. Nicolas Magaud. Changing data representation within the coq system. In Theorem
Proving in Higher Order Logics, pages 87–102. Springer, 2003.

4. Coq development team. The Coq proof assistant reference manual. Inria, 2015.
Version 8.5.

5. Christine Paulin-Mohring. Inductive definitions in the system coq rules and proper-
ties. Springer, 1993.

6. Matthieu Sozeau. A new look at generalized rewriting in type theory. Journal of
Formalized Reasoning, 2(1):41–62, 2010.

