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Using image-based CFD to investigate the

intracardiac turbulence

C. Chnafa, S. Mendez, R. Moreno and F. Nicoud

Abstract A numerical framework designed to compute the blood flow in patient-

specific human hearts is presented. The geometry of the heart cavities and associated

wall motion are extracted from 4D medical images while the valves of the heart are

accounted for thanks to low order geometrical models. The resulting blood flow

equations are solved using a fourth-order low-dissipative finite-volume scheme and

a mixed Aribtrary Lagrangian-Eulerian / Immersed Boundary framework. On top

of retrieving the main fluid flow phenomena commonly observed in the left heart,

the methodology allows studying the heart flow dynamics, including the turbulence

characteristics and cycle-to-cycle variations.

1 Introduction

Heart pathologies are closely related to intracardiac hemodynamics. Recent techno-

logical innovations in imaging techniques have provided valuable opportunities for

direct non-invasive in vivo assessment of hemodynamics. Blood flow velocities can

be measured in vivo using phase-contrast magnetic resonance imaging (PC-MRI) or

by echocardiography techniques.

PC-MRI studies have contributed to the understanding of the main hemodynamic

features [10, 18, 25]. Although very comprehensive, the PC-MRI velocity mapping
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is not real-time. Hence, beat-to-beat variations in the flow cannot be recorded (the

k-space is filled over many cardiac cycles). Moreover, PC-MRI suffers from a rel-

atively low spatio-temporal resolution, precluding the observation of small scales

and fast time-varying flow features [15].

Echocardiography techniques [11, 19], with higher spatio-temporal resolution

make an alternative to PC-MRI. However, they only give access to velocity compo-

nents directed towards or away from the ultrasonic beam, while one would want to

measure the full 3D flow vectors. Nevertheless, investigations have been conducted

on normal and abnormal hearts and interesting potential indicators of cardiac health

hemodynamics arose [4, 13, 16].

With the development of these cardiac imaging techniques, patient-specific ge-

ometries have been progressively used in computational fluid dynamics (CFD)

[5, 21, 28, 30, 42, 44]. Realistic heart wall movements on the basis of cine MRI or

Computed Tomography (CT) scan data can be used: heart movement is prescribed

from the patient-specific medical images, which can be acquired using standard

clinical imaging procedures, instead of being computed. This strategy allows com-

putation of the patient-specific hemodynamics and provides detailed insights into

the cardiac flow field, providing potentially valuable clinical information. If the fea-

sibility of this kind of approach has been shown, the results usually suffer from

limited spatial resolution, partial geometry (only the left ventricle (LV) is consid-

ered in most cases) or numerical limitations (dissipative schemes). Besides, except

in a few experimental works [7, 41], cycle-to-cycle variations in the heart flow is an

issue that is rarely dealt with.

In the present work, an image-based CFD method developed to compute flows

in aortas [29] is extended to compute intracardiac flows. Medical images are used

to generate a moving patient-specific domain, in which the blood flow equations

are solved. Heart geometry movements are generated from a 4D sequence (MRI

or CT scan images) treated by an appropriate image registration algorithm [35]. A

specific attention is paid to the generation of a high-quality mesh which deforms

consistently with the heart motion. This allows solving the flow equations with an

essentially non-dissipative scheme compatible with the description of unsteady tur-

bulent flows by Large Eddy Simulation. In order to demonstrate the ability of the

method to compute heart flows, application to a complete human left heart described

by ECG-gated 3D CT scan images is presented. The resulting flow is described, em-

phasizing the flow characteristics usually reported in the literature. Characteristics

of the cycle-to-cycle variations are also reported.

The numerical method is detailed in § 2. The characteristics of the applied case is

presented in § 3 and the flow field obtained is described in § 4. Concluding remarks

are given in § 5.
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2 Methodology

The present computational method approaches couples an Arbitrary-Lagrangian Eu-

lerian framework with an immersed boundary method in order to represent the blood

flow within the moving endocardium while accounting for the heart valves mo-

tion. This section describes the flow solver and the treatment of the medical images

needed to perform the computations.

2.1 Fluid problem

Blood is an incompressible, non-Newtonian fluid [9]. However, in large vessels,

non-Newtonian effects are usually neglected in numerical simulations [30, 46] and

constant kinematic viscosity ν is assumed in this paper. Note however that the

present numerical method could be applied to non-Newtonian fluids.

The flow is thus governed by the incompressible Navier-Stokes equations (NSE),

over a moving domain Ω f (t) ⊂ R3 of boundary ∂Ω f (t). The Arbitrary Lagrangian

Eulerian (ALE) framework [8] is used in order to account for the computational

domain deformation over time. Introducing the pointwise computational domain

velocity ug, the NSE read:

du

dt
+((u−ug) ·∇)u =− 1

ρ
∇p+ν∇2u+ f

∇ ·u = 0,







on Ω f (t) (1)

where u is the fluid velocity, p is the pressure, ρ the density and f a force per mass

unit. Note that the time derivative denotes an ALE time derivative [8]. At the bound-

ary of the computational domain, no-slip conditions are applied on walls (u = ug)

and Dirichlet conditions are applied over the inlet boundaries.

These equations are implemented in the flow solver YALES2BIO (www.math.univ-

montp2.fr/∼yales2bio) [27], developed from the massively parallel finite-volume

flow solver YALES2 [34]. At each time step, the grid velocity ug at each node of

the computational domain is calculated (see next section). A projection method is

used to solve the NSE: the momentum equation is first advanced using the fourth-

order Runge-Kutta time-advancement scheme. Fluxes are discretized with a 4th-

order central scheme. Any forcing term coming from immersed boundaries is ac-

counted for in this prediction step. At the end of the prediction step, the grid reaches

the final position of the time step. Hence, the projection step to calculate pressure

is performed over a fixed grid. A Deflated Preconditioned Conjugate Gradient algo-

rithm is used to solve the Poisson equation [24] involved in the projection step. Note

that due to the transitional nature of the flow, Reynolds Averaged Navier-Stokes

(RANS) approaches for modelling turbulence (e.g. k-ε , k-ω models, etc) are not

appropriate since they rely on the assumption that turbulence is fully developed and

ergodic. Even if adaptations have been proposed in order to handle transition, they
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essentially require the user to prescribe the transition location in advance. Instead, in

the present study, the Large Eddy Simulation approach is followed, taking advantage

of the low-dissipative scheme of integration used in YALES2BIO. In this view, only

the smallest scales are modelled (scales smaller than the mesh size) while the evolu-

tion of the large scales is computed by solving a filtered version of NSE [33, 39, 43].

In the latter, a subgrid-scale model must be used in order to account for the effect of

the unresolved scales on the dynamics of the resolved ones. This is usually done by

an eddy-viscosity-based model [45]. In the present study, where the flow is strongly

confined and piloted by the wall motions, an advanced subgrid scale model able to

represent the proper turbulence damping near solid walls was used [36] as well as a

well established formulation based on the dynamic procedure of Germano [12].

2.2 Computational Domain

2.2.1 Extraction of the heart deformation

Determining the movement of the computational domain, where the NSE are solved

is all but an easy task. One solution is to compute the deformations of the boundary

thanks to a full electrical-fluid-structure interaction solver. Unfortunately, there are

many uncertainties regarding the constitutive laws (both mechanical and electrical)

of the heart muscle as well as the external constraints the heart is submitted to.

Moreover, accurate heart models are still under development today [47] as well

as robust numerical method to solve them. A way of by-passing this issue is to

extract the computational heart grid from 4D (3D + time) patient medical images.

The following question must then be addressed: given several 3D images of a heart

taken at different times in the heart cycle, how to extract the heart deformations from

these images and how to deform a patient-specific grid accordingly? The first part

of the question is actually a classical ”image registration” problem.

Nowadays, there is a growing interest in the development of cardiac image reg-

istration methods [23]. Given two cardiac images, a template and a reference one,

a transformation is determined to map the template image to the reference image.

The deformation field can notably provide clinical information on the myocardial

contractile function. Here, the same process is used to compute the heart deforma-

tions, but instead of focusing on functional data of the heart muscle, the computed

deformation is used to extract patient-specific boundary conditions for the blood

flow computation.

Among many registration algorithms [22, 31], voxel similarity measure tech-

niques were preferred. This class of method operates directly on the image grey

values, providing a flexible algorithm suitable for the complex heart movements.

In the present case, N 3D images Ii of a patient heart are taken at different times

ti, 0 ≤ t0, t1, ..., tN−1 < T during the heart cycle of period T . One of the N images is

selected as a template image. Note that this choice is somewhat arbitrary and that,

without loss of generality, one can always tune the time origin so that the template
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corresponds to the I0 image at time t0. From this image, N − 1 transformations ψi

are computed such that the transformed template image becomes similar to images

Ii (i between 1 and N − 1) successively considered as the reference image: transfor-

mation ψi is search so that I0(ψi(x)) = Ii(x) for each voxel. Here, Ii(x) stands for

the voxel grey-level value at position x in the i-th 3D discrete image.

Each ψi is calculated by minimizing the distance between I0(ψi(x)) and Ii(x),
an appropriate distance measure being based on the so-called sum of squared differ-

ences. The transformation ψi is computed through an optimisation problem reading:

given two images I0 and Ii, find a mapping ψi such that the squared intensity dif-

ferences between I0(ψi(x)) and Ii(x) is minimized for each voxel. The number of

parameters describing the transformation is too high so that the solution ψi of this

problem is not unique. Additional constraints are needed to compute the mapping

ψi.

In the present work, a constraint on ψi is applied thanks to prior knowledge of the

deformation sought [2]. The idea is to penalize unlikely deformations by imposing

the heart deformations to be smooth. Bayesian statistics are used to obtain an a

posteriori computation of the deformation field. The prior deformation probability

is incorporated through the Bayes’ theorem: p(Y|I) ∝ p(I|Y)p(Y), where p(I|Y) is

the likelihood of observing the images data I (template I0 and reference Ii images)

given the deformation parameters Y. p(Y) is the prior knowledge of the deformation

translated in the a priori probability of seeing the parameters Y and p(Y|I) is the

a posteriori probability of getting Y knowing the two images data I. Using this

Bayesian framework, the goal is to maximise the probability p(Y|I). Knowing that

a probability is related to its Gibbs form by p(Y) ∝ e−H(Y), the problem can be seen

as a minimisation of the Gibbs potential:

H(Y|I) = H(I|Y)+H(Y)+ c, (2)

where c is a constant. The likelihood potential H(I|Y) of observing the images data

given the deformation parameters Y is directly linked to the squared intensity dif-

ference between I0(ψi(x)) and Ii(x) for each voxel:

H(I|Y) =
1

2

∫

Ω
(I0(ψi(x))− Ii(x))

2 dΩ , (3)

where the integral is taken over the image volume Ω .

The second term H(Y) in the right hand side of equation (2) is the wanted con-

straint, applied thanks to prior knowledge. The prior deformation knowledge put in

this potential is expressed as a geometrical constraint on the mapping through the

two studied images. A suitable prior probability is linked to the deformation of each

voxel of the template image and to the reverse deformation [1]. This potential act-

ing as a regularization term allows a penalization based on the Jacobian of the locals

deformations J. A detailed description of this term can be found in [1].

This regularization term is weighted by a parameter λ linked to the belief in the

amount of deformation of the heart. A high value of the λ parameter results in a high

penalty on the voxels deformation, hence only small and smooth deformations are
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allowed. Given the high deformation of the left heart, high λ values result in partial

deformation and a high residual squared difference between the template image

and the reference one. In the case of small values of λ , a lower residual squared

difference will be reached, but the resulting deformation can be non physical due to

excessive warping. Actually, the variability of heart movements is highly different

from one region to the other. The aorta needs high values of λ , whereas small values

are needed for the atrium or the ventricle.

One method of increasing the likelihood of achieving a good solution without

introducing a spatial variability on λ (and consequently avoiding more operator-

dependant work as well) is to apply successive filters to the images using a Gaussian

smoothing convolution kernel G
σ of width σ . High-frequency information of the

image is removed thanks to this filter then gradually re-introduced as the kernel

width σ becomes smaller and smaller. This iterative process is defined as the outer

iterations: for each kernel width, distance between the images are minimized. This

”coarse-to-fine” strategy has the effect of making the registration algorithm estimate

the most global deformations during the first outer iteration, leaving out fine-scale

structures. The optimum transformation for this kernel width is used to initialize

the computation of the next optimum computation, which deals with finer details.

This method increases the likelihood of finding the globally optimal match while

avoiding the classical problem of the intensity-based method: their susceptibility to

poor starting estimates.

As the regularization term, the intensity difference (first term H(I|Y) in the right

hand side of the equation (2)) is weighted. The weight for the j-th inner iteration is

defined as the inverse of the residual sum of the squared differences computed at the

previous inner iteration of a given outer iteration of the algorithm and is denoted

by 1
d j−1 . Because d has a high value for the first iterations, more weight is given to

the regularization term, in order to get smooth deformations. As the algorithm gets

close to the final solution, d theoretically tends to zero, giving less weight to the

priors and letting the algorithm computing more detailed deformations.

Finally, the sought transformation ψ
j,k

i at the inner iteration j and the outer iter-

ation k minimizes the function f j,k defined as:

f
j,k

1 (ψ j,k
i ) =

1

2d j−1

∫

Ω
([G σ k ∗ I0](ψ

j,k
i (x))− [G σ k ∗ Ii](x))

2 dΩ , (4)

f
j,k

2 (ψ j,k
i ) = g(J(ψ j,k

i )), (5)

f j,k(ψ j,k
i ) = f

j,k
1 (ψ j,k

i )+λ f
j,k

2 (ψ j,k
i ), (6)

where the function g is computed from the Jacobian singular values and determi-

nant [2]. Finally the N −1 deformations are computed through this iterative optimi-

sation process. This approach was successfully applied before to large vessels as the

aorta cross [29].
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2.2.2 Patient-specific computational grid and application of the

patient-specific deformation

Once the N − 1 mappings ψi are computed, a patient-specific computational grid

must be extracted from the template image and warped thanks to the computed

deformations. The template image corresponding to volumetric data I0 is imported

into an image processing software (ScanIP;Simpleware Ltd., Exeter, UK). Before

segmentation, the image I0 is prepared: the region of interest is isolated and the

image is smoothed to erase noise inherent to the medical images protocols. The

segmentation itself is done by a classical thresholding method [38]. A suitable image

intensity range which encompasses the voxel intensities of the region occupied by

blood in the heart is selected. The quality of the segmentation relies on the operator’s

skills and knowledge of the human heart morphology and the quality of the chosen

medical image. Image resolution plays a role in the potential domain simplification

at this step. Trabeculae, left atrial appendage or papillary muscles can either be kept

or neglected depending on the image quality and spatial resolution available. The

3D geometric reconstruction covers all the space occupied by blood in the left heart

cavities. The surface of the geometric reconstruction of the heart is triangulated.

Once a template 3D patient-specific surface mesh is created, a procedure to de-

form this surface model thanks to the images must be provided. For each couple of

images (I0,Ii) a suitable spatial transformation ψi was found thanks to the method

described in the previous section. These deformations ψi are 3D deformation fields.

Trilinear interpolation from these deformation fields to the template surface mesh

is done. Thus, a set of N − 1 successive surface meshes matching the physiological

cardiac images at different times ti is produced as schematized in Fig. 1.

Position and velocity of all surface points are needed at any discrete time of

the simulation, not only at the times t0, t1, ..., tN−1. Since all the generated surface

meshes share the same topology (number and connection between nodes, number

of cells), interpolation is used to compute the position of each node and the velocity

by taking the time derivative of this quantity. As geometry variations are periodic, a

trigonometric interpolation is used. The surface position and velocities read:

xs(t) =
m

∑
i=0

[ai cos(2iπ
t

T
)+ bi sin(2iπ

t

T
)],

us(t) =
2iπ

T

m

∑
i=1

[−ai sin(2iπ
t

T
)+ bi cos(2iπ

t

T
)],



















on ∂Ω f (t) (7)

where T is the heart cycle period, m the number of Fourier modes (m = N−1
2

or
N
2

depending on the parity of N) and ai, bi the Fourier coefficients. Surface velocity

us needed at the computation domain boundary ∂Ω f (t) is hence not computed as a

FSI problem, but entirely extracted from the medical images. In the present study, it

is used to handle the cardiac chambers and their connected vessels.

The template surface is imported in a commercial mesher (Gambit, ANSYS) to

generate a template unstructured tetrahedral mesh. The computed boundary Fourier

coefficients of Eq. (7) are interpolated in this template numerical domain. The com-
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Fig. 1 Mesh deformation procedure applied to a left human heart. The template mesh segmented

from the image at time t0 is deformed thanks to ψi to obtain the mesh at time ti. This procedure is

done for each image in the cardiac cycle in order to obtain the corresponding meshes.

putational mesh boundary now follows the shape of the patient endocardium and is

updated in every step of the simulation. Motion of all internal points in the compu-

tational mesh is based on the prescribed boundary motion. At each iteration, nodal

velocity ug is calculated through the computation of a Laplace equation [26] using

the prescribed boundary motion as boundary condition for this problem.

The grid quality is monitored during the simulations. When the boundary dis-

placement becomes too large compared to the local cell sizes, the cell quality can be

highly deteriorated. This can lead to convergence problems or negative cell volumes.

In this case, the numerical domain is re-meshed, Fourier coefficients are interpolated

on this new discretized surface domain, as is the fluid solution at the new internal

nodes.

2.3 Valves

Given their spatio-temporal resolution, MRI and CT scans fail to provide the nec-

essary information to characterize precisely the movements of the aortic (AV) and

of the mitral (MV) valves. Their geometry and movement have thus to be mod-

elled. Accounting for the moving valves with the ALE method would be extremely

complex due to grid quality issues. Here, an immersed boundary technique is used

instead. A body force is imposed to drive the flow velocity to zero where the valves

are located [3].

The opening and closing valve time is generally small (of the order of 5% of the

heart cycle [48]). As a first modelling effort, it has been considered that valves open

and close instantaneously, following the evolution of the ventricle volume. Systole

lasts as long as the ventricle volume decreases. During systole, the AV is open and
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the MV closed. Diastole is defined as the heart period during which the ventricle

volume increases: then, the AV is closed and the MV open.

Valve reconstruction starts with the definition of the valves annuli. Their geom-

etry is reconstructed by inspecting the medical images. A number of markers are

placed manually to define the valve annuli at a given time. The motion of these

markers is then obtained thanks to the Fourier coefficient defining the boundary

motion (Eq. 7).

As the focus is on the flow in the atrium and in the ventricle, the aortic valve

is modelled very simply. Physiologically, the leaflets of the aortic valve are pushed

against the vessel, offering small resistance to the flow. Hence, when the aortic valve

is open, no immersed force is applied: aortic valve is only active when closed.

The mitral valve is represented by a more complex model, since its shape is

expected to strongly impact the LV haemodynamics. The position of the mitral valve

annulus being known over time, the mitral valve opening is defined using an ad hoc

model. From visual inspection of the images, parameters as the average leaflets

length, the orientation of the valve opening and an ellipse defining the opening area

are imposed. Details of the procedure are described in Chnafa et al. [3].

Fig. 2 Left plot: annulus markers and grid cells where a body force is added to model the MV

leaflets. Diameters a(t) and b(t) of the elliptic opening are indicated. Right plot: full MV model

included in the numerical domain (the AV is represented as well).

Knowing the MV leaflets position during the heart cycle, their effect on the blood

flow is accounted for by using an immersed boundary method (IBM) [32]. For this

purpose, the leaflets representations are given a thickness so that a few mesh nodes

are located within the valves. Then, the force f in the NS equations (1) is set to

impose the fluid velocity to zero within the leaflets. Figure 2 shows an example of

the valves models during diastole, when the MV is open.
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2.4 Inlet boundary conditions

Inlet boundary conditions at the pulmonary veins must be provided. Under the

present assumptions, either the aortic valve or the mitral valve is closed. Pulmonary

veins thus always inject blood in a closed domain. As a consequence, blood being

incompressible, the total mass flow rate entering the domain is entirely determined

by the mass conservation constraint. With QPV (t) denoting the inlet flow rate (sum

of the volumetric flow rates at the four pulmonary veins) and VLA, VLV and VAO

denoting respectively the LA, LV and the aortic root volumes, mass conservation

yields:

QPV (t) =



















dVLA

dt
during systole,

dVLA

dt
+

dVLV

dt
during diastole.

(8)

Uniform velocity profile are imposed at each inlet condition. With n j the outward

normal vector and A j the area of inlet condition j ( j=1,..,4), the inflow velocity

reads:

u j(t) = −
(

Qi(t)

A j

ζ j

)

n j, (9)

where ζ j determines the distribution of the flow between the four pulmonary veins.

In the absence of additional measurement (typically flow rates from PC-MRI), it

is fair to assume a uniform distribution between the different pulmonary veins

(ζ j=0.25 for all j.

3 Application to a patient left heart: problem formulation

3.1 Heart model

Using the framework described above, an actual CT exam of a patient treated at the

University Hospital of Toulouse Rangueil (France) is used to generate a numerical

domain and its deformation. The CT exam consists of N = 10 medical images along

the cardiac cycle of period T = 1 s with a spatial resolution 2×2×2 mm.

Due to the limited resolution of the images, the intra-cardiac geometry is sim-

plified. As shown in Fig. 3, the numerical domain includes the LA, LV, the aortic

root and four pulmonary veins. Left atrial appendum and geometrical details as the

cordae tendinae or papillary muscles are omitted. The LA has a height of 5.5 cm

from the MV to the upper pulmonary root and a maximum diameter of order 4 cm.

The LV has a height of 8.8 cm from the MV to the apex (the lowest extremity of the

LV in Fig. 3) and a maximum diameter of order 5 cm. The four pulmonary veins
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Fig. 3 Template computational domain extracted from a 3D medical image. The same domain is

represented for four different points of view and the left ventricle (LV), left atrium (LA) and Aorta

(AO) are indicated. Black line passing through the left heart indicates the position of slices used to

describe the flow in section 4.

can be identified at the top of the views shown in Fig. 3. Each of the four pulmonary

veins directly issues in the LA.

Valves are modeled as explained in section (2.3). A close examination of the

medical images from the CT scan allowed to set the leaflets length to l = 12 mm

for the MV. The open area presented to the blood flow is represented by an ellipse

of axis a = 15 mm and b = 8 mm. As a first approximation, this area is supposed

constant over the time when the MV is open.

3.2 Grid mesh and simulation details

A nearly isotropic grid is created from the heart model described in the previous

section using the commercial software Ansys Gambit, which was selected for its

ability to generate good-quality tetrahedral mesh, appropriate for non-dissipative

finite-volume formulations. The spatial resolution is of order 0.8 mm, which yields

grids of approximately three-million tetrahedral elements. In this study, in order to

maintain the quality of the grid along the cycle, re-meshing (see section 2.2.2) was

used at each acquisition instants ti, i = 1, ...,N − 1.

The simulation time step is fixed by a CFL condition (CFL=0.9) consistent with

the explicit time integration used in the CFD solver, which corresponds to a time

step of order 10−4 s.

Figure 4 displays the flow rates at the aortic valve (top plot), mitral valve (middle

plot) and the heart inflow (bottom plot) gathering the four PV. Two verticals dotted

lines separate the systolic phase and the diastolic one. For this heart, systole lasts

t/T = 0.36 (from t/T 0.015 to 0.375) and diastole t/T = 0.64.
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Fig. 4 Flow rates at the aortic valve (top plot), mitral valve (middle plot) and the total heart inflow

(bottom plot) imposed at the pulmonary veins during the heart cycle. Vertical dotted lines mark the

limit between the systolic phase (t/T between 0.015 and 0.375) and the diastolic phase.

Element Umax D = 2

√

A
π Remax tm/T

AV 0.96 m.s−1 2.20 cm 5300 0.16

MV 1.08 m.s−1 1.87 cm 5000 0.52

Pulm. vein 0.79 m.s−1 1.00 cm 2000 0.52

Table 1 Main flow parameters describing the simulation. The section-averaged maximum velocity

is indicated as Umax. Reynolds numbers are based on the diameter D of the region of interest. The

instants when they reach their maximum value Remax are reported as tm/T . For valves, A is the

area of the lumen when open.
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The pulmonary flow rate derived from time evolution of the heart cavities is con-

sistent with classical medical dataThe aortic valve flow rate behaves as expected:

it increases during systole with a maximum flow rate of QMV = 320 mL.s−1, then

decreases until its shutting at t/T = 0.375. The aortic flow rate stays null during di-

astole. The mitral flow rate is usually composed by two peaks. The E wave, or rapid

filling, and a second one, the A wave corresponding to late diastole. They are sepa-

rated by a phase with almost no heart motion called diastasis. The flow rate shows

only one main peak in the present case: the E wave (t/T = 0.51, QMV = 410 mL.s−1).

The fact that the A wave is weak is symptomatic of pathologies.

The blood properties are: ρ = 1040 kg.m−3 and ν = 4 × 10−6 m2s−1. Rele-

vant flow conditions at different locations of the heart are reported in Table 1. Inlet

Reynolds number for each pulmonary vein varies from 0 to approximately 2000,

based on the vein diameter. The Reynolds number at the mitral tips varies from 0 to

approximately 5000 (based on the effective mitral mean diameter D = 2Ra = 2
√

ab,

the area of the open MV, the kinematic viscosity and the maximum flow rate). The

maximum transmitral velocity Umax falls into the usual measurements (around 1.0

m.s−1) [14]. The Reynolds number of the aortic valve is about 5300. Table 1 reports

the maximum velocity magnitude and the maximum Reynolds number for different

elements of the heart model: pulmonary veins, mitral valve and aortic valve. These

ranges of Reynolds numbers and the pulsating nature of the inlet flow clearly in-

dicate that this complex cyclic flow may be transitional if not fully turbulent. This

justifies the use of Large-Eddy Simulation (LES) which is more suitable than other

simulation approaches for unsteady and/or transitional flows. In order to achieve a

quality assessment of the presented simulation, the Pope criterion [40] is used. Ac-

cording to this criterion, a reliable LES should be able to resolve at least 80% of

the turbulent kinetic energy. Looking at the phase where the turbulent activity is the

highest (t/T=0.65), it was found that this criterion is met in 85% of the numerical

domain. The last 15% are mainly located in the atrial cavity.

4 Results and discussion

4.1 Global description of the cardiac cycle

Fifteen cardiac cycles were simulated and phase-averaged in order to provide a clear

view of the flow organization over the cardiac cycle. A detailed flow description

can be found in [3]; only the main flow characteristics are recalled here for the

sake of completeness. Six salient instants are illustrated in Figure 5: the ventricular

mid and end-systole (t/T=0.25-0.35), the beginning, peak and end of the E wave

(t/T=0.45-0.55-0.65) and the end of the A wave, just before the beginning of the

next ventricular systole (t/T=0.99). The velocity field is scaled by ua = q̇ls/Vs = 0.1

ms−1 where q̇=7.50 × 10−5 m3s−1 is the cardiac output, Vs= 5.55 × 10−5 m3 is

the end systolic volume and ls=7.40×10−2 m is the ventricle length at the end of
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Fig. 5 Phase-averaged velocity field over a cutting-plane through the left heart. Velocity vector

scale is not constant though the heart cycle and is indicated for each plot. Mitral valve is depicted

in light grey the aortic one in dark grey.

systole. Note that due to the strong velocity variations along the cycle, the vector

scale was adapted for each instant.

During systole (t/T=0.25-0.35), the mitral valve is closed (in light gray in Fig. 5),

preventing backflow towards the atrium, while the aortic valve is open (in dark gray

in Fig. 5). The decrease of the ventricle volume causes ejection of blood into the

aorta. Note that the velocity amplitude is the highest in the ascending aortic root.

The computed flow at mid-systole is also highly swirled in the atrium, as reported

in vivo [18, 25]. This movement is hardly discernible in Fig. 5, because the vortical

movement is mainly perpendicular to the cutting plane [3]. Two recirculation zones

are however visible in Fig. 5 (top center): just under the MV and within the aorta,

just above the AV, in agreement with [17]. At the end of the ventricle contraction, the

aortic valve closes and the mitral valve opens: ventricle filling starts. At t/T=0.375



Using image-based CFD to investigate the intracardiac turbulence 15

(not shown), the ventricle diastole starts: the LV volume increases and blood passes

from the LA to the LV, forming a strong jet through the MV. The shear layer between

the jet generated during the E wave and the surrounding quiescent fluid rolls-up and

shapes the jet head as a vortex ring [20]. The E wave vortex ring signature and

its evolution are visible in Fig. 5 (t/T=0.45-0.55) which illustrates a mechanism

already reported by several authors [6]. The vortex ring does not remain symmetric,

as the lateral wall prevents its full development. A large recirculating cell is clearly

visible in the LV at t/T=0.65 (Fig. 5, bottom center), as often described in the

literature [16, 21, 25]. It is characteristic of the flow in the ventricle after the E wave.

Two less intense blood recirculation zones can be detected: one at the apex, which

is visible during the whole diastole and an intermittent one between the aortic valve

and one of the MV leaflet. These blood recirculations are also described in silico [5,

30, 44]. Between the E wave and the A wave, the recirculating cell core in the LV

moves from the ventricle center to the septum wall. During the A wave occurring at

t/T=0.99 (Fig. 5, bottom right), the blood flux passing though the MV strengthens

the recirculating cell in the LV, as classically reported [37]. Atrial contraction expels

blood from the LA, both through the MV, as seen in the lower half part of the LA

and through the pulmonary veins, as shown by the upward velocity vectors visible

in the upper half part of the LA.

4.2 Cycle-to-cycle variations

The studied flow configuration is a breeding ground for weak turbulence. The tran-

sitional nature of this cyclic flow due to the highly complex evolving geometry and

the unsteady inflows results in cycle-to-cycle variations. As an illustration, Figure 6

shows the time evolution of the vertical velocity at four different points within the

left heart. Velocity signals corresponding to six different heart cycles are superim-

posed to visualize the cycle-to-cycle variations. Moderate (2ua) to high (5ua) vari-

ations are present at all the locations, although not uniformly distributed over the

cardiac cycles. The second plot (corresponding to a probe located under the aortic

valve) shows the lowest variations: almost no cycle-to-cycle variations are visible

during the diastolic phase, which is expected, given the quiescent flow beneath the

aortic valve during diastole. Cycle-to-cycle variations are however visible (varia-

tions around 2ua) during the systolic phase, as expected given the typical Reynolds

number. Cycle-to-cycle variations decrease during the systolic phase in the LV (see

third plot), beginning from variations up to 4ua to almost null variations. This ab-

sence of fluctuations carries on even after the passage of E-wave vortex ring, visible

on the signal. Variations are visible from t/T = 0.55 and amplify during the late

diastole. A similar behaviour is visible in the lower part of the LV (see fourth plot):

during systole, variations decrease, then rise after t/T = 0.55, reaching an amplitude

of order 5ua. The largest relative fluctuations are obtained in the left atrium (top plot)

with small cycle-to-cycle variations during systole (t/T between 0.015 and 0.375)

but fluctuations as large as 2ua at t/T = 0.35 and 5ua at t/T = 0.6. Theses variations
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Fig. 6 Temporal evolutions of the scaled vertical velocity w/ua (the w direction is indicated in

the figure and ua = q̇ls/Vs) at four different points within the left heart. Six cycles are reported to

illustrate the cycle-to-cycle variations.

are related to the interaction between the four inlet flows from the four pulmonary

veins.

A more quantitative assessment of the cycle-to-cycle variations is obtained by

computing the kinetic energy of the velocity fluctuations. The velocity flow is de-

composed in a mean (phase-averaged) velocity field u and a fluctuating part u′. The

turbulent kinetic energy k and the mean flow kinetic energy Ek are defined as:

k(t) =
1

2V(t)

∫

V (t)
(urms(x, t)

2 + vrms(x, t)
2 +wrms(x, t)

2)dV, (10)

Ek(t) =
1

2V(t)

∫

V (t)
(u(x, t)2 + v(x, t)2 +w(x, t)2)dV, (11)

where urms, vrms and wrms are the root-mean-square values of the velocity fluctu-

ations in the three directions. The volume V (t) is either the volume of the ventricle

or the volume of the atrium at time t.

Figure 7 shows how these energies evolve over the heart cycle, both in the ventri-

cle (top plot) and the atrium (bottom plot). Note that 5 times k is plotted, so that the

same scale is used to represent both energies. The mean flow kinetic energy evolves

similarly in both cavities. During the systolic phase (t/T between 0.015 and 0.375)

it increases and reaches a plateau at t/T=0.15. After a decrease just before the be-

ginning of diastole, the mean flow kinetic energy increases again and reaches a peak
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Fig. 7 Volumetric mean flow kinetic energy Ek (full line) and five times the turbulent kinetic

energy k (dashed line) in the left ventricle (top plot), and in the left atrium (bottom plot). The

energies are nondimensionalised by u2
a. Vertical dotted lines mark the limit between the systolic

phase (t/T between 0.015 and 0.375) and the diastolic phase.

at t/T=0.54, viz. 0.04T after the the peak of the E wave. The maximum value of Ek

corresponds to the presence of high velocities when blood flows from the atrium to

the ventricle (see the mitral jet in Fig. 5, bottom left). The ventricular turbulent ki-

netic energy k remains low during the systolic phase thanks to the stabilizing effect

of the flow acceleration, with values of less than 5% of Ek. It then increases substan-

tially, reflecting the amplification of the disturbance after the jet impingement on the

lateral ventricle wall. The turbulent energetic peak is reached T /10 after the peak of

mean flow kinetic energy, corresponding to the convection time of the vortex ring

and the decelerating phase of the flow. The turbulence intensity k/Ek in the ventricle

is as high as 50 % during the k peak.

The atrial turbulent kinetic energy behaves somewhat differently. First, it in-

creases during the whole systolic phase, because of the interaction/collision of the

four inflowing jets issued from the pulmonary veins. A first peak is thus reached

near the beginning of the diastolic phase and turbulence intensity is then attenuated

during the flow acceleration through the atrium, as expected. The atrial turbulent

kinetic energy rises again after t/T=0.5 and reaches its peak before t/T = 0.6 dur-

ing the flow deceleration. On top of occurring earlier in the heart cycle, this peak

is around twice less energetic than the one occurring in the ventricle. Still, it corre-

sponds to a large turbulence intensity of approximatively 20 %. As in the ventricle,

the turbulent kinetic energy then decreases until the end of the heart cycle.
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5 Conclusion and outlook

The approach presented here allows patient-specific blood flow simulations in the

heart from a series of gated 3D images. Starting from 4D medical images, the nu-

merical domain is first extracted and the heart wall movements are then calculated

thanks to a proper image registration algorithm. In order to demonstrate the ability

of the method to reproduce the cardiac flow, a computation of the blood flow in a

whole left heart has been conducted. Results consistent with the current knowledge

in terms of left heart flow is presented. All presented features have been reported

several times in the literature, both in numerical and experimental studies and by

medical imaging.

Furthermore, the use of fluid numerical method well adapted to fluctuating tur-

bulent flows enables the observation of cycle-to-cycle variations in the flow field.

Such variations are expected in the present flow, due to the high Reynolds numbers

encountered and the unsteadiness of the flow incoming from the pulmonary veins.

The present results show that in spite of rigorously identical contraction and bound-

ary conditions, fluid inertia makes the flow differ from one cycle to another. More

precisely, cycle-to-cycle variations in the left atrium can be observed in its upper

part, where the collision of the jets issuing from the pulmonary veins makes the

flow particularly chaotic. Spatially averaged kinetic turbulent energy level reaches

a turbulent intensity of 20 % at its peak then slowly decreases. In the left ventricle,

velocity fluctuations are reported mainly during late diastole. Between the impact of

the E wave jet on the lateral wall and the end of diastole, the left ventricle displays

high levels of cycle-to-cycle fluctuations. Indeed, both the vortex ring impact and

the E wave deceleration occur approximately at the same time, and both are features

tending to generate turbulence. This translates into turbulent intensity levels as high

as 50 %. This turbulent activity dissipates little by little, until the flow acceleration

at early systole.

The presented method does not include or simplifies some aspects of the physio-

logical heart. Blood is considered as a Newtonian fluid, which is an approximation

commonly accepted for the heart flow. A non-Newtonian model could be included

in our simulations. The spatio-temporal resolution of medical imaging imposes tem-

poral interpolation and geometrical simplifications of the heart model. Consistently

with the poor time resolution of the input medical data, a rough model of the mi-

tral valve was used, which constitutes the main drawback of our method. Valves

are instantaneously switch from their closed position to their open position and vice

versa. This simple approach is justified by the fact that the opening and closing of

the valves last only 5% of the whole cycle. Change of aperture area along time is

not considered either. Note however that the model can be refined depending on

the available data. Nevertheless, the presented approach allows to retrieve features

reported in the literature and, in addition, it can provide detailed information about

the complex intermittent flow in the left heart.
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