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A MODIFIED GALERKIN / FINITE ELEMENT METHOD FOR

THE NUMERICAL SOLUTION OF THE

SERRE-GREEN-NAGHDI SYSTEM

DIMITRIOS MITSOTAKIS, COSTAS SYNOLAKIS, AND MARK MCGUINNESS

Abstract. A new modified Galerkin / Finite Element Method is proposed
for the numerical solution of the fully nonlinear shallow water wave equa-
tions. The new numerical method allows the use of low-order Lagrange finite
element spaces, despite the fact that the system contains third order spatial
partial derivatives for the depth averaged velocity of the fluid. After studying
the efficacy and the conservation properties of the new numerical method, we
proceed with the validation of the new numerical model and boundary condi-
tions by comparing the numerical solutions with laboratory experiments and
with available theoretical asymptotic results.

1. Introduction

The motion of an ideal (invicid, irrotational) fluid bounded above by the free
surface and below by an impermeable bottom is governed by the full Euler equations
of water wave theory, [Whi99]. Because of the complexity of the Euler equations,
a number of simplified models describing inviscid fluid flow have been derived such
as various Boussinesq type (BT) models. The Serre-Green-Naghdi (SGN) system
can be considered to be a BT model that approximates the Euler equations, and
models one-dimensional, two-way propagation of long waves, without any restrictive
conditions on the wave height. The SGN system is a fully non-linear system of the
form,

ht + (hu)x = 0 , (1a)
[

h+ T h
b

]

ut + gh(h+ b)x + huux +Qhu+Qh
bu = 0 , (1b)

where

h(x, t)
.
= η(x, t)− b(x) , (1c)

is the total depth of the water between the bottom b(x) and the free surface elevation
η(x, t), u(x, t) is the depth averaged horizontal velocity of the fluid, and g the
acceleration due to gravity. The operators T h, Qh and Qh

b depend on h, and are
defined as follows:

T h
b w = h

[

hxbx +
1

2
hbxx + b2x

]

w − 1

3

[

h3wx

]

x
, (1d)

Qhw = −1

3

[

h3(wwxx − w2
x)
]

x
, (1e)
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Qh
bw =

1

2

[

h2(w2bxx + wwxbx)
]

x
−1

2
h2

[

wwxx − w2
x

]

bx+hw
2bxbxx+hwwxb

2
x ,

(1f)

In dimensional and unscaled form, the independent variable, x ∈ R is a spatial
variable and t ≥ 0 represents the time.

The SGN equations as derived by Seabra-Santos et.al. in [SSRA87] have also
been derived in a three-dimensional form in [LB09] and in a different formulation by
Green and Naghdi [GN76]. In the case of a flat bottom (i.e. bx = 0) (1) is simplified
to the so-called Serre system of equations derived first by Serre [Ser53a, Ser53b]
and re-derived later by Su and Gardner, [SG69]. For these reasons the equations
(1) are also known as the Serre, or Green-Nagdhi, or Su and Gardner equations.
We will henceforth refer to them here as the Serre-Green-Naghdi (SGN) equations.

Under the additional assumption of small amplitude waves (i.e. the solutions are
of small amplitude), the SGN system reduces to the Peregrine system, [Per67a]:

ht + (hu)x = 0 , (2a)

ut + g(h+ b)x + uux −
b

2
[bu]xxt −

b2

6
uxxt = 0 . (2b)

Peregrine’s system belongs to the weakly dispersive and weakly nonlinear BT sys-
tems. There are also other BT systems that are asymptotically equivalent to Pere-
grine’s system, cf. [Mit09, Nwo93].

Although equations (2) can be derived from the SGN system, their solutions have
different properties. For example the solutions of the SGN equations are invariant
under the Galilean boost, while the respective solutions of (2) are not. It is noted
that the SGN equations have a Hamiltonian formulation, [Li02, Isr11]. Specifically,
for a stationary bathymetry the SGN system conserves the total energy functional
[Isr11]:

I(t) =

∫

R

gη2 + hu2 + T h
b u · u dx , (3)

in the sense that I(t) = I(0), for all t > 0. The conservation of this Hamiltonian will
be used to measure accuracy and conservation properties of the proposed numerical
methods.

Although both systems are known to admit solitary wave solutions propagating
without change in their shape over a horizontal bottom y = −b0, only the solitary
waves of the SGN system have known formulas in a closed form. Specifically, a
solitary wave of the SGN system with amplitude A can be written in the form:

hs(x, t) = b0 +Asech2[λ(x − cst)], us(x, t) = c0

(

1− b0
h(x, t)

)

, (4a)

λ =

√

3A

4b20(b0 +A)
and cs = c0

√

1 +
A

b0
, (4b)

where cs is the phase speed of the solitary wave and c0 =
√
gb0 is the linear wave

speed.
In addition to the above properties the system (1) is known to have several

favourable well-posedness properties. For example, it is locally well-posed in time
for smooth bottom functions in R. Specifically, if C∞

b (R) is the space of bounded
and continuously differentiable functions and Hs denotes the usual Sobolev space
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of s-order weakly differentiable functions, then if b ∈ C∞
b (R), κ > 1/2, s ≥ κ + 1

and the initial condition is (η0, u0) ∈ Hs(R) × Hs+1(R), then there is at least a
maximal time Tmax > 0, such that the SGN equations admit a unique solution
(η, u) ∈ Hs(R) × Hs+1(R), cf. [Isr11]. We also mention that the solution will
satisfy a non-vanishing depth condition when the initial data satisfy the same non-
vanishing condition, i.e. there is an α > 0 such that for all t ≥ 0

η(x, t) − b(x) ≥ α > 0 . (5)

For more information on the model equations, including the derivation, theory and
justification, refer to [Lan13, LB09, Bar04].

We consider here the SGN equations on a finite interval. In addition to pe-
riodic boundary conditions, we will study physically relevant reflective boundary
conditions. The linearized equations of (1) about the trivial solution coincide with
the linearized Peregrine system. Initial-boundary value problems for Peregrine’s
system have been studied in [FP05], where the existence of solutions was proven
for boundary data for u(a, t) and u(b, t). In a similar manner, the same boundary
conditions u(a, t) = u(b, t) = 0 for t ≥ 0 are sufficient for the system (1) to model
the reflection of the waves on solid wall boundaries. The specific wall boundary
conditions have been used widely to describe reflection of waves on the boundaries
for various numerical models including BT systems such as the Nwogu system,
[KD13].

The numerical discretization of the SGN equations is a challenging problem
due to their complicated form. Not only do the operators in front of the temporal
derivatives depend on the unknown function h(x, t), but they also contain high order
derivatives in nonlinear terms. Because of the presence of those high order spatial
partial derivatives the solution to the system should be smooth. Recently several
accurate numerical schemes have been proposed such as Finite Difference / Finite
Volume Schemes [MS82, SSRA87, ADCSSA93, BCL+10, CBB06, CBB07, CLM10]
and Discontinuous Galerkin methods [LGLX14, PDZ+14, PDZ+14]. Although
these methods are very useful to study practical problems, such as the runup of
nonlinear waves on slopes, they can exhibit dissipative behavior, in the sense that
they introduce numerical dissipation or dispersion, due to the approximation of the
nonlinear terms by appropriate flux functions.

Some other highly accurate numerical methods have been developed for the Serre
equations in the case of a horizontal bottom, such as spectral methods [DCMM13]
and Galerkin / Finite Element Method (FEM) [MID14]. Although these methods
appeared to have satisfactory conservation properties, it is very difficult to extend
them to the SGN equations especially in the case of two horizontal dimensions.
For example the standard Galerkin method of [MID14] requires tensor products of
cubic splines in order to be consistent in two spatial dimensions in a similar manner
to [DMS07].

In this study, a new modified Galerkin / Finite Element Method (FEM) is pro-
posed for the numerical solution of the SGN equations. This method allows the use
of low-order finite elements such as P 2 or even P 1 Lagrange finite elements. Two
of the main advantages of this method is that it is highly accurate, and it has very
good conservation properties. Other advantages are the sparsity of the resulting
linear systems, the low complexity of the algorithm due to the use of low-order fi-
nite element spaces and finally its potential to be extended to the two-dimensional
model equations of [Lan13].
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Similar techniques that reduce the requirement of high-order finite elements (for
example the use of cubic splines) have been used previously for weakly-nonlinear
Boussinesq systems in [WB99, WB02, DMS10] where the second derivative in the
linear dispersive terms has been replaced by either the discrete Laplacian operator
or the solution of an intermediate problem. In the case of the Bona-Smith type of
Boussinesq systems with wall boundary conditions, the modified Galerkin method
converges at an optimal rate showing great performance contrary to the suboptimal
convergence rates achieved with the standard Galerkin / FEM method, [DMS10].
Similarly to the behavior of the modified Galerkin method for the weakly-nonlinear
Boussinesq equations, the proposed FEM scheme for the SGN equations can achieve
optimal convergence rates depending on the choice of the trial function spaces,
contrary to the suboptimal rates obtained for the standard Galerkin method for
the SGN system and also for Peregrine’s system as shown in [AD12]. Specifically,
in order to achieve optimal convergence properties one may use spaces of piecewise
linear elements for the free surface elevation and piecewise quadratic elements for
the horizontal velocity.

The validated numerical method is applied to study the SGN equations with
reflective boundary conditions in a systematic way through a series of numerical
experiments. In particular, we focus on the following issues:

• accuracy of the modified Galerkin method and invariant conservation;
• reflection of solitary waves on vertical wall; and
• shoaling of solitary waves on plain or composite beaches.

The convergence properties of the new numerical method is also tested in the case
of periodic boundary conditions. For more information about the behavior and the
properties of the Galerkin / FEM method with periodic boundary conditions we
refer to [MID14].

This paper is organized as follows. Section 2 presents the fully discrete schemes
for the SGN equations. In Section 3 we study the convergence, accuracy and
numerical stability of the modified Galerkin method. Finally, Section 4 presents
computational studies of shoaling and reflected waves validating both the choice of
boundary conditions and the numerical scheme. We close the paper with conclu-
sions in Section 5.

2. The numerical methods

We consider the initial-boundary value problem (IBVP) comprising System (1),
subject to reflective boundary conditions:

ht + (hu)x = 0 , (6a)
[

h+ T h
b

]

ut + gh(h+ b)x + huux +Qhu+Qh
bu = 0 , (6b)

u(a, t) = u(b, t) = 0, h(x, 0) = h0(x), u(x, 0) = u0(x) , (6c)

where again

T h
b w = h

[

hxbx +
1

2
hbxx + b2x

]

w − 1

3

[

h3wx

]

x
, (6d)

Qhw = −1

3

[

h3(wwxx − w2
x)
]

x
, (6e)
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Qh
bw =

1

2

[

h2(w2bxx + wwxbx)
]

x
−1

2
h2

[

wwxx − w2
x

]

bx+hw
2bxbxx+hwwxb

2
x ,

(6f)

x ∈ (a, b) ⊂ R and t ∈ [0, T ]. We assume that (6) possesses a unique solution,
such that h and u are sufficiently smooth and, for any t ∈ [0, T ], in suitable Sobolev
spaces

h(x, ·) ∈ Hs, u(x, ·) ∈ Hs+1
0 ,

where s ≥ 1. Here and below, ‖ · ‖s denotes the standard norm in Hs while Hs
0 will

denote the subspace of Hs whose elements vanish at x = a and x = b. We also use
the inner product in L2 ≡ H0, denoted by (·, ·), which is

(u, v) =

∫ b

a

uv dx ,

for all u, v ∈ L2.
A spatial grid of the interval [a, b] is a collection of points xi = a + i ∆x, for

i = 0, 1, · · · , N , where ∆x is the grid size, and N ∈ N, such that ∆x = (b − a)/N .

Let (h̃, ũ) ∈ Sh × Su be the corresponding spatially discretized solutions of the
Galerkin / Finite Element Method (FEM) for suitable finite-dimensional spaces Sh

and Su. First we present the standard Galerkin / FEM semidiscretization.

2.1. The standard Galerkin method. For the standard Galerkin method, we
consider the space of smooth splines

Sr =
{

ϕ ∈ Cr−1[a, b]
∣

∣ ϕ|[xi,xi+1] ∈ P
r, 0 ≤ i ≤ N − 1

}

,

where P
r is the space of polynomials of degree r. The standard Galerkin method

requires r ≥ 3. Here, we take r = 3. The trial function space for the first equation
and for the solution h̃ is chosen as Sh = Sr, while for the second equation and
for the approximation of the depth averaged velocity of the fluid ũ is Su = Sr ∩
{ϕ ∈ C[a, b]| ϕ(a) = ϕ(b) = 0}. To state the associated semi-discrete problem, let
φ ∈ Sh and ψ ∈ Su be arbitrary test functions. After taking inner products, and
using integration by parts, the semi-discrete problem takes the form:

(h̃t, φ) +
(

(h̃ũ)x, φ
)

= 0 , (7a)

B(ũt, ψ; h̃) +
(

h̃
[

g(h̃+ b̃)x + ũũx

]

, ψ
)

+Q(ũ, ψ; h̃) +Qb(ũ, ψ; h̃) = 0 ,

(7b)

where B, Q and Qb are defined for any ω, ψ ∈ Su as

B(ω, ψ; h̃) .=
(

h̃

[

1 + h̃xb̃x +
1

2
h̃b̃xx + b̃2x

]

ω, ψ

)

+
1

3

(

h̃3wx, ψx

)

, (7c)

Q(ω, ψ; h̃)
.
=
1

3

(

h̃3
[

ωωxx − ω2
x

]

, ψx

)

, (7d)

Qb(ω, ψ; h̃)
.
=− 1

2

(

h̃2(ω2b̃xx + ωωxb̃x), ψx

)

−
1

2

(

h̃b̃x

{

h̃
[

ωωxx − ω2
x

]

− ω2b̃xx − ωωxb̃x

}

, ψ
)

. (7e)

This is a system of ordinary differential equations (ODEs). Given the initial

conditions h̃(x, 0)
.
= h̃0 = Ph(h0) and ũ(x, 0)

.
= ũ0 = Pu(u0) where Ph and Pu are

appropriate projections on Sh and Su respectively, we assume that the system (7)
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has a unique solution. Appropriate projections of the initial conditions could be
the standard L2-projections on Sh and Su, defined as H0 ∈ Sh and U0 ∈ Su such
that

∫ b

a

H0φ dx =

∫ b

a

h0φ dx, for all φ ∈ Sh ,

and
∫ b

a

U0ψ dx =

∫ b

a

u0ψ dx, for all ψ ∈ Su .

The presence of the term ωxx in Q and Qb requires the use of at least C
2 smooth

splines. In particular, one may use cubic splines, which correspond to Sh ≡ S3,
i.e., r = 3. A basis for the space Sh for a uniform grid of mesh-length ∆x can be

formed by the functions φj(x) = B(x − xj/∆x)
∣

∣

∣

[a,b]
, j = −1, 0, · · · , N + 1 where

x−1 = a−∆x, xN+1 = b+∆x and

B(x) =























1
4 (x+ 2)3, −2 ≤ x ≤ −1 ,
1
4 [1 + 3(x+ 1) + 3(x+ 1)2 − 3(x+ 1)3], −1 ≤ x ≤ 0 ,
1
4 [1 + 3(1− x) + 3(1− x)2 − 3(1− x)3], 0 ≤ x ≤ 1 ,
1
4 (2− x)3, 1 ≤ x ≤ 2 ,
0, x ∈ R− [−2, 2] .

The basis of Su = S3
0 can be described by the functions ψj(x) = φj(x) for 2 ≤ j ≤

N − 2, plus four functions ψ0, ψ1, ψN−1, ψN , taken as linear combinations of the
φ−1, φ0, φ1 and φN−1, φN , φN+1, which are such that ψ0(a) = ψ1(a) = ψN−1(b) =
ψN (b) = 0. For example, we take ψ0 = φ0 − 4φ−1 and ψ1 = φ1 − φ−1, [Sch73].
The convergence properties of the standard Galerkin method with cubic splines are
very similar to those of the modified Galerkin method with S3 elements and thus
are not presented here. Some details and numerical experiments with the standard
Galerkin method can be found in [KKM15].

2.2. The modified Galerkin method. In real-world applications, the use of low-
order finite element methods can lead to faster computations. We derive a numerical
method that does not require high-order finite element spaces. This can be done by
using similar techniques to those proposed in [WB99, WB02, DMS10], but applied
to the nonlinear term uuxx. The resulting method is a modified Galerkin method
that allows the use of Lagrange elements as low as P 1 in order, consisting of piece-
wise linear functions. We proceed with the derivation of the modified Galerkin
method but first we introduce the notation for the Lagrange finite element spaces
that are subspaces of H1. It is noted that we cannot use Lagrange finite elements
with the standard Galerkin method due to the second order derivative.

The space P r of Lagrange finite elements is defined on the grid xi = x0 + i∆x,
i = 0, 1, · · · , N as:

P r =
{

χ ∈ C0[a, b] |χ|[xi,xi+1] ∈ P
r, 0 ≤ i ≤ N − 1

}

, (8)

We will restrict the analysis below to P 1 and P 2 Lagrange finite element spaces.
The P 1 Lagrange elements can be defined using the basis functions

χi(x) =







x−xi−1

∆x , if x ∈ [xi−1, xi] ,
xi+1−x

∆x , if x ∈ [xi, xi+1] ,
0 , otherwise .
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The P 2 Lagrange finite element space can be defined on the same grid xi = x0+i∆x
for i = 0, 1, · · · , N and at the midpoints xi+1/2 = xi +∆x/2 for i = 0, 1, · · · , N − 1
using the basis functions

χi(x) = ϕ

(

x− xi
∆x

)

, i = 0, 1, · · · , N ,

and

χi+1/2(x) = ψ

(

x− xi+1/2

∆x

)

, i = 0, 1, · · · , N − 1 ,

with

ϕ(x) =







(1 + x)(1 + 2x), −1 ≤ x ≤ 0 ,
(1− x)(1 − 2x), 0 ≤ x ≤ 1 ,
0 otherwise ,

and

ψ(x) =

{

1− 4x2, |x| ≤ 1/2 ,
0, otherwise .

Then a function w ∈ P 2 is written as

w(x) =

N
∑

i=0

w(xi)χi(x) +

N−1
∑

i=0

w(xi+1/2)χi+1/2(x) .

We also consider the Lagrange finite element spaces P r
0 = {χ ∈ P r|χ(a) = χ(b) =

0}. These spaces are subspaces of H1
0 and will be used to approximate the depth

averaged horizontal velocity of the water. For example, we will use the spaces
Sh = P r and Su = P q

0 , for some integers r, q or we will use the spaces of smooth
splines described in the previous section. For more information related to Lagrange
finite element spaces and its approximation properties, we refer to [EG04]. It is
worth mentioning that, for the discretization of the bottom boundary, we use the
L2 projection of the bathymetry and its derivatives.

Given v ∈ H1
0 , we define the non-linear discrete Laplacian operator ∂̃2 : H1

0 → Su

such that
(

∂̃2v, ψ
)

= −
(

v2x, ψ
)

− (vvx, ψx) , for all ψ ∈ Su . (9)

In fact, the function ∂̃2v ∈ Su approximates the function vvxx as if v was a smooth
C2 function and substitution in (7d) and (7e) leads to the modified Galerkin semi-
discretization:

(h̃t, φ) +
(

(h̃ũ)x, φ
)

= 0, φ ∈ Sh , (10a)

B(ũt, ψ; h̃) +
(

h̃
[

g(h̃+ b̃)x + ũũx

]

, ψ
)

+ Q̃(ũ, ψ; h̃) + Q̃b(ũ, ψ; h̃) = 0, ψ ∈ Su ,

(10b)

where B, Q̃ and Q̃b are defined for any ω, ψ ∈ Su as

B(ω, ψ; h̃) .=
(

h̃

[

1 + h̃xb̃x +
1

2
h̃b̃xx + b̃2x

]

ω, ψ

)

+
1

3

(

h̃3wx, ψx

)

, (10c)

Q̃(ω, ψ; h̃)
.
=

1

3

(

h̃3
[

∂̃2ω − ω2
x

]

, ψx

)

, (10d)
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Q̃b(ω, ψ; h̃)
.
=− 1

2

(

h̃2(ω2b̃xx + ωωxb̃x), ψx

)

−
1

2

(

h̃b̃x

{

h̃
[

∂̃2ω − ω2
x

]

− ω2b̃xx − ωωxb̃x

}

, ψ
)

. (10e)

Although we assume that the bottom function has the appropriate smoothness,
the absence of second order spatial derivatives of the depth integrated horizontal
velocity in the semidiscrete scheme allows the use of Lagrange elements, as well as
high-order elements such as cubic or quintic splines. In what follows, we test the
efficiency of the modified Galerkin method using the spaces P 1 and P 2 of Lagrange
elements and the space S3 of cubic splines with periodic and reflective boundary
conditions.

Remark 2.1 (Mass lumping). In order to compute the non-linear discrete Lapla-

cian ∂̃2w one needs to solve the linear system obtained by the discretization of (9).
In the case of wall boundary conditions if, for example, ψi denotes basis functions
of Su the system can be written as Mw = f where the mass matrix is a banded
matrix with entries Mij = (ψi, ψj) and fi = −(v2x, ψj) − (vvx, ψ

′
j). To improve

the speed of the numerical method, one may apply the method of mass lumping in
the formulation of the matrix M. This can be done, for example in the case of
quadratic Lagrange elements, by approximating the integrals with Simpson’s rule.
This leads to a diagonal matrix that can be inverted trivially. All the numerical
experiments with P 1 and P 2 elements have been performed with mass lumping, in
addition to the standard matrix formulation with comparable results.

Remark 2.2. The choice of the discrete Laplacian is not unique. For example,
when periodic boundary conditions are used, then one may consider the linear
discrete Laplacian, which replaces the term uxx as proposed in [WB99, WB02,
DMS10].

Remark 2.3. The presence of the term bxx in the semidiscrete scheme implies the
typical requirement of a smooth bottom. When a piecewise linear bottom topography
is given, then the use of an appropriate projection onto the finite element space
(such as the elliptic projection) or local smoothing of the bottom is required. In
this paper the bathymetry is usually a piecewise linear function and thus we use the
smoothing method described in [Ale06].

2.3. Temporal discretization. In [MID14], it was shown by numerical means
that the standard Galerkin method for the discretization of the SGN equations with
flat bottom leads to a system of ODEs that is not stiff. Also, the classical, explicit,
four-stage, fourth order Runge-Kutta (RK) method, described by the following
Butcher tableau:

A b
τ

=

0 0 0 0 1/6
1/2 0 0 0 1/3
0 1/2 0 0 1/3
0 0 1/2 0 1/6
0 1/2 1/2 1

, (11)

is able to integrate the respective semi-discrete system numerically in time with-
out imposing restrictive stability conditions on the ratio ∆t/∆x, but only mild
restrictions on the mesh length such as ∆t/∆x ≤ 2 for smooth solutions.
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Concerning the time integration, the modified Galerkin method has very similar
behavior to the standard Galerkin method. Upon choosing appropriate basis func-
tions for the spaces Sh and Su, the semidiscrete system (10) represents a system of
ODEs. We use a uniform time-step ∆t such that ∆t = T/K for K ∈ N. The tem-
poral grid is then tn = n∆t, where n = 0, 1, · · · ,K. Given the ODE y′ = Φ(t, y),
one step of this four-stage RK scheme (with yn approximating y(tn)) is:

for i = 1 → 4 do
ỹi = yn +

∑i−1
j=1 aij y

n,j

yn,i = Φ(tn,i, ỹi), evaluated at tn,i ≡ tn + τi∆t
end for
yn+1 = yn +∆t

∑4
j=1 bj y

n,j ,

where aij , τi, bi are given in table (11). Applying this scheme to (10) and denoting
by Hn and Un the fully discrete approximations in Sh and Su of h(·, tn), u(·, tn),
respectively, leads to Algorithm 1. Given bases {φi} of Sh and {ψi} of Su, the

Algorithm 1 Time-marching FEM scheme for the IBVP of the system (10)

H0 = P{h0}
U0 = P{u0}
for n = 0 → N − 1 do

for i = 1 → 4 do

H̃i = Hn +
∑i−1

j=1 aij H
n,j

Ũ i = Un +
∑i−1

j=1 aij U
n,j

(

∂̃2U i, φ
)

= −((U i
x)

2, φ)− (U iU i
x, φx)

(Hn,i, ψ) = −((H̃iŨ i)x, ψ), evaluated at tn,i ≡ tn + τi∆t

B(Un,i, φ; H̃i) = −
(

H̃i
[

g(H̃i − b̃)x + Ũ iŨ i
x

]

, φ
)

− P̃(Ũ i, φ; H̃i, b̃) = 0

where P̃(Ũ i, φ; H̃i, b̃) = Q̃(Ũ i, φ; H̃i) + Q̃b̃(Ũ
i, φ; H̃i)

end for

Hn+1 = Hn + ∆t
∑4

j=1 bjH
n,j

Un+1 = Un + ∆t
∑4

j=1 bj U
n,j

end for

implementation of Algorithm 1 requires solving at each time step the following
linear systems:

(a) Four linear systems with the time-independent matrix (φi, φj);
(b) Four linear systems with the time-dependent matrix B(ψi, ψj ;h);
(c) Four linear systems with the time-independent matrix (ψi, ψj) .

The four linear systems in (a) arise from the discretization of the equation (10a),
while the four linear systems in (c) arise from the computation of the discrete
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Laplacian (9). All of these matrices are banded and symmetric, and one can use
either direct methods for banded systems or classical iterative methods for sparse
systems. To approximate the inner products, we use Gauss-Legendre quadrature
with 3 nodes per ∆x for P 1 elements, 5 nodes for P 2 and 8 nodes for S3 elements.
It is noted that most of the experiments with P 1, P 2 and mixed elements have
also been tested using adaptive time-stepping methods such as the Runge-Kutta-
Fehlberg method, [HNW09], to ensure that the errors introduced by the temporal
integration are negligible.

3. Accuracy and convergence

As it was pointed out in the introduction, the cB system is similar in structure
to the SGN system, given that both systems admit the same number of boundary
conditions, and the equation for the free surface is the same. We thus expect
similar behavior for the convergence of the numerical method. In [ADM10], it was
shown that the convergence of the Galerkin / FEM method for the cB system with
periodic boundary conditions is optimal, while in [AD13, AD12] it was shown that
the convergence of the Galerkin / FEM method with cubic splines for the cB system
is suboptimal, and that in order to achieve an optimal rate of convergence, a non-
standard method should be used. Specifically, it was shown that for wall boundary
conditions in the case of P 1 elements, the following error estimates hold:

max
0≤t≤T

‖h− h̃‖ ≤ C ∆x3/2, max
0≤t≤T

‖u− ũ‖ ≤ C ∆x2 , (12)

which are suboptimal for h and optimal for u. In the case of cubic splines, the
following error estimates hold:

max
0≤≤T

‖h− h̃‖ ≤ C ∆x3.5
√

ln
1

∆x
, max

0≤t≤T
‖u− ũ‖ ≤ C ∆x4

√

ln
1

∆x
, (13)

which is suboptimal in both h and u but the factor ln∆x is not dominant and
generally it has an effect on the accuracy of the method that is too small to observe.
In [KKM15], it is shown, by numerical means that the standard Galerkin method
with cubic splines for the SGN system with wall boundary conditions appears to
have similar convergence properties.

The standard Galerkin method for the initial-periodic boundary value problem
for the SGN system has been studied in [MID14], where it was shown that the
convergence is optimal. It is worth mentioning that the approximation (9) can be
used also with periodic boundary conditions, and the resulting modified Galerkin
method has optimal convergence rates including all the advantages of the modifi-
cation. Specifically, the errors in the L2 norm for the periodic case are of O(∆x2)
for the P 1 elements for both h and u, O(∆x3) for the P 2 elements and for the S3

elements is of O(∆x4). Because the results for the periodic problem are very similar
to those of [MID14] and to the modified Galerkin method for the SGN system with
periodic boundary conditions, we don’t present them here.

We continue with the wall boundary conditions. In order to study the conver-
gence of the numerical method, we use the SGN equations in nondimensional but
unscaled form. We start with the IBVP (6). Because we don’t know any analytical
solutions for this problem, we consider the non-homogenous problem, which has
the exact solution h(x, t) = 1 + e2t(cos(πx) + x + 2) and u(x, t) = e−txx sin(πx)
satisfying the equations (6a) and (6b) with the appropriate right-hand sides. The
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solution is computed using the modified Galerkin method in the interval [0, 1] and
for t ∈ (0, T ] with T = 1. The finite element spaces of our choice are P 1 and P 2

Lagrange finite element spaces and the space S3 of cubic splines. It is noted that
we also tried other “exact” solutions with different right-hand sides in (6a) and
(6b) to verify the computed rates of convergence. The results have been all very
similar, and thus we only present the results of one case.

In order to study the accuracy and the convergence of the modified Galerkin
method, several error indicators have been computed. The computed errors are
normalized and defined as

Es[F ]
.
=

‖F (x, T ; ∆x)− Fexact(x, T )‖s
‖Fexact(x, T )‖s

, (14)

where F = F (·; ∆x) is the computed solution, i.e., either H ≈ h(x, T ) or U ≈
u(x, T ), Fexact is the corresponding exact solution and s = 0, 1, 2,∞ correspond to
the L2, H1, H2 and L∞ norms, respectively. The analogous rates of convergence
are defined as

rate for Es[F ]
.
=

ln(Es[F (·; ∆xk−1)]/Es[F (·; ∆xk)])
ln(∆xk−1/∆xk)

, (15)

where ∆xk is the grid size listed in row k in each table. To ensure that the errors
incurred by the temporal integration do not affect the rates of convergence we use
∆t≪ ∆x while we take ∆x = 1/N .

Tables 1, 2 and 3 present the errors and the corresponding rates of convergence
of the modified Galerkin method with P 1 finite elements. It is shown that the
rate of convergence is suboptimal for the total depth h and optimal for velocity u.
Specifically, Table 1 suggests that ‖h − h̃‖ = O(∆x3/2) and ‖u − ũ‖ = O(∆x2).

Table 2 suggests that ‖h− h̃‖1 = O(∆x1/2) and ‖u− ũ‖ = O(∆x). Finally, the L∞

estimates shown in 3 are worse than the L2 estimates, suggesting ‖h−h̃‖∞ = O(∆x)
and ‖u − ũ‖∞ = O(∆x2). All these results are very similar to those obtained
theoretically and numerically in the case of Peregrine’s system [AD13].

N E0[H ] rate for E0[H ] E0[U ] rate for E0[U ]
10 1.4661× 10−2 – 2.9141× 10−2 –
20 3.3761× 10−3 2.1186 2.3778× 10−3 3.6154
40 1.1967× 10−3 1.4963 5.6477× 10−4 2.0739
80 4.4536× 10−4 1.4260 1.3856× 10−4 2.0271
160 1.6179× 10−4 1.4609 3.4262× 10−5 2.0159
320 5.7982× 10−5 1.4804 8.5165× 10−6 2.0083
640 2.0638× 10−5 1.4903 2.1229× 10−6 2.0042
Table 1. Spatial errors and rates of convergence for the exact
solution with P 1 finite elements using the L2 norm.

In the case of quadratic P 2 elements, the results with the same initial conditions
are similar, but the convergence rates for h are different to the expected suboptimal
rates, analogous to the P 1 case. The respective convergence rates for u are optimal
as expected. Tables 4, 5 and 6 present the errors and the convergence rates for the
modified Galerkin method with P 2 elements. Table 4 suggests that the ‖h− h̃‖ =

O(∆x2) and ‖u − ũ‖ = O(∆x3). Table 5 suggests that ‖h − h̃‖1 = O(∆x) and
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N E1[H ] rate for E1[H ] E1[U ] rate for E1[U ]
10 2.8836× 10−1 – 1.6945× 10−1 –
20 1.8855× 10−1 0.6129 6.6788× 10−2 1.3433
40 1.3684× 10−1 0.4625 3.2009× 10−2 1.0611
80 1.0135× 10−1 0.4331 1.5859× 10−2 1.0131
160 7.3388× 10−2 0.4658 7.9074× 10−3 1.0041
320 5.2503× 10−2 0.4831 3.9492× 10−3 1.0016
640 3.7340× 10−2 0.4917 1.9736× 10−3 1.0007
Table 2. Spatial errors and rates of convergence for the exact
solution with P 1 finite elements using the H1 norm.

N E∞[H ] rate for E∞[H ] E∞[U ] rate for E∞[U ]
10 3.4775× 10−2 1.4587 3.9193× 10−2 1.4068
20 1.1039× 10−2 1.6554 5.7364× 10−3 2.7724
40 5.8666× 10−3 0.9121 1.0352× 10−3 2.4701
80 3.4929× 10−3 0.7481 2.1191× 10−4 2.2884
160 1.8861× 10−3 0.8890 5.2158× 10−5 2.0225
320 9.7698× 10−4 0.9490 1.3480× 10−5 1.9520
640 4.9684× 10−4 0.9755 3.4245× 10−6 1.9769
Table 3. Spatial errors and rates of convergence for the exact
solution with P 1 finite elements using the L∞ norm.

‖u− ũ‖ = O(∆x2). Finally, Table 6 suggests the same estimates in the L∞ norm

with L2 norm, i.e. ‖h− h̃‖∞ = O(∆x2) and ‖u− ũ‖∞ = O(∆x3).

N E0[H ] rate for E0[H ] E0[U ] rate for E0[U ]
10 3.1489× 10−3 – 1.5559× 10−3 –
20 6.1429× 10−4 2.3579 1.1718× 10−4 3.7310
40 1.3897× 10−4 2.1441 9.8909× 10−6 3.5665
80 3.3909× 10−5 2.0351 1.0744× 10−6 3.2025
160 8.4285× 10−6 2.0083 1.2858× 10−7 3.0628
320 2.1019× 10−6 2.0035 1.5874× 10−8 3.0180
640 5.2473× 10−7 2.0021 1.9773× 10−9 3.0051
Table 4. Spatial errors and rates of convergence for the exact
solution with P 2 finite elements using the L2 norm.

We also studied the errors and convergence rates of a mixed modified Galerkin
method, where we considered Sh = P 1 and Su = P 2 i.e. we used linear elements
for the approximation of h and quadratic elements for the approximation of u.
This was the only case where optimal rates of convergence for both h and u were
obtained. Tables 7–9 suggest that ‖h− h̃‖s = O(∆x2−s) and ‖u− ũ‖s = O(∆x3−s)

for s = 0, 1 while in the maximum norm we found that ‖h − h̃‖∞ = O(∆x2) and
‖u− ũ‖∞ = O(∆x3).

Finally, tables 10, 11 and 12 present the errors and convergence rates for the mod-
ified Galerkin method with cubic splines, i.e. with S3 elements. In this case, the
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N E1[H ] rate for E1[H ] E1[U ] rate for E1[U ]
10 1.6038× 10−1 – 1.8439× 10−2 –
20 7.6716× 10−2 1.0640 3.3234× 10−3 2.4721
40 3.7406× 10−2 1.0362 6.4326× 10−4 2.3692
80 1.8545× 10−2 1.0122 1.4083× 10−4 2.1915
160 9.2498× 10−3 1.0036 3.3536× 10−5 2.0701
320 4.6179× 10−3 1.0022 8.2655× 10−6 2.0206
640 2.3064× 10−3 1.0016 2.0585× 10−6 2.0055
Table 5. Spatial errors and rates of convergence for the exact
solution with P 2 finite elements using the H1 norm.

N E∞[H ] rate for E∞[H ] E∞[U ] rate for E∞[U ]
10 7.4168× 10−3 – 2.7712× 10−3 –
20 1.7953× 10−3 2.0466 2.4407× 10−4 3.5051
40 4.0253× 10−4 2.1571 2.3644× 10−5 3.3678
80 1.0353× 10−4 1.9589 1.8056× 10−6 3.7109
160 2.5922× 10−5 1.9979 1.6493× 10−7 3.4525
320 6.5561× 10−6 1.9833 2.0640× 10−8 2.9984
640 1.6390× 10−6 2.0000 2.5810× 10−9 2.9994
Table 6. Spatial errors and rates of convergence for the exact
solution with P 2 finite elements using the L∞ norm.

N E0[H ] rate for E0[H ] E0[U ] rate for E0[U ]
10 1.3308× 10−3 – 1.4064× 10−3 –
20 2.6812× 10−4 2.3113 9.9809× 10−5 3.8167
40 6.2091× 10−5 2.1104 9.1910× 10−6 3.4409
80 1.5350× 10−5 2.0161 1.0541× 10−6 3.1241
160 3.8219× 10−6 2.0059 1.2825× 10−7 3.0390
320 9.5358× 10−7 2.0029 1.6047× 10−8 2.9986
640 2.38157× 10−7 2.0014 1.9751× 10−9 3.0223
Table 7. Spatial errors and rates of convergence for the exact
solution with Sh = P 1 and Su = P 2 using the L2 norm.

results are similar to those of the standard Galerkin method for the SGN and Pere-
grine’s system. Specifically, Table 10 suggests a rate of convergence for h close to
3.5 which is in a good agreement with the estimate ‖h− h̃‖ = O(∆x3.5

√

ln(1/∆x))
suggested for the standard Galerkin method for Peregrine’s system [AD13]. Also
Table 10 suggests a rate of convergence for h close to 4, which agrees with the
estimate ‖u− ũ‖ = O(∆x4

√

ln(1/∆x)) of [AD13].
To study further the accuracy of the method we compute the conservation of

the energy functional I(t). As initial condition we use a solitary wave of amplitude
a = 0.2 with a smooth bottom given by the function b(x) = 1 + 0.1 sin(πx/2).
Because the SGN system together with the wall boundary conditions does not
conserve the energy functional, we consider the interval [−100, 100] and maximum
time T = 50 where the solution remained practically zero at the endpoints of the
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N E1[H ] rate for E1[H ] E1[U ] rate for E1[U ]
10 6.9247× 10−2 – 1.5110× 10−2 –
20 3.3950× 10−2 1.0283 2.6966× 10−3 2.4863
40 1.6779× 10−2 1.0168 5.7095× 10−4 2.2397
80 8.3767× 10−3 1.0022 1.3474× 10−4 2.0831
160 4.1860× 10−3 1.0008 3.3114× 10−5 2.0247
320 2.0924× 10−3 1.0004 8.3275× 10−6 1.9915
640 1.0460× 10−3 1.0002 2.0570× 10−6 2.0173
Table 8. Spatial errors and rates of convergence for the exact
solution with Sh = P 1 and Su = P 2 using the H1 norm.

N E∞[H ] rate for E∞[H ] E∞[U ] rate for E∞[U ]
10 1.3308× 10−3 – 1.4064× 10−3 –
20 2.6812× 10−4 2.3113 9.9809× 10−5 3.8167
40 6.2091× 10−5 2.1104 9.1910× 10−6 3.4409
80 1.5350× 10−5 2.0161 1.0541× 10−6 3.1241
160 3.8219× 10−6 2.0059 1.2825× 10−7 3.0390
320 9.5358× 10−7 2.0029 1.6047× 10−8 2.9986
640 2.3815× 10−7 2.0014 1.9751× 10−9 3.0223
Table 9. Spatial errors and rates of convergence for the exact
solution with Sh = P 1 and Su = P 2 using the L∞ norm.

N E0[H ] rate for E0[H ] E0[U ] rate for E0[U ]
200 0.5072× 10−8 – 0.3101× 10−10 –
250 0.2287× 10−8 3.5697 0.1270× 10−10 3.9992
300 0.1202× 10−8 3.5256 0.6127× 10−11 3.9991
350 0.6998× 10−9 3.5125 0.3307× 10−11 3.9989
400 0.4384× 10−9 3.5019 0.1939× 10−11 3.9975
450 0.2913× 10−9 3.4710 0.1210× 10−11 4.0006
500 0.2021× 10−9 3.4679 0.7968× 10−12 3.9708
Table 10. Spatial errors and rates of convergence for the exact
solution with S3 finite elements using the L2 norm.

domain. We also used a fairly coarse grid with ∆x = 0.1. Due to the dissipative
properties of the explicit Runge-Kutta method, conservation of the invariant I(t) is
sensitive to the size of the timestep ∆t. For example, when we used ∆x = ∆t = 0.1
with elements in S3, the invariant remained at the value I(t) = 0.314542, when
we used ∆t = 0.01, then the invariant remained at the value I(t) = 0.31454249795
conserving the digits shown.

Although the energy functional I(t) depends on the choice of ∆t, the value of
the Hamiltonian remains practically constant for any small value of ∆t < 0.01 and
the error |I(t)− I(0)| is of O(10−12). Figure 1 shows the sensitivity of the invariant
I(t) to ∆t for fixed ∆x = 0.1 for S3 finite elements. Figure 2 shows the error of the
energy functional as a function of ∆x for different finite element spaces. Although
the explicit Runge-Kutta methods we used are not conservative (in the sense that
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N E1[H ] rate for E1[H ] E1[U ] rate for E1[U ]
200 0.3406× 10−5 – 0.3920× 10−7 –
250 0.1970× 10−5 2.4531 0.2008× 10−7 2.9982
300 0.1265× 10−5 2.4294 0.1162× 10−7 2.9986
350 0.8700× 10−6 2.4299 0.7322× 10−8 2.9987
400 0.6286× 10−6 2.4334 0.4905× 10−8 2.9988
450 0.4722× 10−6 2.4291 0.3446× 10−8 2.9989
500 0.3654× 19−6 2.4348 0.2512× 10−8 2.9989
Table 11. Spatial errors and rates of convergence for the exact
solution with S3 finite elements using the H1 norm.

N E2[H ] rate for E2[H ] E2[U ] rate for E2[U ]
200 0.2759× 10−2 – 0.5098× 10−4 –
250 0.2033× 10−2 1.3673 0.3262× 10−4 2.0010
300 0.1583× 10−2 1.3715 0.2265× 10−4 2.0009
350 0.1278× 10−2 1.3863 0.1663× 10−4 2.0006
400 0.1060× 10−2 1.3999 0.1273× 10−4 2.0005
450 0.8987× 10−3 1.4078 0.1006× 10−4 2.0004
500 0.7741× 10−3 1.4168 0.8151× 10−5 2.0003
Table 12. Spatial errors and rates of convergence for the exact
solution with S3 finite elements using the H2 norm.

N E∞[H ] rate for E∞[H ] E∞[U ] rate for E∞[U ]
200 0.5211× 10−7 – 0.7553× 10−10 –
250 0.2700× 10−7 2.9460 0.3111× 10−10 3.9751
300 0.1577× 10−7 2.9493 0.1505× 10−10 3.9812
350 0.1000× 10−7 2.9559 0.8145× 10−11 3.9843
400 0.6732× 10−8 2.9628 0.4784× 10−11 3.9857
450 0.4748× 10−8 2.9649 0.2990× 10−11 3.9888
500 0.3471× 10−8 2.9727 0.1964× 10−11 3.9870

Table 13. Spatial errors and rates of convergence for the exact
solution with S3 finite elements using the L∞ norm.

they introduce a small amount of numerical dissipation), and their contribution
to the error in the conservation of energy is larger than the error coming from
the spatial discretization of the same order, it seems that the actual error is not
important and upon choosing appropriate small values of ∆t, it can be considered
negligible. When we used P 1 and P 2 elements, then the error from the spatial
discretisation is larger than the errors embedded by the the temporal discretisation
that are considered unimportant.

4. Numerical experiments

In this section we present a series of numerical experiments that serve as bench-
marks to verify the accuracy of the modified Galerkin method, in simulations with
variable bathymetry and wall boundary conditions. We tested all the numerical
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Figure 1. Sensitivity of energy conservation to the value of ∆t
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Figure 2. Sensitivity of energy conservation to the value of ∆x
for small values of ∆t

methods for all the numerical experiments and we report all the important differ-
ences in the numerical results. All the graphs contain the results obtained with P 1

elements.

4.1. Shoaling of solitary waves. Shoaling of solitary waves and the nonlinear
mechanisms behind the shoaling of a solitary wave have been studied theoretically
and experimentally by various authors, [GSSV94, GSS97, Syn91, SS93], and it is
closely related to the runup of solitary wave on plain beaches, [Syn87]. In [SS93]
after reviewing the derivation of Green’s law for the amplitude evolution of shoaling
waves for BT systems, that is,

ηmax/A ∼ b(x)−1/4 , (16)

several experiments with shoaling of solitary waves are presented. In [Syn91]
Green’s law ηmax/A ∼ b(x)−1 for the Shallow Water Wave equations is derived. In
[SS93, Skj87] four regions of shoaling were determined, where the general Green’s
law ηmax ∼ b(x)−α applies for different values of the parameter α: The zone of
gradual shoaling (α < 1), the zone of rapid shoaling α ≥ 1, the zone of rapid decay
α < −1 and the zone of gradual decay α ≥ −1. Green’s law for Boussinesq systems
is valid in the zone of gradual and rapid shoaling, while Green’s law for the shallow
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water system derived in [Syn91] applies in the zone of rapid shoaling. In this work,
we consider first the shoaling of solitary waves on a plane beach of (mild) slope
1 : 35. This experiment has been proposed by Grilli et. al. [GSSV94, GSS97].

Here we use experimental data taken from [GSSV94] to compare with our nu-
merical solution. For the numerical simulation we considered the domain shown in
Figure 3. For this experiment we take a uniform mesh on [−100, 34] with mesh-
length ∆x = 0.1. We also translate the solitary waves so that the crest amplitude
is achieved at x = −20.1171. Because of the low regularity of the bottom at x = 0,
artifacts of the numerical method might appear especially in the case of S3 ele-
ments. For this reason, we ensure the required regularity of the seafloor (required
by the model equations), by approximating the bottom topography function with
a quadratic polynomial near x = 0.

Although the SGN system cannot model accurately the breaking of solitary
waves, it appears that it models shoaling with higher accuracy than other Boussi-
nesq models [FBCR15], even very close to the breaking point. For example when
A = 0.2 the steep wave observed in the laboratory at the location called gauge 9 of
[GSSV94] is approximated by a smooth solution in the SGN system.

Next, we study the shoaling of solitary waves with normalized amplitude A = 0.1,
0.15, 0.2 and 0.25. We monitor the numerical solution on the gauges (enumer-

−50 0 34
−1.1

0

0.3

x

y

Figure 3. Sketch of the domain for the shoaling of solitary waves
on a plain beach of slope 1 : 35.

ated as in [GSSV94]) Gauges with number 0, 1, 3, 5, 7 and 9 located at x =
−5.0, 20.96, 22.55, 23.68, 24.68, 25.91 respectively. The results with P 1 elements in
the case of the shoaling of the solitary wave with A = 0.2 are shown in Figure 4.
The results with the other methods are almost identical and are not shown here. In
these experiments, we also monitored the invariant I(t) for values of t small enough
that the waves do not interact with the boundaries. In the case of S3 elements on
a uniform grid with ∆x = 0.1, the values of the invariant up to time t = 30 are
given in the Table 14. For the same experiments, the respective invariants were
conserved to 4 decimal digits in the case of P1 elements with ∆x = 0.1.

Finally, we computed the relative wave height defined as H(x∗)/b(x∗) where
H(x∗) = maxx{|ζ(x, t)|} is the crest amplitude of the wave normalized by the local
depth b(x∗) evaluated at the same point x∗. Figure 5 presents the experimental
and numerical data. We observe a very good agreement between the numerical
and the experimental results. We note that the numerical results obtained by the
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Figure 4. Solution on various wave gauges for the shoaling on a
plane beach of slope 1 : 35 of a solitary wave with A = 0.2. Circles
show experimental data, and lines show numerical solutions.
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Figure 5. Comparison of the computed relative wave height H/b
with experimental data of [GSSV94] for the shoaling of solitary
waves on a plane beach of slope 1 : 35, and with Green’s law. ’−’:
Numerical solutions, ’◦’: Experimental data, ’−·’: Green’s law for
Boussinesq systems

numerical solution of the full water wave problem in [GSSV94] fit the experimental
data (see e.g. Fig. 4 of [GSSV94]), as well as the SGN model.
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A I(t)
0.10 0.104058609813
0.15 0.197139475070
0.20 0.312548348249
0.25 0.449208354485

Table 14. The conserved invariant I(t) for up to t = 30.

It is noted that the evolution of the maximum of the solution according to
Green’s law for Boussinesq systems, [SS93], represented in Figure 5 by a broken
line is initially close to the numerical and experimental data, then underestimates
the evolution of the maximum especially during the shoaling of large amplitude
solitary waves. This indicates that the solitary waves are in between the zone of
rapid and gradual shoaling since they are nearly breaking waves. On the other
hand Green’s law for the nonlinear shallow water system, [Syn91], which is omitted
here, overestimates the amplitude of the shoaling solitary wave likely because of
the simplifications inherent in the derivation of Green’s law. These results verify
the conclusions made in [SS93] about the zone of gradual shoaling where a law
that is similar to Green’s law ηmax ∼ b−1/4 is valid. In our case we computed
by experimentation that ηmax ∼ b−2/7 describes quite well the evolution of the
amplitude of the shoaling solitary wave on the plane beach of slope 1 : 35.

4.2. Reflection of solitary waves on vertical wall. We study also the reflection
of the solitary waves on a vertical wall. In general, a vertical wall can be modeled
by assuming that there is no flux through the vertical wall, i.e. the horizontal
velocity of the fluid on the wall is u = 0. The perfect reflection of solitary waves
with a vertical wall is equivalent to the head-on collision of two counter-propagating
solitary waves of the same shape. Because the head-on collision implies that at the
center of the symmetric interaction ηx = 0 then one might argue that the symmetric
head-on collision is governed by different mathematical properties compared to the
interactions of a solitary waves with the wall.

In practice, during the interaction of the solitary wave with the wall the deriva-
tive ηx is negligible and so the additional condition seems to be satisfied, [AD12].
(Although the last boundary condition is not necessary, its imposition does not
require any modification neither to the numerical method nor the finite element
spaces). The interaction of the solitary waves with a vertical wall and the head-on
collision of the solitary waves has been studied by theoretical and numerical means
in [MS82]. In [MS82], an asymptotic solution for the maximum runup has been
derived, namely, if α is the normalized amplitude A/b of the impinging wave, then
the normalized maximum runup R̄max = Rmax/b is approximately

R̄max ∼ 2α+ 1
2α

2 + 1
2α

3. (17)

In [MS82], the SGN system with horizontal bottom has been solved numerically
using a finite difference scheme. Finite difference schemes for the SGN equations
have certain disadvantages, including the introduction of numerical dispersion or
dissipation. In addition it is necessary to use less physical boundary conditions
on the wall, such as hx = uxx = u − 1

3h (h
3ux)x = 0, [MS82]. A fourth-order

compact finite volume scheme was used to solve the SGN with general bathymetry in
[CBB06, CBB07]. The derivation of the boundary conditions proposed in [CBB07]
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follow analogous techniques with [Per67b] imposing also more boundary conditions
for both h and u that approximate the wall boundary conditions. Other useful
boundary conditions such as absorbing boundary conditions were constructed in
[CBB07] and can be implemented equally well with the present numerical model.

The head-on collision of solitary waves in the full water wave problem has also
been studied asymptotically, in [SM80]. Specifically, a similar formula to the one for
the SGN equations has been derived, and is given by the formula 2α+ 1

2α
2 + 3

4α
3.

Other somewhat less accurate asymptotic approximations have been derived in
[PTG+99]. Recent numerical experiments showed that BT models do not describe

−70 −50 0
−0.05

0

0.17

η

 

 

(a) A = 0.075

t = 0
t = 45
t = 48
t = 53
t = 90

−70 −50 0
−0.5

0

2

x

η

 

 

(b) A = 0.65

t = 0
t = 38
t = 40
t = 41
t = 70

Figure 6. Reflection of solitary waves at a vertical wall located
at x = 0.

accurately the reflection of large amplitude solitary waves at a vertical wall. Specif-
ically, in [CWB97] solving the full water wave equations using boundary element
methods, it was shown that large amplitude waves can achieve a higher maximum
runup during a head-on collision with a vertical wall, than the predicted values of
the respective asymptotic solutions of [SM80, MS82] for the solitary wave reflection
at a vertical wall. These results have been verified in [CKT09, CKY+15]. Addi-
tionally, the formation of a residual jet was observed during the head-on collision
of two large amplitude solitary waves, which was responsible for the large values of
the maximum runup height.

To verify the ability of the numerical method to model accurately the reflection
of solitary waves, we considered the case of a horizontal bottom b(x) = −1 for
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Figure 7. Reflection of solitary waves of normalized amplitude
A = 0.7 at a vertical wall located at x = 0, plotted together with
the head-on collision of two solitary waves of the same amplitude
to show their equivalence.

x ∈ [−100, 0] and solitary waves with amplitudes A = 0.075, 0.1, 0.15, · · · , 0.7. This
case and these waves match the experiments which are presented in [CWB97] and
which serve as benchmarks for the models in [CKT09, CKY+15]. We also consider a
uniform grid on the interval [−100, 0] with ∆x = 0.1 while we translate the solitary
waves so that their crest amplitude is at x = −50. Figure 6 shows the reflection of
solitary waves with A = 0.075 and 0.65.
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Figure 8. Maximum runup values during the reflection of solitary
waves at a vertical wall located at x = 0.

The reflection at a vertical wall of the extreme case of solitary waves of ampli-
tude A = 0.7 is presented in Figure 7, together with the solution of the head-on
collision of two symmetric solitary waves. In this figure, we cannot observe any
differences between the solutions of the reflected wave and of the colliding solitary
waves (within graphical accuracy). During this interaction a jet-like structure is
visible, similar to those reported in [CKT09, CKY+15, Max76]. The jet formed
in the case of the SGN system is a solution of the mathematical model while the
respective jet computed in [CKT09] is not. It is noted that no wave breaking is
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observed during these head-on collisions. Due to the inelastic interaction, the re-
flected solitary wave is followed by a dispersive tail. The magnitude of trailing
dispersive tail depends on the amplitude of the colliding solitary wave. As it can be
observed in Figure 6 the reflection of large solitary waves results in the generation
of large dispersive tails.

In [CKT09], it was reported that the formation of a residual jet for the full water
wave equations starts when the normalized amplitude of two incident solitary waves
is larger than 0.60. In the case of the SGN equations, this jet formation was observed
in reflections of solitary waves with amplitudes larger than 0.65. A comparison of
the numerical maximum runup values and the asymptotic formula (17) in Figure
8 shows a very close match between the numerical solutions and the asymptotic
results. In this figure, the numerical results of both the piecewise linear and the
cubic spline finite elements are presented but no differences can be observed within
graphical accuracy. Moreover, the numerical results of [CWB97] are compared with
the numerical results obtained with the modified Galerkin method and we verify
the difference in the head-on collision processes between the SGN and the Euler
equations, [CWB97, CKT09]. This can be explained by noting that the jet cannot
be modeled by the SGN equations in the present form, since this artifact cannot
be described by a smooth function but only by a parametric curve, [CKT09].
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0

0.12

0.3
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Figure 9. Sketch of the numerical experiment for the reflection
at a vertical wall located at x = 20 of a shoaling wave over a plain
beach of slope 1 : 50.

4.3. Reflection of shoaling waves. In our final set of numerical experiments
we consider the benchmark described in [WB99, Dod98]. Specifically, we consider
the computational domain [−100, 20] (with ∆x = 0.1) and a bottom topography
consisting of a horizontal seafloor in [−100, 0] and a plane beach of slope 1 : 50 for
x ∈ [0, 20]. A sketch of the computational domain is presented in Figure 9. The
vertical wall is located at x = 20.

In this set of experiments we study the reflection of solitary waves at a vertical
wall after the waves have climbed up the sloping beach. We consider two cases,
one with a solitary wave of amplitude A = 0.07 and another with A = 0.12. The
initial conditions have been translated so that the maximum of the crest is at
x = −30. Figures 10 and 11 show experimental data recorded at three locations,
by wave gauges g1, g2, and g3, placed at x = 0, 16.25 and 17.75. The comparison of
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Figure 10. Reflection at a vertical wall located at x = 20 of a
shoaling wave over a plain beach of slope 1 : 50. Initial solitary
wave amplitude A = 0.07.

numerical solutions with experimental data shows a better match from the present
SGN model than is obtained using any weakly nonlinear and weakly dispersive
Boussinesq system, [FBCR15, WB99]. These numerical experiments verify the
ability of the present numerical scheme to approximate with high accuracy and
model fully nonlinear and weakly dispersive waves with wall boundary conditions
at the endpoints of the computational domain.

In order to study the stability of the modified Galerkin method in more demand-
ing situations, we consider the propagation of a solitary wave over a composite beach
simulating geometrical dimensions of the Revere Beach and its reflection by a verti-
cal wall. These experiments were conducted at the Coastal Engineering Laboratory
of the U.S. Army Corps of Engineers, Vicksburg, Mississippi facility, [KS98] and
serve as benchmarks for the reflection of nonbreaking, nearly breaking and break-
ing solitary waves by vertical wall. The composite beach consists of three piecewise
linear segments while the bathymetry is constant away from the beach and equal
to b0 = 0.218 m. The bathymetry can be realized by the function:

b(x) =















−0.218, −11.77 ≤ x < 15.04
1/53 x− 0.5018, 15.04 ≤ x < 19.4
1/150 x− 0.2650, 19.4 ≤ x < 22.33
1/13 x− 1.8340, 22.33 ≤ x ≤ 23.23

.
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Figure 11. Reflection at a vertical wall located at x = 20 of a
shoaling wave over a plain beach of slope 1 : 50. Initial solitary
wave amplitude A = 0.12.

The sketch of the domain is presented in Figure 12. Here, we considered
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Figure 12. Sketch of the domain for the reflection of a solitary
wave over a composite beach.

three solitary waves with normalized amplitudes A/b0 = 0.05, 0.3 and 0.7. We
monitored the water depth at x locations that correspond to gauges 5, 7 and 9 in
[KS98]. In this experiment, we took ∆x = 0.1 in [−11.77, 23.23]. The normalized
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Figure 13. Reflection of a solitary wave over a composite beach.
Vertical wall located at 23.23. Initial solitary wave amplitude
A/b0 = 0.3.

maximum runup computed at the location of the vertical wall in the first case
was R/b0 = 0.122 which is very close to the experimental value measured in the
laboratory R/b0 = 0.13. Moreover, the computed solution is very close to the
experimental data at the gauges and we don’t present these results here. It is
noted that because a very small relative amplitude wave is involved in this case,
its reflection can be modelled quite accurately, even by nondispersive models. The
other two cases involve a nearly breaking and a breaking wave. Due to the steepness
of the wave in the third case a wave breaking mechanism should be considered in
order to approximate the solution in a stable manner. In the second experiment,
the solitary wave is a nearly breaking wave. Although in this case the wave becomes
very steep during shoaling, the numerical maximum runup computed was 0.46 m,
which is again very close to the experimentally recorded runup value 0.45 m. The
solution at the wave gauges is presented in Figure 13. The results can be improved
by considering wave breaking mechanisms and improved Green-Naghdi models such
as those proposed in [LM15].

5. Summary and Conclusions

We present a fully discrete numerical scheme for the Serre-Green-Naghdi (SGN)
system with wall boundary conditions. Semidiscretization of the model equations is
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based on a modification of the standard Galerkin / finite-element method that al-
lows solutions in function spaces of low regularity. The time discretization is based
on a fourth-order, four-stage, explicit Runge-Kutta method. A detailed computa-
tional study of the convergence properties of the numerical scheme shows that the
method converges with similar convergence rates to those of Peregrine’s system.
Some of the advantages of the new numerical method are:

• the high accuracy and the very good conservation properties;
• the sparsity of the resulting linear systems;
• the low complexity of the algorithm due to the use of low-order finite ele-
ment spaces; and

• its potential to be extended to the two-dimensional model equations.

In addition, we perform a series of very accurate numerical experiments to verify
the efficacy of the numerical scheme in studies of shoaling and reflecting solitary
waves. The numerical solutions are compared with available experimental data
and theoretical approximations, whenever possible. The numerical model appears
to be efficient and the match between numerical results, experimental data, and
theoretical approximations is very satisfactory and shows better performance than
other shallow water wave systems when there is no wave breaking. Wave breaking
can be treaded by following heuristic methodologies, such as discarding dispersive
terms or adding new dissipative terms.

Acknowledgment

The authors were supported by the Marsden Fund administered by the Royal
Society of New Zealand.

References

[AD12] D.C. Antonopoulos and V.A. Dougalis. Numerical solution of the
‘classical’ Boussinesq system. Math. Comp. Simul., 82:984–1007,
2012.

[AD13] D.C. Antonopoulos and V.A. Dougalis. Error estimates for Galerkin
approximations of the “classical” Boussinesq system. Math. Comp.,
82:689–717, 2013.

[ADCSSA93] J.S. Antunes Do Carmo, F.J. Seabra-Santos, and A.B. Almeida. Nu-
merical solution of the generalized Serre equations with the MacCor-
mack finite-difference scheme. Int. J. Num. Meth. Fluids, 16:725–738,
1993.

[ADM10] D. Antonopoulos, V. Dougalis, and D. Mitsotakis. Galerkin approx-
imations of periodic solutions of Boussinesq systems. Bull. Greek
Math. Soc., 57:13–30, 2010.

[Ale06] A. Alenitsyn. On smoothing of non-smooth functions. Math Track,
2:17–21, 2006.

[Bar04] E. Barthelemy. Nonlinear shallow water theories for coastal waves.
Surveys in Geophysics, 25:315–337, 2004.

[BCL+10] P. Bonneton, F. Chazel, D. Lannes, F. Marche, and M. Tissier.
A splitting approach for the fully nonlinear and weakly dispersive
Green-Naghdi model. J. Comp. Phys., 230:1479–1498, 2010.

[CBB06] R. Cienfuegos, E. Barthelemy, and P. Bonneton. A fourth-order com-
pact finite volume scheme for fully nonlinear and weakly dispersive



A MODIFIED GALERKIN METHOD FOR THE SGN SYSTEM 27

Boussinesq-type equations. Part I: Model development and analysis.
Int. J. Numer. Meth. Fluids, 51:1217–1253, 2006.

[CBB07] R. Cienfuegos, E. Barthelemy, and P. Bonneton. A fourth-order com-
pact finite volume scheme for fully nonlinear and weakly dispersive
Boussinesq-type equations. Part II: Boundary conditions and model
validation. Int. J. Numer. Meth. Fluids, 53:1423–1455, 2007.

[CKT09] J. Chambarel, C. Kharif, and J. Touboul. Head-on collision of two
solitary waves and residual falling jet formation. Nonlin. Processes
Geophys., 16:111–122, 2009.

[CKY+15] Y.Y. Chen, C. Kharif, J.H. Yang, J. Touboul, and J. Chambarel. An
experintal study of steep solitary wave reflaction at a vertical wall.
Eur. J. Mech. B/Fluids, 49:20–28, 2015.

[CLM10] F. Chazel, D. Lannes, and F. Marche. Numerical simulation of
strongly nonlinear and dispersive waves using a Green-Naghdi model.
J. Sci. Comput., 48:105–116, 2010.

[CWB97] M. J. Cooker, P. D. Weidman, and D. S. Bale. Reflection of a high-
amplitude solitary wave at a vertical wall. J. Fluid Mech., 342:141–
158, 1997.

[DCMM13] D. Dutykh, D. Clamond, P. Milewski, and D. Mitsotakis. Finite
volume and pseudo-spectral schemes for the fully nonlinear 1D Serre
equations. European J. Appl. Math., 24:761–787, 2013.

[DMS07] V. A. Dougalis, D. E. Mitsotakis, and J.-C. Saut. On some Boussinesq
systems in two space dimensions: Theory and numerical analysis.
Math. Model. Num. Anal., 41(5):254–825, 2007.

[DMS10] V. Dougalis, D. Mitsotakis, and J.-C. Saut. Initial-boundary-value
problems for Boussinesq systems of Bona-Smith type on a plain do-
main: theory and numerical analysis. J. Sci. Comput., 44:109–135,
2010.

[Dod98] N. Dodd. A numerical model of wave run-up, overtopping and regen-
eration. ASCE J of Waterways Port Coastal and Oc Eng, 124:73–81,
1998.

[EG04] A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements,
volume 159. Springer, 2004.

[FBCR15] A. Filippini, S. Bellec, M. Colin, and M. Ricchiuto. On nonlinear
shoaling properties of enhanced Boussinesq models. Coastal Engi-
neering, page (preprint), 2015.

[FP05] A. S. Fokas and B. Pelloni. Boundary value problems for Boussinesq
type systems. Math. Phys. Anal. Geom., 8:59–96, 2005.

[GN76] A.E. Green and P.M. Naghdi. A derivation of equations for wave
propagation in water of variable depth. J. Fluid Mech., 78:237–246,
1976.

[GSS97] S. Grilli, I. Svendsen, and R. Subramanya. Breaking criterion and
characteristics for solitary waves on slopes. J. Waterway, Port,
Coastal, and Ocean Eng., 123:102–112, 1997.

[GSSV94] S. Grilli, R. Subramanya, I. Svendsen, and J. Veeramony. Shoaling
of solitary waves on plane beaches. J. Waterway, Port, Coastal, and
Ocean Eng., 120:609–628, 1994.



28 DIMITRIOS MITSOTAKIS, COSTAS SYNOLAKIS, AND MARK MCGUINNESS

[HNW09] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential
equations: Nonstiff problems. Springer, 2009.

[Isr11] S. Israwi. Large time existence for 1D Green-Naghdi equations. Non-
linear Analysis, 74(81–93), 2011.

[KD13] M. Kazolea and A. I. Delis. A well-balanced shock-capturing hy-
brid finite volume-finite difference numerical scheme for extended
1D Boussinesq models. Applied Numerical Mathematics, 67:167–186,
2013.

[KKM15] H. Kalisch, Z. Khorsand, and D. Mitsotakis. Mechanical balance laws
for fully nonlinear and weakly dispersive water waves. Submitted,
2015.

[KS98] U. Kanoglu and C. E. Synolakis. Long wave runup on piecewise linear
topographies. J. Fluid Mech., 374:1–28, 1998.

[Lan13] D. Lannes. The water wave problem: Mathematical analysis and
asymptotics. American Mathematical Society, 2013.

[LB09] D. Lannes and P. Bonneton. Derivation of asymptotic two-
dimensional time-dependent equations for surface water wave propa-
gation. Physics of Fluids, 21:016601, 2009.

[LGLX14] M. Li, P. Guyenne, F. Li, and L. Xu. High order well-balanced CDG-
FE methods for shallow water waves by a Green-Naghdi model. J.
Comp. Phys., 257:169–192, 2014.

[Li02] Y.A. Li. Hamiltonian structure and linear stability of solitary waves
of the Green-Naghdi equations. J. Nonlin. Math. Phys., 9:99–105,
2002.

[LM15] D. Lannes and F. Marche. A new class of fully nonlinear and
weakly dispersive Green-Naghdi models for efficient 2D simulations.
Preprint, 2015.

[Max76] T. Maxworthy. Experiments on collisions between solitary waves. J
Fluid Mech, 76:177–185, 1976.

[MID14] D. Mitsotakis, B. Ilan, and D. Dutykh. On the Galerkin / finite-
element method for the Serre equations. J. Sci. Comp., 61:166–215,
2014.

[Mit09] D. E. Mitsotakis. Boussinesq systems in two space dimensions over a
variable bottom for the generation and propagation of tsunami waves.
Math. Comp. Simul., 80:860–873, 2009.

[MS82] S. M. Mirie and C. H. Su. Collision between two solitary waves. Part
2. A numerical study. J. Fluid Mech, 115:475–492, 1982.

[Nwo93] O. Nwogu. Alternative form of Boussinesq equations for nearshore
wave propagation. J. Waterway, Port, Coastal and Ocean Engineer-
ing, 119:618–638, 1993.

[PDZ+14] N. Panda, C. Dawson, Y. Zhang, A. B. Kennedy, J. J. Westerink,
and A. S. Donahue. Discontinuous Galerkin methods for solving
Boussinesq-Green-Naghdi equations in resolving non-linear and dis-
persive surface water waves. J. Comp. Phys., 273:572–588, 2014.

[Per67a] D. H. Peregrine. Long waves on a beach. J. Fluid Mech., 27:815–827,
1967.

[Per67b] D.H. Peregrine. Long waves on beaches. J. Fluid Mech., 27:815–827,
1967.



A MODIFIED GALERKIN METHOD FOR THE SGN SYSTEM 29

[PTG+99] E. Pelinovsky, E. Troshina, V. Golinko, N. Osipenko, and
N. Petrukhin. Runup of tsunami waves on a vertical wall in a basin
of complex topography. Phys. Chem. Earth, 24:431–436, 1999.

[Sch73] M. H. Schultz. Spline Analysis. Prentice Hall, first edition, 1973.
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